]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
Add connection tracking label support.
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdint.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "csum.h"
31 #include "dynamic-string.h"
32 #include "hash.h"
33 #include "jhash.h"
34 #include "match.h"
35 #include "dp-packet.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "odp-util.h"
39 #include "random.h"
40 #include "unaligned.h"
41
42 COVERAGE_DEFINE(flow_extract);
43 COVERAGE_DEFINE(miniflow_malloc);
44
45 /* U64 indices for segmented flow classification. */
46 const uint8_t flow_segment_u64s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
48 FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
49 FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
50 FLOW_U64S
51 };
52
53 /* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
54 * without any intervening padding. */
55 #define ASSERT_SEQUENTIAL(f0, f1) \
56 BUILD_ASSERT_DECL(offsetof(struct flow, f0) \
57 + MEMBER_SIZEOF(struct flow, f0) \
58 == offsetof(struct flow, f1))
59
60 /* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
61 * struct flow. */
62 #define ASSERT_SAME_WORD(f0, f1) \
63 BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \
64 == offsetof(struct flow, f1) / 4)
65
66 /* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
67 * aligned word in struct flow. */
68 #define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \
69 ASSERT_SEQUENTIAL(f0, f1); \
70 ASSERT_SAME_WORD(f0, f1)
71
72 /* miniflow_extract() assumes the following to be true to optimize the
73 * extraction process. */
74 ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci);
75
76 ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
77 ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
78 ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);
79
80 /* TCP flags in the middle of a BE64, zeroes in the other half. */
81 BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
82
83 #if WORDS_BIGENDIAN
84 #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
85 << 16)
86 #else
87 #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
88 #endif
89
90 ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
91
92 /* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
93 * must contain at least 'size' bytes of data. Returns the first byte of data
94 * removed. */
95 static inline const void *
96 data_pull(const void **datap, size_t *sizep, size_t size)
97 {
98 const char *data = *datap;
99 *datap = data + size;
100 *sizep -= size;
101 return data;
102 }
103
104 /* If '*datap' has at least 'size' bytes of data, removes that many bytes from
105 * the head end of '*datap' and returns the first byte removed. Otherwise,
106 * returns a null pointer without modifying '*datap'. */
107 static inline const void *
108 data_try_pull(const void **datap, size_t *sizep, size_t size)
109 {
110 return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
111 }
112
113 /* Context for pushing data to a miniflow. */
114 struct mf_ctx {
115 struct flowmap map;
116 uint64_t *data;
117 uint64_t * const end;
118 };
119
120 /* miniflow_push_* macros allow filling in a miniflow data values in order.
121 * Assertions are needed only when the layout of the struct flow is modified.
122 * 'ofs' is a compile-time constant, which allows most of the code be optimized
123 * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
124 * defined as macros. */
125
126 #if (FLOW_WC_SEQ != 34)
127 #define MINIFLOW_ASSERT(X) ovs_assert(X)
128 BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
129 "assertions enabled. Consider updating FLOW_WC_SEQ after "
130 "testing")
131 #else
132 #define MINIFLOW_ASSERT(X)
133 #endif
134
135 /* True if 'IDX' and higher bits are not set. */
136 #define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \
137 { \
138 MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \
139 (FLOWMAP_MAX << ((IDX) % MAP_T_BITS)))); \
140 for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \
141 MINIFLOW_ASSERT(!(FM)->bits[i]); \
142 } \
143 }
144
145 #define miniflow_set_map(MF, OFS) \
146 { \
147 ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \
148 flowmap_set(&MF.map, (OFS), 1); \
149 }
150
151 #define miniflow_assert_in_map(MF, OFS) \
152 MINIFLOW_ASSERT(FLOWMAP_IS_SET(MF.map, (OFS))); \
153 ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)
154
155 #define miniflow_push_uint64_(MF, OFS, VALUE) \
156 { \
157 MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \
158 *MF.data++ = VALUE; \
159 miniflow_set_map(MF, OFS / 8); \
160 }
161
162 #define miniflow_push_be64_(MF, OFS, VALUE) \
163 miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
164
165 #define miniflow_push_uint32_(MF, OFS, VALUE) \
166 { \
167 MINIFLOW_ASSERT(MF.data < MF.end); \
168 \
169 if ((OFS) % 8 == 0) { \
170 miniflow_set_map(MF, OFS / 8); \
171 *(uint32_t *)MF.data = VALUE; \
172 } else if ((OFS) % 8 == 4) { \
173 miniflow_assert_in_map(MF, OFS / 8); \
174 *((uint32_t *)MF.data + 1) = VALUE; \
175 MF.data++; \
176 } \
177 }
178
179 #define miniflow_push_be32_(MF, OFS, VALUE) \
180 miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
181
182 #define miniflow_push_uint16_(MF, OFS, VALUE) \
183 { \
184 MINIFLOW_ASSERT(MF.data < MF.end); \
185 \
186 if ((OFS) % 8 == 0) { \
187 miniflow_set_map(MF, OFS / 8); \
188 *(uint16_t *)MF.data = VALUE; \
189 } else if ((OFS) % 8 == 2) { \
190 miniflow_assert_in_map(MF, OFS / 8); \
191 *((uint16_t *)MF.data + 1) = VALUE; \
192 } else if ((OFS) % 8 == 4) { \
193 miniflow_assert_in_map(MF, OFS / 8); \
194 *((uint16_t *)MF.data + 2) = VALUE; \
195 } else if ((OFS) % 8 == 6) { \
196 miniflow_assert_in_map(MF, OFS / 8); \
197 *((uint16_t *)MF.data + 3) = VALUE; \
198 MF.data++; \
199 } \
200 }
201
202 #define miniflow_pad_to_64_(MF, OFS) \
203 { \
204 MINIFLOW_ASSERT((OFS) % 8 != 0); \
205 miniflow_assert_in_map(MF, OFS / 8); \
206 \
207 memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
208 MF.data++; \
209 }
210
211 #define miniflow_push_be16_(MF, OFS, VALUE) \
212 miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
213
214 #define miniflow_set_maps(MF, OFS, N_WORDS) \
215 { \
216 size_t ofs = (OFS); \
217 size_t n_words = (N_WORDS); \
218 \
219 MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \
220 ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \
221 flowmap_set(&MF.map, ofs, n_words); \
222 }
223
224 /* Data at 'valuep' may be unaligned. */
225 #define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
226 { \
227 MINIFLOW_ASSERT((OFS) % 8 == 0); \
228 miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \
229 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
230 MF.data += (N_WORDS); \
231 }
232
233 /* Push 32-bit words padded to 64-bits. */
234 #define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
235 { \
236 miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \
237 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
238 MF.data += DIV_ROUND_UP(N_WORDS, 2); \
239 if ((N_WORDS) & 1) { \
240 *((uint32_t *)MF.data - 1) = 0; \
241 } \
242 }
243
244 /* Data at 'valuep' may be unaligned. */
245 /* MACs start 64-aligned, and must be followed by other data or padding. */
246 #define miniflow_push_macs_(MF, OFS, VALUEP) \
247 { \
248 miniflow_set_maps(MF, (OFS) / 8, 2); \
249 memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
250 MF.data += 1; /* First word only. */ \
251 }
252
253 #define miniflow_push_uint32(MF, FIELD, VALUE) \
254 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
255
256 #define miniflow_push_be32(MF, FIELD, VALUE) \
257 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
258
259 #define miniflow_push_uint16(MF, FIELD, VALUE) \
260 miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
261
262 #define miniflow_push_be16(MF, FIELD, VALUE) \
263 miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
264
265 #define miniflow_pad_to_64(MF, FIELD) \
266 miniflow_pad_to_64_(MF, offsetof(struct flow, FIELD))
267
268 #define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
269 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
270
271 #define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
272 miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
273
274 #define miniflow_push_macs(MF, FIELD, VALUEP) \
275 miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
276
277 /* Pulls the MPLS headers at '*datap' and returns the count of them. */
278 static inline int
279 parse_mpls(const void **datap, size_t *sizep)
280 {
281 const struct mpls_hdr *mh;
282 int count = 0;
283
284 while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
285 count++;
286 if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
287 break;
288 }
289 }
290 return MIN(count, FLOW_MAX_MPLS_LABELS);
291 }
292
293 static inline ovs_be16
294 parse_vlan(const void **datap, size_t *sizep)
295 {
296 const struct eth_header *eth = *datap;
297
298 struct qtag_prefix {
299 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
300 ovs_be16 tci;
301 };
302
303 data_pull(datap, sizep, ETH_ADDR_LEN * 2);
304
305 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
306 if (OVS_LIKELY(*sizep
307 >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
308 const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
309 return qp->tci | htons(VLAN_CFI);
310 }
311 }
312 return 0;
313 }
314
315 static inline ovs_be16
316 parse_ethertype(const void **datap, size_t *sizep)
317 {
318 const struct llc_snap_header *llc;
319 ovs_be16 proto;
320
321 proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
322 if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
323 return proto;
324 }
325
326 if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
327 return htons(FLOW_DL_TYPE_NONE);
328 }
329
330 llc = *datap;
331 if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
332 || llc->llc.llc_ssap != LLC_SSAP_SNAP
333 || llc->llc.llc_cntl != LLC_CNTL_SNAP
334 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
335 sizeof llc->snap.snap_org))) {
336 return htons(FLOW_DL_TYPE_NONE);
337 }
338
339 data_pull(datap, sizep, sizeof *llc);
340
341 if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
342 return llc->snap.snap_type;
343 }
344
345 return htons(FLOW_DL_TYPE_NONE);
346 }
347
348 static inline void
349 parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
350 const struct in6_addr **nd_target,
351 struct eth_addr arp_buf[2])
352 {
353 if (icmp->icmp6_code == 0 &&
354 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
355 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
356
357 *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
358 if (OVS_UNLIKELY(!*nd_target)) {
359 return;
360 }
361
362 while (*sizep >= 8) {
363 /* The minimum size of an option is 8 bytes, which also is
364 * the size of Ethernet link-layer options. */
365 const struct ovs_nd_opt *nd_opt = *datap;
366 int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN;
367
368 if (!opt_len || opt_len > *sizep) {
369 return;
370 }
371
372 /* Store the link layer address if the appropriate option is
373 * provided. It is considered an error if the same link
374 * layer option is specified twice. */
375 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
376 && opt_len == 8) {
377 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
378 arp_buf[0] = nd_opt->nd_opt_mac;
379 } else {
380 goto invalid;
381 }
382 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
383 && opt_len == 8) {
384 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
385 arp_buf[1] = nd_opt->nd_opt_mac;
386 } else {
387 goto invalid;
388 }
389 }
390
391 if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
392 return;
393 }
394 }
395 }
396
397 return;
398
399 invalid:
400 *nd_target = NULL;
401 arp_buf[0] = eth_addr_zero;
402 arp_buf[1] = eth_addr_zero;
403 }
404
405 /* Initializes 'flow' members from 'packet' and 'md'
406 *
407 * Initializes 'packet' header l2 pointer to the start of the Ethernet
408 * header, and the layer offsets as follows:
409 *
410 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
411 * when there is no MPLS shim header.
