]> git.proxmox.com Git - mirror_ovs.git/blob - lib/flow.c
flow: fix compilation of MINIFLOW_ASSERT
[mirror_ovs.git] / lib / flow.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <config.h>
17 #include <sys/types.h>
18 #include "flow.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <netinet/in.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25 #include <stdint.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "csum.h"
31 #include "dynamic-string.h"
32 #include "hash.h"
33 #include "jhash.h"
34 #include "match.h"
35 #include "dp-packet.h"
36 #include "openflow/openflow.h"
37 #include "packets.h"
38 #include "odp-util.h"
39 #include "random.h"
40 #include "unaligned.h"
41
42 COVERAGE_DEFINE(flow_extract);
43 COVERAGE_DEFINE(miniflow_malloc);
44
45 /* U64 indices for segmented flow classification. */
46 const uint8_t flow_segment_u64s[4] = {
47 FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
48 FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
49 FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
50 FLOW_U64S
51 };
52
53 /* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
54 * without any intervening padding. */
55 #define ASSERT_SEQUENTIAL(f0, f1) \
56 BUILD_ASSERT_DECL(offsetof(struct flow, f0) \
57 + MEMBER_SIZEOF(struct flow, f0) \
58 == offsetof(struct flow, f1))
59
60 /* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
61 * struct flow. */
62 #define ASSERT_SAME_WORD(f0, f1) \
63 BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \
64 == offsetof(struct flow, f1) / 4)
65
66 /* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
67 * aligned word in struct flow. */
68 #define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \
69 ASSERT_SEQUENTIAL(f0, f1); \
70 ASSERT_SAME_WORD(f0, f1)
71
72 /* miniflow_extract() assumes the following to be true to optimize the
73 * extraction process. */
74 ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci);
75
76 ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
77 ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
78 ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);
79
80 /* TCP flags in the middle of a BE64, zeroes in the other half. */
81 BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
82
83 #if WORDS_BIGENDIAN
84 #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
85 << 16)
86 #else
87 #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
88 #endif
89
90 ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
91
92 /* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
93 * must contain at least 'size' bytes of data. Returns the first byte of data
94 * removed. */
95 static inline const void *
96 data_