412 *
413 * - packet->l3_ofs to just past the Ethernet header, or just past the
414 * vlan_header if one is present, to the first byte of the payload of the
415 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
416 * Ethernet header.
417 *
418 * - packet->l4_ofs to just past the IPv4 header, if one is present and
419 * has at least the content used for the fields of interest for the flow,
420 * otherwise UINT16_MAX.
421 */
422 void
423 flow_extract(struct dp_packet *packet, struct flow *flow)
424 {
425 struct {
426 struct miniflow mf;
427 uint64_t buf[FLOW_U64S];
428 } m;
429
430 COVERAGE_INC(flow_extract);
431
432 miniflow_extract(packet, &m.mf);
433 miniflow_expand(&m.mf, flow);
434 }
435
436 /* Caller is responsible for initializing 'dst' with enough storage for
437 * FLOW_U64S * 8 bytes. */
438 void
439 miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
440 {
441 const struct pkt_metadata *md = &packet->md;
442 const void *data = dp_packet_data(packet);
443 size_t size = dp_packet_size(packet);
444 uint64_t *values = miniflow_values(dst);
445 struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
446 values + FLOW_U64S };
447 const char *l2;
448 ovs_be16 dl_type;
449 uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
450
451 /* Metadata. */
452 if (md->tunnel.ip_dst) {
453 miniflow_push_words(mf, tunnel, &md->tunnel,
454 offsetof(struct flow_tnl, metadata) /
455 sizeof(uint64_t));
456
457 if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
458 if (md->tunnel.metadata.present.map) {
459 miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
460 sizeof md->tunnel.metadata /
461 sizeof(uint64_t));
462 }
463 } else {
464 if (md->tunnel.metadata.present.len) {
465 miniflow_push_words(mf, tunnel.metadata.present,
466 &md->tunnel.metadata.present, 1);
467 miniflow_push_words(mf, tunnel.metadata.opts.gnv,
468 md->tunnel.metadata.opts.gnv,
469 DIV_ROUND_UP(md->tunnel.metadata.present.len,
470 sizeof(uint64_t)));
471 }
472 }
473 }
474 if (md->skb_priority || md->pkt_mark) {
475 miniflow_push_uint32(mf, skb_priority, md->skb_priority);
476 miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
477 }
478 miniflow_push_uint32(mf, dp_hash, md->dp_hash);
479 miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
480 if (md->recirc_id || md->ct_state) {
481 miniflow_push_uint32(mf, recirc_id, md->recirc_id);
482 miniflow_push_uint16(mf, ct_state, md->ct_state);
483 miniflow_push_uint16(mf, ct_zone, md->ct_zone);
484 }
485
486 if (md->ct_state) {
487 miniflow_push_uint32(mf, ct_mark, md->ct_mark);
488 miniflow_pad_to_64(mf, pad1);
489
490 if (!ovs_u128_is_zero(&md->ct_label)) {
491 miniflow_push_words(mf, ct_label, &md->ct_label,
492 sizeof md->ct_label / sizeof(uint64_t));
493 }
494 }
495
496 /* Initialize packet's layer pointer and offsets. */
497 l2 = data;
498 dp_packet_reset_offsets(packet);
499
500 /* Must have full Ethernet header to proceed. */
501 if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
502 goto out;
503 } else {
504 ovs_be16 vlan_tci;
505
506 /* Link layer. */
507 ASSERT_SEQUENTIAL(dl_dst, dl_src);
508 miniflow_push_macs(mf, dl_dst, data);
509 /* dl_type, vlan_tci. */
510 vlan_tci = parse_vlan(&data, &size);
511 dl_type = parse_ethertype(&data, &size);
512 miniflow_push_be16(mf, dl_type, dl_type);
513 miniflow_push_be16(mf, vlan_tci, vlan_tci);
514 }
515
516 /* Parse mpls. */
517 if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
518 int count;
519 const void *mpls = data;
520
521 packet->l2_5_ofs = (char *)data - l2;
522 count = parse_mpls(&data, &size);
523 miniflow_push_words_32(mf, mpls_lse, mpls, count);
524 }
525
526 /* Network layer. */
527 packet->l3_ofs = (char *)data - l2;
528
529 nw_frag = 0;
530 if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
531 const struct ip_header *nh = data;
532 int ip_len;
533 uint16_t tot_len;
534
535 if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
536 goto out;
537 }
538 ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
539
540 if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
541 goto out;
542 }
543 if (OVS_UNLIKELY(size < ip_len)) {
544 goto out;
545 }
546 tot_len = ntohs(nh->ip_tot_len);
547 if (OVS_UNLIKELY(tot_len > size)) {
548 goto out;
549 }
550 if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
551 goto out;
552 }
553 dp_packet_set_l2_pad_size(packet, size - tot_len);
554 size = tot_len; /* Never pull padding. */
555
556 /* Push both source and destination address at once. */
557 miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
558
559 miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
560
561 nw_tos = nh->ip_tos;
562 nw_ttl = nh->ip_ttl;
563 nw_proto = nh->ip_proto;
564 if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
565 nw_frag = FLOW_NW_FRAG_ANY;
566 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
567 nw_frag |= FLOW_NW_FRAG_LATER;
568 }
569 }
570 data_pull(&data, &size, ip_len);
571 } else if (dl_type == htons(ETH_TYPE_IPV6)) {
572 const struct ovs_16aligned_ip6_hdr *nh;
573 ovs_be32 tc_flow;
574 uint16_t plen;
575
576 if (OVS_UNLIKELY(size < sizeof *nh)) {
577 goto out;
578 }
579 nh = data_pull(&data, &size, sizeof *nh);
580
581 plen = ntohs(nh->ip6_plen);
582 if (OVS_UNLIKELY(plen > size)) {
583 goto out;
584 }
585 /* Jumbo Payload option not supported yet. */
586 if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
587 goto out;
588 }
589 dp_packet_set_l2_pad_size(packet, size - plen);
590 size = plen; /* Never pull padding. */
591
592 miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
593 sizeof nh->ip6_src / 8);
594 miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
595 sizeof nh->ip6_dst / 8);
596
597 tc_flow = get_16aligned_be32(&nh->ip6_flow);
598 {
599 ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
600 miniflow_push_be32(mf, ipv6_label, label);
601 }
602
603 nw_tos = ntohl(tc_flow) >> 20;
604 nw_ttl = nh->ip6_hlim;
605 nw_proto = nh->ip6_nxt;
606
607 while (1) {
608 if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
609 && (nw_proto != IPPROTO_ROUTING)
610 && (nw_proto != IPPROTO_DSTOPTS)
611 && (nw_proto != IPPROTO_AH)
612 && (nw_proto != IPPROTO_FRAGMENT))) {
613 /* It's either a terminal header (e.g., TCP, UDP) or one we
614 * don't understand. In either case, we're done with the
615 * packet, so use it to fill in 'nw_proto'. */
616 break;
617 }
618
619 /* We only verify that at least 8 bytes of the next header are
620 * available, but many of these headers are longer. Ensure that
621 * accesses within the extension header are within those first 8
622 * bytes. All extension headers are required to be at least 8
623 * bytes. */
624 if (OVS_UNLIKELY(size < 8)) {
625 goto out;
626 }
627
628 if ((nw_proto == IPPROTO_HOPOPTS)
629 || (nw_proto == IPPROTO_ROUTING)
630 || (nw_proto == IPPROTO_DSTOPTS)) {
631 /* These headers, while different, have the fields we care
632 * about in the same location and with the same
633 * interpretation. */
634 const struct ip6_ext *ext_hdr = data;
635 nw_proto = ext_hdr->ip6e_nxt;
636 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
637 (ext_hdr->ip6e_len + 1) * 8))) {
638 goto out;
639 }
640 } else if (nw_proto == IPPROTO_AH) {
641 /* A standard AH definition isn't available, but the fields
642 * we care about are in the same location as the generic
643 * option header--only the header length is calculated
644 * differently. */
645 const struct ip6_ext *ext_hdr = data;
646 nw_proto = ext_hdr->ip6e_nxt;
647 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
648 (ext_hdr->ip6e_len + 2) * 4))) {
649 goto out;
650 }
651 } else if (nw_proto == IPPROTO_FRAGMENT) {
652 const struct ovs_16aligned_ip6_frag *frag_hdr = data;
653
654 nw_proto = frag_hdr->ip6f_nxt;
655 if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
656 goto out;
657 }
658
659 /* We only process the first fragment. */
660 if (frag_hdr->ip6f_offlg != htons(0)) {
661 nw_frag = FLOW_NW_FRAG_ANY;
662 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
663 nw_frag |= FLOW_NW_FRAG_LATER;
664 nw_proto = IPPROTO_FRAGMENT;
665 break;
666 }
667 }
668 }
669 }
670 } else {
671 if (dl_type == htons(ETH_TYPE_ARP) ||
672 dl_type == htons(ETH_TYPE_RARP)) {
673 struct eth_addr arp_buf[2];
674 const struct arp_eth_header *arp = (const struct arp_eth_header *)
675 data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
676
677 if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
678 && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
679 && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
680 && OVS_LIKELY(arp->ar_pln == 4)) {
681 miniflow_push_be32(mf, nw_src,
682 get_16aligned_be32(&arp->ar_spa));
683 miniflow_push_be32(mf, nw_dst,
684 get_16aligned_be32(&arp->ar_tpa));
685
686 /* We only match on the lower 8 bits of the opcode. */
687 if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
688 miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
689 miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
690 }
691
692 /* Must be adjacent. */
693 ASSERT_SEQUENTIAL(arp_sha, arp_tha);
694
695 arp_buf[0] = arp->ar_sha;
696 arp_buf[1] = arp->ar_tha;
697 miniflow_push_macs(mf, arp_sha, arp_buf);
698 miniflow_pad_to_64(mf, tcp_flags);
699 }
700 }
701 goto out;
702 }
703
704 packet->l4_ofs = (char *)data - l2;
705 miniflow_push_be32(mf, nw_frag,
706 BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
707
708 if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
709 if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
710 if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
711 const struct tcp_header *tcp = data;
712
713 miniflow_push_be32(mf, arp_tha.ea[2], 0);
714 miniflow_push_be32(mf, tcp_flags,
715 TCP_FLAGS_BE32(tcp->tcp_ctl));
716 miniflow_push_be16(mf, tp_src, tcp->tcp_src);
717 miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
718 miniflow_pad_to_64(mf, igmp_group_ip4);
719 }
720 } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
721 if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
722 const struct udp_header *udp = data;
723
724 miniflow_push_be16(mf, tp_src, udp->udp_src);
725 miniflow_push_be16(mf, tp_dst, udp->udp_dst);
726 miniflow_pad_to_64(mf, igmp_group_ip4);
727 }
728 } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
729 if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
730 const struct sctp_header *sctp = data;
731
732 miniflow_push_be16(mf, tp_src, sctp->sctp_src);
733 miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
734 miniflow_pad_to_64(mf, igmp_group_ip4);
735 }
736 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
737 if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
738 const struct icmp_header *icmp = data;
739
740 miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
741 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
742 miniflow_pad_to_64(mf, igmp_group_ip4);
743 }
744 } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
745 if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
746 const struct igmp_header *igmp = data;
747
748 miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
749 miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
750 miniflow_push_be32(mf, igmp_group_ip4,
751 get_16aligned_be32(&igmp->group));
752 }
753 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
754 if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
755 const struct in6_addr *nd_target = NULL;
756 struct eth_addr arp_buf[2] = { { { { 0 } } } };
757 const struct icmp6_hdr *icmp = data_pull(&data, &size,
758 sizeof *icmp);
759 parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf);
760 if (nd_target) {
761 miniflow_push_words(mf, nd_target, nd_target,
762 sizeof *nd_target / sizeof(uint64_t));
763 }
764 miniflow_push_macs(mf, arp_sha, arp_buf);
765 miniflow_pad_to_64(mf, tcp_flags);
766 miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
767 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
768 miniflow_pad_to_64(mf, igmp_group_ip4);
769 }
770 }
771 }
772 out:
773 dst->map = mf.map;
774 }
775
776 /* For every bit of a field that is wildcarded in 'wildcards', sets the
777 * corresponding bit in 'flow' to zero. */
778 void
779 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
780 {
781 uint64_t *flow_u64 = (uint64_t *) flow;
782 const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
783 size_t i;
784
785 for (i = 0; i < FLOW_U64S; i++) {
786 flow_u64[i] &= wc_u64[i];
787 }
788 }
789
790 void
791 flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
792 {
793 if (flow->nw_proto != IPPROTO_ICMP) {
794 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
795 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
796 } else {
797 wc->masks.tp_src = htons(0xff);
798 wc->masks.tp_dst = htons(0xff);
799 }
800 }
801
802 /* Initializes 'flow_metadata' with the metadata found in 'flow'. */
803 void
804 flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
805 {
806 int i;
807
808 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 34);
809
810 match_init_catchall(flow_metadata);
811 if (flow->tunnel.tun_id != htonll(0)) {
812 match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
813 }
814 if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
815 match_set_tun_flags(flow_metadata,
816 flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
817 }
818 if (flow->tunnel.ip_src != htonl(0)) {
819 match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
820 }
821 if (flow->tunnel.ip_dst != htonl(0)) {
822 match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
823 }
824 if (flow->tunnel.gbp_id != htons(0)) {
825 match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
826 }
827 if (flow->tunnel.gbp_flags) {
828 match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
829 }
830 tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
831 if (flow->metadata != htonll(0)) {
832 match_set_metadata(flow_metadata, flow->metadata);
833 }
834
835 for (i = 0; i < FLOW_N_REGS; i++) {
836 if (flow->regs[i]) {
837 match_set_reg(flow_metadata, i, flow->regs[i]);
838 }
839 }
840
841 if (flow->pkt_mark != 0) {
842 match_set_pkt_mark(flow_metadata, flow->pkt_mark);
843 }
844
845 match_set_in_port(flow_metadata, flow->in_port.ofp_port);
846 if (flow->ct_state != 0) {
847 match_set_ct_state(flow_metadata, flow->ct_state);
848 }
849 if (flow->ct_zone != 0) {
850 match_set_ct_zone(flow_metadata, flow->ct_zone);
851 }
852 if (flow->ct_mark != 0) {
853 match_set_ct_mark(flow_metadata, flow->ct_mark);
854 }
855 if (!ovs_u128_is_zero(&flow->ct_label)) {
856 match_set_ct_label(flow_metadata, flow->ct_label);
857 }
858 }
859
860 const char *ct_state_to_string(uint32_t state)
861 {
862 switch (state) {
863 case CS_REPLY_DIR:
864 return "rpl";
865 case CS_TRACKED:
866 return "trk";
867 case CS_NEW:
868 return "new";
869 case CS_ESTABLISHED:
870 return "est";
871 case CS_RELATED:
872 return "rel";
873 case CS_INVALID:
874 return "inv";
875 default:
876 return NULL;
877 }
878 }
879
880 char *
881 flow_to_string(const struct flow *flow)
882 {
883 struct ds ds = DS_EMPTY_INITIALIZER;
884 flow_format(&ds, flow);
885 return ds_cstr(&ds);
886 }
887
888 const char *
889 flow_tun_flag_to_string(uint32_t flags)
890 {
891 switch (flags) {
892 case FLOW_TNL_F_DONT_FRAGMENT:
893 return "df";
894 case FLOW_TNL_F_CSUM:
895 return "csum";
896 case FLOW_TNL_F_KEY:
897 return "key";
898 case FLOW_TNL_F_OAM:
899 return "oam";
900 default:
901 return NULL;
902 }
903 }
904
905 void
906 format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
907 uint32_t flags, char del)
908 {
909 uint32_t bad = 0;
910
911 if (!flags) {
912 ds_put_char(ds, '0');
913 return;
914 }
915 while (flags) {
916 uint32_t bit = rightmost_1bit(flags);
917 const char *s;
918
919 s = bit_to_string(bit);
920 if (s) {
921 ds_put_format(ds, "%s%c", s, del);
922 } else {
923 bad |= bit;
924 }
925
926 flags &= ~bit;
927 }
928
929 if (bad) {
930 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
931 }
932 ds_chomp(ds, del);
933 }
934
935 void
936 format_flags_masked(struct ds *ds, const char *name,
937 const char *(*bit_to_string)(uint32_t), uint32_t flags,
938 uint32_t mask, uint32_t max_mask)
939 {
940 if (name) {
941 ds_put_format(ds, "%s=", name);
942 }
943
944 if (mask == max_mask) {
945 format_flags(ds, bit_to_string, flags, '|');
946 return;
947 }
948
949 if (!mask) {
950 ds_put_cstr(ds, "0/0");
951 return;
952 }
953
954 while (mask) {
955 uint32_t bit = rightmost_1bit(mask);
956 const char *s = bit_to_string(bit);
957
958 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
959 s ? s : "[Unknown]");
960 mask &= ~bit;
961 }
962 }
963
964 /* Scans a string 's' of flags to determine their numerical value and
965 * returns the number of characters parsed using 'bit_to_string' to
966 * lookup flag names. Scanning continues until the character 'end' is
967 * reached.
968 *
969 * In the event of a failure, a negative error code will be returned. In
970 * addition, if 'res_string' is non-NULL then a descriptive string will
971 * be returned incorporating the identifying string 'field_name'. This
972 * error string must be freed by the caller.
973 *
974 * Upon success, the flag values will be stored in 'res_flags' and
975 * optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
976 * present in the original string will be considered an error). The
977 * caller may restrict the acceptable set of values through the mask
978 * 'allowed'. */
979 int
980 parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
981 char end, const char *field_name, char **res_string,
982 uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
983 {
984 uint32_t result = 0;
985 int n;
986
987 /* Parse masked flags in numeric format? */
988 if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
989 res_flags, res_mask, &n) && n > 0) {
990 if (*res_flags & ~allowed || *res_mask & ~allowed) {
991 goto unknown;
992 }
993 return n;
994 }
995
996 n = 0;
997
998 if (res_mask && (*s == '+' || *s == '-')) {
999 uint32_t flags = 0, mask = 0;
1000
1001 /* Parse masked flags. */
1002 while (s[0] != end) {
1003 bool set;
1004 uint32_t bit;
1005 size_t len;
1006
1007 if (s[0] == '+') {
1008 set = true;
1009 } else if (s[0] == '-') {
1010 set = false;
1011 } else {
1012 if (res_string) {
1013 *res_string = xasprintf("%s: %s must be preceded by '+' "
1014 "(for SET) or '-' (NOT SET)", s,
1015 field_name);
1016 }
1017 return -EINVAL;
1018 }
1019 s++;
1020 n++;
1021
1022 for (bit = 1; bit; bit <<= 1) {
1023 const char *fname = bit_to_string(bit);
1024
1025 if (!fname) {
1026 continue;
1027 }
1028
1029 len = strlen(fname);
1030 if (strncmp(s, fname, len) ||
1031 (s[len] != '+' && s[len] != '-' && s[len] != end)) {
1032 continue;
1033 }
1034
1035 if (mask & bit) {
1036 /* bit already set. */
1037 if (res_string) {
1038 *res_string = xasprintf("%s: Each %s flag can be "
1039 "specified only once", s,
1040 field_name);
1041 }
1042 return -EINVAL;
1043 }
1044 if (!(bit & allowed)) {
1045 goto unknown;
1046 }
1047 if (set) {
1048 flags |= bit;
1049 }
1050 mask |= bit;
1051 break;
1052 }
1053
1054 if (!bit) {
1055 goto unknown;
1056 }
1057 s += len;
1058 n += len;
1059 }
1060
1061 *res_flags = flags;
1062 *res_mask = mask;
1063 return n;
1064 }
1065
1066 /* Parse unmasked flags. If a flag is present, it is set, otherwise
1067 * it is not set. */
1068 while (s[n] != end) {
1069 unsigned long long int flags;
1070 uint32_t bit;
1071 int n0;
1072
1073 if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
1074 if (flags & ~allowed) {
1075 goto unknown;
1076 }
1077 n += n0 + (s[n + n0] == '|');
1078 result |= flags;
1079 continue;
1080 }
1081
1082 for (bit = 1; bit; bit <<= 1) {
1083 const char *name = bit_to_string(bit);
1084 size_t len;
1085
1086 if (!name) {
1087 continue;
1088 }
1089
1090 len = strlen(name);
1091 if (!strncmp(s + n, name, len) &&
1092 (s[n + len] == '|' || s[n + len] == end)) {
1093 if (!(bit & allowed)) {
1094 goto unknown;
1095 }
1096 result |= bit;
1097 n += len + (s[n + len] == '|');
1098 break;
1099 }
1100 }
1101
1102 if (!bit) {
1103 goto unknown;
1104 }
1105 }
1106
1107 *res_flags = result;
1108 if (res_mask) {
1109 *res_mask = UINT32_MAX;
1110 }
1111 if (res_string) {
1112 *res_string = NULL;
1113 }
1114 return n;
1115
1116 unknown:
1117 if (res_string) {
1118 *res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
1119 }
1120 return -EINVAL;
1121 }
1122
1123 void
1124 flow_format(struct ds *ds, const struct flow *flow)
1125 {
1126 struct match match;
1127 struct flow_wildcards *wc = &match.wc;
1128
1129 match_wc_init(&match, flow);
1130
1131 /* As this function is most often used for formatting a packet in a
1132 * packet-in message, skip formatting the packet context fields that are
1133 * all-zeroes to make the print-out easier on the eyes. This means that a
1134 * missing context field implies a zero value for that field. This is
1135 * similar to OpenFlow encoding of these fields, as the specification
1136 * states that all-zeroes context fields should not be encoded in the
1137 * packet-in messages. */
1138 if (!flow->in_port.ofp_port) {
1139 WC_UNMASK_FIELD(wc, in_port);
1140 }
1141 if (!flow->skb_priority) {
1142 WC_UNMASK_FIELD(wc, skb_priority);
1143 }
1144 if (!flow->pkt_mark) {
1145 WC_UNMASK_FIELD(wc, pkt_mark);
1146 }
1147 if (!flow->recirc_id) {
1148 WC_UNMASK_FIELD(wc, recirc_id);
1149 }
1150 if (!flow->dp_hash) {
1151 WC_UNMASK_FIELD(wc, dp_hash);
1152 }
1153 if (!flow->ct_state) {
1154 WC_UNMASK_FIELD(wc, ct_state);
1155 }
1156 if (!flow->ct_zone) {
1157 WC_UNMASK_FIELD(wc, ct_zone);
1158 }
1159 if (!flow->ct_mark) {
1160 WC_UNMASK_FIELD(wc, ct_mark);
1161 }
1162 if (ovs_u128_is_zero(&flow->ct_label)) {
1163 WC_UNMASK_FIELD(wc, ct_label);
1164 }
1165 for (int i = 0; i < FLOW_N_REGS; i++) {
1166 if (!flow->regs[i]) {
1167 WC_UNMASK_FIELD(wc, regs[i]);
1168 }
1169 }
1170 if (!flow->metadata) {
1171 WC_UNMASK_FIELD(wc, metadata);
1172 }
1173
1174 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
1175 }
1176
1177 void
1178 flow_print(FILE *stream, const struct flow *flow)
1179 {
1180 char *s = flow_to_string(flow);
1181 fputs(s, stream);
1182 free(s);
1183 }
1184 \f
1185 /* flow_wildcards functions. */
1186
1187 /* Initializes 'wc' as a set of wildcards that matches every packet. */
1188 void
1189 flow_wildcards_init_catchall(struct flow_wildcards *wc)
1190 {
1191 memset(&wc->masks, 0, sizeof wc->masks);
1192 }
1193
1194 /* Converts a flow into flow wildcards. It sets the wildcard masks based on
1195 * the packet headers extracted to 'flow'. It will not set the mask for fields
1196 * that do not make sense for the packet type. OpenFlow-only metadata is
1197 * wildcarded, but other metadata is unconditionally exact-matched. */
1198 void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
1199 const struct flow *flow)
1200 {
1201 memset(&wc->masks, 0x0, sizeof wc->masks);
1202
1203 /* Update this function whenever struct flow changes. */
1204 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 34);
1205
1206 if (flow->tunnel.ip_dst) {
1207 if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
1208 WC_MASK_FIELD(wc, tunnel.tun_id);
1209 }
1210 WC_MASK_FIELD(wc, tunnel.ip_src);
1211 WC_MASK_FIELD(wc, tunnel.ip_dst);
1212 WC_MASK_FIELD(wc, tunnel.flags);
1213 WC_MASK_FIELD(wc, tunnel.ip_tos);
1214 WC_MASK_FIELD(wc, tunnel.ip_ttl);
1215 WC_MASK_FIELD(wc, tunnel.tp_src);
1216 WC_MASK_FIELD(wc, tunnel.tp_dst);
1217 WC_MASK_FIELD(wc, tunnel.gbp_id);
1218 WC_MASK_FIELD(wc, tunnel.gbp_flags);
1219
1220 if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
1221 if (flow->tunnel.metadata.present.map) {
1222 wc->masks.tunnel.metadata.present.map =
1223 flow->tunnel.metadata.present.map;
1224 WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
1225 }
1226 } else {
1227 WC_MASK_FIELD(wc, tunnel.metadata.present.len);
1228 memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
1229 flow->tunnel.metadata.present.len);
1230 }
1231 } else if (flow->tunnel.tun_id) {
1232 WC_MASK_FIELD(wc, tunnel.tun_id);
1233 }
1234
1235 /* metadata, regs, and conj_id wildcarded. */
1236
1237 WC_MASK_FIELD(wc, skb_priority);
1238 WC_MASK_FIELD(wc, pkt_mark);
1239 WC_MASK_FIELD(wc, ct_state);
1240 WC_MASK_FIELD(wc, ct_zone);
1241 WC_MASK_FIELD(wc, ct_mark);
1242 WC_MASK_FIELD(wc, ct_label);
1243 WC_MASK_FIELD(wc, recirc_id);
1244 WC_MASK_FIELD(wc, dp_hash);
1245 WC_MASK_FIELD(wc, in_port);
1246
1247 /* actset_output wildcarded. */
1248
1249 WC_MASK_FIELD(wc, dl_dst);
1250 WC_MASK_FIELD(wc, dl_src);
1251 WC_MASK_FIELD(wc, dl_type);
1252 WC_MASK_FIELD(wc, vlan_tci);
1253
1254 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1255 WC_MASK_FIELD(wc, nw_src);
1256 WC_MASK_FIELD(wc, nw_dst);
1257 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1258 WC_MASK_FIELD(wc, ipv6_src);
1259 WC_MASK_FIELD(wc, ipv6_dst);
1260 WC_MASK_FIELD(wc, ipv6_label);
1261 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1262 flow->dl_type == htons(ETH_TYPE_RARP)) {
1263 WC_MASK_FIELD(wc, nw_src);
1264 WC_MASK_FIELD(wc, nw_dst);
1265 WC_MASK_FIELD(wc, nw_proto);
1266 WC_MASK_FIELD(wc, arp_sha);
1267 WC_MASK_FIELD(wc, arp_tha);
1268 return;
1269 } else if (eth_type_mpls(flow->dl_type)) {
1270 for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
1271 WC_MASK_FIELD(wc, mpls_lse[i]);
1272 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1273 break;
1274 }
1275 }
1276 return;
1277 } else {
1278 return; /* Unknown ethertype. */
1279 }
1280
1281 /* IPv4 or IPv6. */
1282 WC_MASK_FIELD(wc, nw_frag);
1283 WC_MASK_FIELD(wc, nw_tos);
1284 WC_MASK_FIELD(wc, nw_ttl);
1285 WC_MASK_FIELD(wc, nw_proto);
1286
1287 /* No transport layer header in later fragments. */
1288 if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
1289 (flow->nw_proto == IPPROTO_ICMP ||
1290 flow->nw_proto == IPPROTO_ICMPV6 ||
1291 flow->nw_proto == IPPROTO_TCP ||
1292 flow->nw_proto == IPPROTO_UDP ||
1293 flow->nw_proto == IPPROTO_SCTP ||
1294 flow->nw_proto == IPPROTO_IGMP)) {
1295 WC_MASK_FIELD(wc, tp_src);
1296 WC_MASK_FIELD(wc, tp_dst);
1297
1298 if (flow->nw_proto == IPPROTO_TCP) {
1299 WC_MASK_FIELD(wc, tcp_flags);
1300 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1301 WC_MASK_FIELD(wc, arp_sha);
1302 WC_MASK_FIELD(wc, arp_tha);
1303 WC_MASK_FIELD(wc, nd_target);
1304 } else if (flow->nw_proto == IPPROTO_IGMP) {
1305 WC_MASK_FIELD(wc, igmp_group_ip4);
1306 }
1307 }
1308 }
1309
1310 /* Return a map of possible fields for a packet of the same type as 'flow'.
1311 * Including extra bits in the returned mask is not wrong, it is just less
1312 * optimal.
1313 *
1314 * This is a less precise version of flow_wildcards_init_for_packet() above. */
1315 void
1316 flow_wc_map(const struct flow *flow, struct flowmap *map)
1317 {
1318 /* Update this function whenever struct flow changes. */
1319 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 34);
1320
1321 flowmap_init(map);
1322
1323 if (flow->tunnel.ip_dst) {
1324 FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
1325 if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
1326 if (flow->tunnel.metadata.present.map) {
1327 FLOWMAP_SET(map, tunnel.metadata);
1328 }
1329 } else {
1330 FLOWMAP_SET(map, tunnel.metadata.present.len);
1331 FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
1332 flow->tunnel.metadata.present.len);
1333 }
1334 }
1335
1336 /* Metadata fields that can appear on packet input. */
1337 FLOWMAP_SET(map, skb_priority);
1338 FLOWMAP_SET(map, pkt_mark);
1339 FLOWMAP_SET(map, recirc_id);
1340 FLOWMAP_SET(map, dp_hash);
1341 FLOWMAP_SET(map, in_port);
1342 FLOWMAP_SET(map, dl_dst);
1343 FLOWMAP_SET(map, dl_src);
1344 FLOWMAP_SET(map, dl_type);
1345 FLOWMAP_SET(map, vlan_tci);
1346 FLOWMAP_SET(map, ct_state);
1347 FLOWMAP_SET(map, ct_zone);
1348 FLOWMAP_SET(map, ct_mark);
1349 FLOWMAP_SET(map, ct_label);
1350
1351 /* Ethertype-dependent fields. */
1352 if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
1353 FLOWMAP_SET(map, nw_src);
1354 FLOWMAP_SET(map, nw_dst);
1355 FLOWMAP_SET(map, nw_proto);
1356 FLOWMAP_SET(map, nw_frag);
1357 FLOWMAP_SET(map, nw_tos);
1358 FLOWMAP_SET(map, nw_ttl);
1359
1360 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
1361 FLOWMAP_SET(map, igmp_group_ip4);
1362 } else {
1363 FLOWMAP_SET(map, tcp_flags);
1364 FLOWMAP_SET(map, tp_src);
1365 FLOWMAP_SET(map, tp_dst);
1366 }
1367 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1368 FLOWMAP_SET(map, ipv6_src);
1369 FLOWMAP_SET(map, ipv6_dst);
1370 FLOWMAP_SET(map, ipv6_label);
1371 FLOWMAP_SET(map, nw_proto);
1372 FLOWMAP_SET(map, nw_frag);
1373 FLOWMAP_SET(map, nw_tos);
1374 FLOWMAP_SET(map, nw_ttl);
1375
1376 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
1377 FLOWMAP_SET(map, nd_target);
1378 FLOWMAP_SET(map, arp_sha);
1379 FLOWMAP_SET(map, arp_tha);
1380 } else {
1381 FLOWMAP_SET(map, tcp_flags);
1382 FLOWMAP_SET(map, tp_src);
1383 FLOWMAP_SET(map, tp_dst);
1384 }
1385 } else if (eth_type_mpls(flow->dl_type)) {
1386 FLOWMAP_SET(map, mpls_lse);
1387 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1388 flow->dl_type == htons(ETH_TYPE_RARP)) {
1389 FLOWMAP_SET(map, nw_src);
1390 FLOWMAP_SET(map, nw_dst);
1391 FLOWMAP_SET(map, nw_proto);
1392 FLOWMAP_SET(map, arp_sha);
1393 FLOWMAP_SET(map, arp_tha);
1394 }
1395 }
1396
1397 /* Clear the metadata and register wildcard masks. They are not packet
1398 * header fields. */
1399 void
1400 flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
1401 {
1402 /* Update this function whenever struct flow changes. */
1403 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 34);
1404
1405 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
1406 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
1407 wc->masks.actset_output = 0;
1408 wc->masks.conj_id = 0;
1409 }
1410
1411 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
1412 * fields. */
1413 bool
1414 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
1415 {
1416 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1417 size_t i;
1418
1419 for (i = 0; i < FLOW_U64S; i++) {
1420 if (wc_u64[i]) {
1421 return false;
1422 }
1423 }
1424 return true;
1425 }
1426
1427 /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
1428 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
1429 * in 'src1' or 'src2' or both. */
1430 void
1431 flow_wildcards_and(struct flow_wildcards *dst,
1432 const struct flow_wildcards *src1,
1433 const struct flow_wildcards *src2)
1434 {
1435 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1436 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1437 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
1438 size_t i;
1439
1440 for (i = 0; i < FLOW_U64S; i++) {
1441 dst_u64[i] = src1_u64[i] & src2_u64[i];
1442 }
1443 }
1444
1445 /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
1446 * is, a bit or a field is wildcarded in 'dst' if it is neither
1447 * wildcarded in 'src1' nor 'src2'. */
1448 void
1449 flow_wildcards_or(struct flow_wildcards *dst,
1450 const struct flow_wildcards *src1,
1451 const struct flow_wildcards *src2)
1452 {
1453 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1454 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1455 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
1456 size_t i;
1457
1458 for (i = 0; i < FLOW_U64S; i++) {
1459 dst_u64[i] = src1_u64[i] | src2_u64[i];
1460 }
1461 }
1462
1463 /* Returns a hash of the wildcards in 'wc'. */
1464 uint32_t
1465 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
1466 {
1467 return flow_hash(&wc->masks, basis);
1468 }
1469
1470 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
1471 * different. */
1472 bool
1473 flow_wildcards_equal(const struct flow_wildcards *a,
1474 const struct flow_wildcards *b)
1475 {
1476 return flow_equal(&a->masks, &b->masks);
1477 }
1478
1479 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
1480 * 'b', false otherwise. */
1481 bool
1482 flow_wildcards_has_extra(const struct flow_wildcards *a,
1483 const struct flow_wildcards *b)
1484 {
1485 const uint64_t *a_u64 = (const uint64_t *) &a->masks;
1486 const uint64_t *b_u64 = (const uint64_t *) &b->masks;
1487 size_t i;
1488
1489 for (i = 0; i < FLOW_U64S; i++) {
1490 if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
1491 return true;
1492 }
1493 }
1494 return false;
1495 }
1496
1497 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
1498 * in 'wc' do not need to be equal in 'a' and 'b'. */
1499 bool
1500 flow_equal_except(const struct flow *a, const struct flow *b,
1501 const struct flow_wildcards *wc)
1502 {
1503 const uint64_t *a_u64 = (const uint64_t *) a;
1504 const uint64_t *b_u64 = (const uint64_t *) b;
1505 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1506 size_t i;
1507
1508 for (i = 0; i < FLOW_U64S; i++) {
1509 if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
1510 return false;
1511 }
1512 }
1513 return true;
1514 }
1515
1516 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1517 * (A 0-bit indicates a wildcard bit.) */
1518 void
1519 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
1520 {
1521 wc->masks.regs[idx] = mask;
1522 }
1523
1524 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1525 * (A 0-bit indicates a wildcard bit.) */
1526 void
1527 flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
1528 {
1529 flow_set_xreg(&wc->masks, idx, mask);
1530 }
1531
1532 /* Calculates the 5-tuple hash from the given miniflow.
1533 * This returns the same value as flow_hash_5tuple for the corresponding
1534 * flow. */
1535 uint32_t
1536 miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
1537 {
1538 uint32_t hash = basis;
1539
1540 if (flow) {
1541 ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
1542
1543 hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto));
1544
1545 /* Separate loops for better optimization. */
1546 if (dl_type == htons(ETH_TYPE_IPV6)) {
1547 struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
1548 uint64_t value;
1549
1550 FLOWMAP_SET(&map, ipv6_src);
1551 FLOWMAP_SET(&map, ipv6_dst);
1552
1553 MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
1554 hash = hash_add64(hash, value);
1555 }
1556 } else {
1557 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
1558 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
1559 }
1560 /* Add both ports at once. */
1561 hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
1562 hash = hash_finish(hash, 42); /* Arbitrary number. */
1563 }
1564 return hash;
1565 }
1566
1567 ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
1568 ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);
1569
1570 /* Calculates the 5-tuple hash from the given flow. */
1571 uint32_t
1572 flow_hash_5tuple(const struct flow *flow, uint32_t basis)
1573 {
1574 uint32_t hash = basis;
1575
1576 if (flow) {
1577 hash = hash_add(hash, flow->nw_proto);
1578
1579 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1580 const uint64_t *flow_u64 = (const uint64_t *)flow;
1581 int ofs = offsetof(struct flow, ipv6_src) / 8;
1582 int end = ofs + 2 * sizeof flow->ipv6_src / 8;
1583
1584 for (;ofs < end; ofs++) {
1585 hash = hash_add64(hash, flow_u64[ofs]);
1586 }
1587 } else {
1588 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
1589 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
1590 }
1591 /* Add both ports at once. */
1592 hash = hash_add(hash,
1593 ((const uint32_t *)flow)[offsetof(struct flow, tp_src)
1594 / sizeof(uint32_t)]);
1595 hash = hash_finish(hash, 42); /* Arbitrary number. */
1596 }
1597 return hash;
1598 }
1599
1600 /* Hashes 'flow' based on its L2 through L4 protocol information. */
1601 uint32_t
1602 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
1603 {
1604 struct {
1605 union {
1606 ovs_be32 ipv4_addr;
1607 struct in6_addr ipv6_addr;
1608 };
1609 ovs_be16 eth_type;
1610 ovs_be16 vlan_tci;
1611 ovs_be16 tp_port;
1612 struct eth_addr eth_addr;
1613 uint8_t ip_proto;
1614 } fields;
1615
1616 int i;
1617
1618 memset(&fields, 0, sizeof fields);
1619 for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
1620 fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
1621 }
1622 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
1623 fields.eth_type = flow->dl_type;
1624
1625 /* UDP source and destination port are not taken into account because they
1626 * will not necessarily be symmetric in a bidirectional flow. */
1627 if (fields.eth_type == htons(ETH_TYPE_IP)) {
1628 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
1629 fields.ip_proto = flow->nw_proto;
1630 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
1631 fields.tp_port = flow->tp_src ^ flow->tp_dst;
1632 }
1633 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
1634 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
1635 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
1636 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
1637
1638 for (i=0; i<16; i++) {
1639 ipv6_addr[i] = a[i] ^ b[i];
1640 }
1641 fields.ip_proto = flow->nw_proto;
1642 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
1643 fields.tp_port = flow->tp_src ^ flow->tp_dst;
1644 }
1645 }
1646 return jhash_bytes(&fields, sizeof fields, basis);
1647 }
1648
1649 /* Hashes 'flow' based on its L3 through L4 protocol information */
1650 uint32_t
1651 flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
1652 bool inc_udp_ports)
1653 {
1654 uint32_t hash = basis;
1655
1656 /* UDP source and destination port are also taken into account. */
1657 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1658 hash = hash_add(hash,
1659 (OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
1660 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1661 /* IPv6 addresses are 64-bit aligned inside struct flow. */
1662 const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
1663 const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);
1664
1665 for (int i = 0; i < 4; i++) {
1666 hash = hash_add64(hash, a[i] ^ b[i]);
1667 }
1668 } else {
1669 /* Cannot hash non-IP flows */
1670 return 0;
1671 }
1672
1673 hash = hash_add(hash, flow->nw_proto);
1674 if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
1675 (inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) {
1676 hash = hash_add(hash,
1677 (OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
1678 }
1679
1680 return hash_finish(hash, basis);
1681 }
1682
1683 /* Initialize a flow with random fields that matter for nx_hash_fields. */
1684 void
1685 flow_random_hash_fields(struct flow *flow)
1686 {
1687 uint16_t rnd = random_uint16();
1688
1689 /* Initialize to all zeros. */
1690 memset(flow, 0, sizeof *flow);
1691
1692 eth_addr_random(&flow->dl_src);
1693 eth_addr_random(&flow->dl_dst);
1694
1695 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
1696
1697 /* Make most of the random flows IPv4, some IPv6, and rest random. */
1698 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
1699 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
1700
1701 if (dl_type_is_ip_any(flow->dl_type)) {
1702 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1703 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
1704 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
1705 } else {
1706 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
1707 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
1708 }
1709 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
1710 rnd = random_uint16();
1711 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
1712 rnd < 0xc000 ? IPPROTO_UDP :
1713 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
1714 if (flow->nw_proto == IPPROTO_TCP ||
1715 flow->nw_proto == IPPROTO_UDP ||
1716 flow->nw_proto == IPPROTO_SCTP) {
1717 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
1718 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
1719 }
1720 }
1721 }
1722
1723 /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
1724 void
1725 flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
1726 enum nx_hash_fields fields)
1727 {
1728 switch (fields) {
1729 case NX_HASH_FIELDS_ETH_SRC:
1730 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1731 break;
1732
1733 case NX_HASH_FIELDS_SYMMETRIC_L4:
1734 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1735 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1736 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1737 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1738 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1739 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1740 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1741 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1742 }
1743 if (is_ip_any(flow)) {
1744 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1745 flow_unwildcard_tp_ports(flow, wc);
1746 }
1747 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1748 break;
1749
1750 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
1751 if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) {
1752 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
1753 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
1754 }
1755 /* no break */
1756 case NX_HASH_FIELDS_SYMMETRIC_L3L4:
1757 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1758 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1759 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1760 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1761 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1762 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1763 } else {
1764 break; /* non-IP flow */
1765 }
1766
1767 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1768 if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) {
1769 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
1770 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
1771 }
1772 break;
1773
1774 default:
1775 OVS_NOT_REACHED();
1776 }
1777 }
1778
1779 /* Hashes the portions of 'flow' designated by 'fields'. */
1780 uint32_t
1781 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
1782 uint16_t basis)
1783 {
1784 switch (fields) {
1785
1786 case NX_HASH_FIELDS_ETH_SRC:
1787 return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);
1788
1789 case NX_HASH_FIELDS_SYMMETRIC_L4:
1790 return flow_hash_symmetric_l4(flow, basis);
1791
1792 case NX_HASH_FIELDS_SYMMETRIC_L3L4:
1793 return flow_hash_symmetric_l3l4(flow, basis, false);
1794
1795 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
1796 return flow_hash_symmetric_l3l4(flow, basis, true);
1797
1798 }
1799
1800 OVS_NOT_REACHED();
1801 }
1802
1803 /* Returns a string representation of 'fields'. */
1804 const char *
1805 flow_hash_fields_to_str(enum nx_hash_fields fields)
1806 {
1807 switch (fields) {
1808 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
1809 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
1810 case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
1811 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
1812 default: return "<unknown>";
1813 }
1814 }
1815
1816 /* Returns true if the value of 'fields' is supported. Otherwise false. */
1817 bool
1818 flow_hash_fields_valid(enum nx_hash_fields fields)
1819 {
1820 return fields == NX_HASH_FIELDS_ETH_SRC
1821 || fields == NX_HASH_FIELDS_SYMMETRIC_L4
1822 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
1823 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP;
1824 }
1825
1826 /* Returns a hash value for the bits of 'flow' that are active based on
1827 * 'wc', given 'basis'. */
1828 uint32_t
1829 flow_hash_in_wildcards(const struct flow *flow,
1830 const struct flow_wildcards *wc, uint32_t basis)
1831 {
1832 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1833 const uint64_t *flow_u64 = (const uint64_t *) flow;
1834 uint32_t hash;
1835 size_t i;
1836
1837 hash = basis;
1838 for (i = 0; i < FLOW_U64S; i++) {
1839 hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
1840 }
1841 return hash_finish(hash, 8 * FLOW_U64S);
1842 }
1843
1844 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1845 * OpenFlow 1.0 "dl_vlan" value:
1846 *
1847 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
1848 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
1849 * 'flow' previously matched packets without a VLAN header).
1850 *
1851 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
1852 * without a VLAN tag.
1853 *
1854 * - Other values of 'vid' should not be used. */
1855 void
1856 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
1857 {
1858 if (vid == htons(OFP10_VLAN_NONE)) {
1859 flow->vlan_tci = htons(0);
1860 } else {
1861 vid &= htons(VLAN_VID_MASK);
1862 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1863 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1864 }
1865 }
1866
1867 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1868 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1869 * plus CFI). */
1870 void
1871 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1872 {
1873 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1874 flow->vlan_tci &= ~mask;
1875 flow->vlan_tci |= vid & mask;
1876 }
1877
1878 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1879 * range 0...7.
1880 *
1881 * This function has no effect on the VLAN ID that 'flow' matches.
1882 *
1883 * After calling this function, 'flow' will not match packets without a VLAN
1884 * header. */
1885 void
1886 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1887 {
1888 pcp &= 0x07;
1889 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1890 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1891 }
1892
1893 /* Returns the number of MPLS LSEs present in 'flow'
1894 *
1895 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1896 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1897 * first entry that has the BoS bit set. If no such entry exists then
1898 * the maximum number of LSEs that can be stored in 'flow' is returned.
1899 */
1900 int
1901 flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1902 {
1903 /* dl_type is always masked. */
1904 if (eth_type_mpls(flow->dl_type)) {
1905 int i;
1906 int cnt;
1907
1908 cnt = 0;
1909 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
1910 if (wc) {
1911 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1912 }
1913 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1914 return i + 1;
1915 }
1916 if (flow->mpls_lse[i]) {
1917 cnt++;
1918 }
1919 }
1920 return cnt;
1921 } else {
1922 return 0;
1923 }
1924 }
1925
1926 /* Returns the number consecutive of MPLS LSEs, starting at the
1927 * innermost LSE, that are common in 'a' and 'b'.
1928 *
1929 * 'an' must be flow_count_mpls_labels(a).
1930 * 'bn' must be flow_count_mpls_labels(b).
1931 */
1932 int
1933 flow_count_common_mpls_labels(const struct flow *a, int an,
1934 const struct flow *b, int bn,
1935 struct flow_wildcards *wc)
1936 {
1937 int min_n = MIN(an, bn);
1938 if (min_n == 0) {
1939 return 0;
1940 } else {
1941 int common_n = 0;
1942 int a_last = an - 1;
1943 int b_last = bn - 1;
1944 int i;
1945
1946 for (i = 0; i < min_n; i++) {
1947 if (wc) {
1948 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1949 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1950 }
1951 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1952 break;
1953 } else {
1954 common_n++;
1955 }
1956 }
1957
1958 return common_n;
1959 }
1960 }
1961
1962 /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1963 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1964 *
1965 * If the new label is the first MPLS label in 'flow', it is generated as;
1966 *
1967 * - label: 2, if 'flow' is IPv6, otherwise 0.
1968 *
1969 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1970 *
1971 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1972 *
1973 * - BoS: 1.
1974 *
1975 * If the new label is the second or later label MPLS label in 'flow', it is
1976 * generated as;
1977 *
1978 * - label: Copied from outer label.
1979 *
1980 * - TTL: Copied from outer label.
1981 *
1982 * - TC: Copied from outer label.
1983 *
1984 * - BoS: 0.
1985 *
1986 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1987 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
1988 */
1989 void
1990 flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
1991 struct flow_wildcards *wc)
1992 {
1993 ovs_assert(eth_type_mpls(mpls_eth_type));
1994 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
1995
1996 if (n) {
1997 int i;
1998
1999 if (wc) {
2000 memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
2001 }
2002 for (i = n; i >= 1; i--) {
2003 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
2004 }
2005 flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
2006 } else {
2007 int label = 0; /* IPv4 Explicit Null. */
2008 int tc = 0;
2009 int ttl = 64;
2010
2011 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2012 label = 2;
2013 }
2014
2015 if (is_ip_any(flow)) {
2016 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
2017 if (wc) {
2018 wc->masks.nw_tos |= IP_DSCP_MASK;
2019 wc->masks.nw_ttl = 0xff;
2020 }
2021
2022 if (flow->nw_ttl) {
2023 ttl = flow->nw_ttl;
2024 }
2025 }
2026
2027 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
2028
2029 /* Clear all L3 and L4 fields and dp_hash. */
2030 BUILD_ASSERT(FLOW_WC_SEQ == 34);
2031 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
2032 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
2033 flow->dp_hash = 0;
2034 }
2035 flow->dl_type = mpls_eth_type;
2036 }
2037
2038 /* Tries to remove the outermost MPLS label from 'flow'. Returns true if
2039 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
2040 * 'eth_type'.
2041 *
2042 * 'n' must be flow_count_mpls_labels(flow). */
2043 bool
2044 flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
2045 struct flow_wildcards *wc)
2046 {
2047 int i;
2048
2049 if (n == 0) {
2050 /* Nothing to pop. */
2051 return false;
2052 } else if (n == FLOW_MAX_MPLS_LABELS) {
2053 if (wc) {
2054 wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
2055 }
2056 if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
2057 /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
2058 return false;
2059 }
2060 }
2061
2062 if (wc) {
2063 memset(&wc->masks.mpls_lse[1], 0xff,
2064 sizeof *wc->masks.mpls_lse * (n - 1));
2065 }
2066 for (i = 1; i < n; i++) {
2067 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
2068 }
2069 flow->mpls_lse[n - 1] = 0;
2070 flow->dl_type = eth_type;
2071 return true;
2072 }
2073
2074 /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
2075 * as an OpenFlow 1.1 "mpls_label" value. */
2076 void
2077 flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
2078 {
2079 set_mpls_lse_label(&flow->mpls_lse[idx], label);
2080 }
2081
2082 /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
2083 * range 0...255. */
2084 void
2085 flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
2086 {
2087 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
2088 }
2089
2090 /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
2091 * range 0...7. */
2092 void
2093 flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
2094 {
2095 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
2096 }
2097
2098 /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
2099 void
2100 flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
2101 {
2102 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
2103 }
2104
2105 /* Sets the entire MPLS LSE. */
2106 void
2107 flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
2108 {
2109 flow->mpls_lse[idx] = lse;
2110 }
2111
2112 static size_t
2113 flow_compose_l4(struct dp_packet *p, const struct flow *flow)
2114 {
2115 size_t l4_len = 0;
2116
2117 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
2118 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
2119 if (flow->nw_proto == IPPROTO_TCP) {
2120 struct tcp_header *tcp;
2121
2122 l4_len = sizeof *tcp;
2123 tcp = dp_packet_put_zeros(p, l4_len);
2124 tcp->tcp_src = flow->tp_src;
2125 tcp->tcp_dst = flow->tp_dst;
2126 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
2127 } else if (flow->nw_proto == IPPROTO_UDP) {
2128 struct udp_header *udp;
2129
2130 l4_len = sizeof *udp;
2131 udp = dp_packet_put_zeros(p, l4_len);
2132 udp->udp_src = flow->tp_src;
2133 udp->udp_dst = flow->tp_dst;
2134 } else if (flow->nw_proto == IPPROTO_SCTP) {
2135 struct sctp_header *sctp;
2136
2137 l4_len = sizeof *sctp;
2138 sctp = dp_packet_put_zeros(p, l4_len);
2139 sctp->sctp_src = flow->tp_src;
2140 sctp->sctp_dst = flow->tp_dst;
2141 } else if (flow->nw_proto == IPPROTO_ICMP) {
2142 struct icmp_header *icmp;
2143
2144 l4_len = sizeof *icmp;
2145 icmp = dp_packet_put_zeros(p, l4_len);
2146 icmp->icmp_type = ntohs(flow->tp_src);
2147 icmp->icmp_code = ntohs(flow->tp_dst);
2148 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
2149 } else if (flow->nw_proto == IPPROTO_IGMP) {
2150 struct igmp_header *igmp;
2151
2152 l4_len = sizeof *igmp;
2153 igmp = dp_packet_put_zeros(p, l4_len);
2154 igmp->igmp_type = ntohs(flow->tp_src);
2155 igmp->igmp_code = ntohs(flow->tp_dst);
2156 put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
2157 igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
2158 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
2159 struct icmp6_hdr *icmp;
2160
2161 l4_len = sizeof *icmp;
2162 icmp = dp_packet_put_zeros(p, l4_len);
2163 icmp->icmp6_type = ntohs(flow->tp_src);
2164 icmp->icmp6_code = ntohs(flow->tp_dst);
2165
2166 if (icmp->icmp6_code == 0 &&
2167 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
2168 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
2169 struct in6_addr *nd_target;
2170 struct ovs_nd_opt *nd_opt;
2171
2172 l4_len += sizeof *nd_target;
2173 nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
2174 *nd_target = flow->nd_target;
2175
2176 if (!eth_addr_is_zero(flow->arp_sha)) {
2177 l4_len += 8;
2178 nd_opt = dp_packet_put_zeros(p, 8);
2179 nd_opt->nd_opt_len = 1;
2180 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
2181 nd_opt->nd_opt_mac = flow->arp_sha;
2182 }
2183 if (!eth_addr_is_zero(flow->arp_tha)) {
2184 l4_len += 8;
2185 nd_opt = dp_packet_put_zeros(p, 8);
2186 nd_opt->nd_opt_len = 1;
2187 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
2188 nd_opt->nd_opt_mac = flow->arp_tha;
2189 }
2190 }
2191 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
2192 csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp);
2193 }
2194 }
2195 return l4_len;
2196 }
2197
2198 /* Puts into 'b' a packet that flow_extract() would parse as having the given
2199 * 'flow'.
2200 *
2201 * (This is useful only for testing, obviously, and the packet isn't really
2202 * valid. It hasn't got some checksums filled in, for one, and lots of fields
2203 * are just zeroed.) */
2204 void
2205 flow_compose(struct dp_packet *p, const struct flow *flow)
2206 {
2207 size_t l4_len;
2208
2209 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
2210 eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
2211 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
2212 struct eth_header *eth = dp_packet_l2(p);
2213 eth->eth_type = htons(dp_packet_size(p));
2214 return;
2215 }
2216
2217 if (flow->vlan_tci & htons(VLAN_CFI)) {
2218 eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci);
2219 }
2220
2221 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2222 struct ip_header *ip;
2223
2224 ip = dp_packet_put_zeros(p, sizeof *ip);
2225 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
2226 ip->ip_tos = flow->nw_tos;
2227 ip->ip_ttl = flow->nw_ttl;
2228 ip->ip_proto = flow->nw_proto;
2229 put_16aligned_be32(&ip->ip_src, flow->nw_src);
2230 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
2231
2232 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
2233 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
2234 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
2235 ip->ip_frag_off |= htons(100);
2236 }
2237 }
2238
2239 dp_packet_set_l4(p, dp_packet_tail(p));
2240
2241 l4_len = flow_compose_l4(p, flow);
2242
2243 ip = dp_packet_l3(p);
2244 ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
2245 ip->ip_csum = csum(ip, sizeof *ip);
2246 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2247 struct ovs_16aligned_ip6_hdr *nh;
2248
2249 nh = dp_packet_put_zeros(p, sizeof *nh);
2250 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
2251 htonl(flow->nw_tos << 20) | flow->ipv6_label);
2252 nh->ip6_hlim = flow->nw_ttl;
2253 nh->ip6_nxt = flow->nw_proto;
2254
2255 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
2256 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
2257
2258 dp_packet_set_l4(p, dp_packet_tail(p));
2259
2260 l4_len = flow_compose_l4(p, flow);
2261
2262 nh = dp_packet_l3(p);
2263 nh->ip6_plen = htons(l4_len);
2264 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
2265 flow->dl_type == htons(ETH_TYPE_RARP)) {
2266 struct arp_eth_header *arp;
2267
2268 arp = dp_packet_put_zeros(p, sizeof *arp);
2269 dp_packet_set_l3(p, arp);
2270 arp->ar_hrd = htons(1);
2271 arp->ar_pro = htons(ETH_TYPE_IP);
2272 arp->ar_hln = ETH_ADDR_LEN;
2273 arp->ar_pln = 4;
2274 arp->ar_op = htons(flow->nw_proto);
2275
2276 if (flow->nw_proto == ARP_OP_REQUEST ||
2277 flow->nw_proto == ARP_OP_REPLY) {
2278 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
2279 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
2280 arp->ar_sha = flow->arp_sha;
2281 arp->ar_tha = flow->arp_tha;
2282 }
2283 }
2284
2285 if (eth_type_mpls(flow->dl_type)) {
2286 int n;
2287
2288 p->l2_5_ofs = p->l3_ofs;
2289 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
2290 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
2291 break;
2292 }
2293 }
2294 while (n > 0) {
2295 push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
2296 }
2297 }
2298 }
2299 \f
2300 /* Compressed flow. */
2301
2302 /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
2303 * the caller. The caller must have already computed 'dst->map' properly to
2304 * indicate the significant uint64_t elements of 'src'.
2305 *
2306 * Normally the significant elements are the ones that are non-zero. However,
2307 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
2308 * so that the flow and mask always have the same maps. */
2309 void
2310 miniflow_init(struct miniflow *dst, const struct flow *src)
2311 {
2312 uint64_t *dst_u64 = miniflow_values(dst);
2313 size_t idx;
2314
2315 FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
2316 *dst_u64++ = flow_u64_value(src, idx);
2317 }
2318 }
2319
2320 /* Initialize the maps of 'flow' from 'src'. */
2321 void
2322 miniflow_map_init(struct miniflow *flow, const struct flow *src)
2323 {
2324 /* Initialize map, counting the number of nonzero elements. */
2325 flowmap_init(&flow->map);
2326 for (size_t i = 0; i < FLOW_U64S; i++) {
2327 if (flow_u64_value(src, i)) {
2328 flowmap_set(&flow->map, i, 1);
2329 }
2330 }
2331 }
2332
2333 /* Allocates 'n' count of miniflows, consecutive in memory, initializing the
2334 * map of each from 'src'.
2335 * Returns the size of the miniflow data. */
2336 size_t
2337 miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
2338 {
2339 size_t n_values = miniflow_n_values(src);
2340 size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
2341 struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
2342 size_t i;
2343
2344 COVERAGE_INC(miniflow_malloc);
2345
2346 for (i = 0; i < n; i++) {
2347 *dst = *src; /* Copy maps. */
2348 dsts[i] = dst;
2349 dst += 1; /* Just past the maps. */
2350 dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
2351 }
2352 return data_size;
2353 }
2354
2355 /* Returns a miniflow copy of 'src'. The caller must eventually free() the
2356 * returned miniflow. */
2357 struct miniflow *
2358 miniflow_create(const struct flow *src)
2359 {
2360 struct miniflow tmp;
2361 struct miniflow *dst;
2362
2363 miniflow_map_init(&tmp, src);
2364
2365 miniflow_alloc(&dst, 1, &tmp);
2366 miniflow_init(dst, src);
2367 return dst;
2368 }
2369
2370 /* Initializes 'dst' as a copy of 'src'. The caller must have allocated
2371 * 'dst' to have inline space for 'n_values' data in 'src'. */
2372 void
2373 miniflow_clone(struct miniflow *dst, const struct miniflow *src,
2374 size_t n_values)
2375 {
2376 *dst = *src; /* Copy maps. */
2377 memcpy(miniflow_values(dst), miniflow_get_values(src),
2378 MINIFLOW_VALUES_SIZE(n_values));
2379 }
2380
2381 /* Initializes 'dst' as a copy of 'src'. */
2382 void
2383 miniflow_expand(const struct miniflow *src, struct flow *dst)
2384 {
2385 memset(dst, 0, sizeof *dst);
2386 flow_union_with_miniflow(dst, src);
2387 }
2388
2389 /* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
2390 bool
2391 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
2392 {
2393 const uint64_t *ap = miniflow_get_values(a);
2394 const uint64_t *bp = miniflow_get_values(b);
2395
2396 /* This is mostly called after a matching hash, so it is highly likely that
2397 * the maps are equal as well. */
2398 if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
2399 return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
2400 } else {
2401 size_t idx;
2402
2403 FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
2404 if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
2405 != (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
2406 return false;
2407 }
2408 }
2409 }
2410
2411 return true;
2412 }
2413
2414 /* Returns false if 'a' and 'b' differ at the places where there are 1-bits
2415 * in 'mask', true otherwise. */
2416 bool
2417 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
2418 const struct minimask *mask)
2419 {
2420 const uint64_t *p = miniflow_get_values(&mask->masks);
2421 size_t idx;
2422
2423 FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2424 if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
2425 return false;
2426 }
2427 }
2428
2429 return true;
2430 }
2431
2432 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
2433 * in 'mask', false if they differ. */
2434 bool
2435 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
2436 const struct minimask *mask)
2437 {
2438 const uint64_t *p = miniflow_get_values(&mask->masks);
2439 size_t idx;
2440
2441 FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2442 if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
2443 return false;
2444 }
2445 }
2446
2447 return true;
2448 }
2449
2450 \f
2451 void
2452 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
2453 {
2454 miniflow_init(&mask->masks, &wc->masks);
2455 }
2456
2457 /* Returns a minimask copy of 'wc'. The caller must eventually free the
2458 * returned minimask with free(). */
2459 struct minimask *
2460 minimask_create(const struct flow_wildcards *wc)
2461 {
2462 return (struct minimask *)miniflow_create(&wc->masks);
2463 }
2464
2465 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
2466 *
2467 * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
2468 * must follow '*dst_' in memory, for use by 'dst_'. The caller must *not*
2469 * free 'dst_' free(). */
2470 void
2471 minimask_combine(struct minimask *dst_,
2472 const struct minimask *a_, const struct minimask *b_,
2473 uint64_t storage[FLOW_U64S])
2474 {
2475 struct miniflow *dst = &dst_->masks;
2476 uint64_t *dst_values = storage;
2477 const struct miniflow *a = &a_->masks;
2478 const struct miniflow *b = &b_->masks;
2479 size_t idx;
2480
2481 flowmap_init(&dst->map);
2482
2483 FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
2484 /* Both 'a' and 'b' have non-zero data at 'idx'. */
2485 uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);
2486
2487 if (mask) {
2488 flowmap_set(&dst->map, idx, 1);
2489 *dst_values++ = mask;
2490 }
2491 }
2492 }
2493
2494 /* Initializes 'wc' as a copy of 'mask'. */
2495 void
2496 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
2497 {
2498 miniflow_expand(&mask->masks, &wc->masks);
2499 }
2500
2501 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
2502 * Minimasks may not have zero data values, so for the minimasks to be the
2503 * same, they need to have the same map and the same data values. */
2504 bool
2505 minimask_equal(const struct minimask *a, const struct minimask *b)
2506 {
2507 return !memcmp(a, b, sizeof *a
2508 + MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks)));
2509 }
2510
2511 /* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
2512 * false otherwise. */
2513 bool
2514 minimask_has_extra(const struct minimask *a, const struct minimask *b)
2515 {
2516 const uint64_t *bp = miniflow_get_values(&b->masks);
2517 size_t idx;
2518
2519 FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
2520 uint64_t b_u64 = *bp++;
2521
2522 /* 'b_u64' is non-zero, check if the data in 'a' is either zero
2523 * or misses some of the bits in 'b_u64'. */
2524 if (!MINIFLOW_IN_MAP(&a->masks, idx)
2525 || ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
2526 return true; /* 'a' wildcards some bits 'b' doesn't. */
2527 }
2528 }
2529
2530 return false;
2531 }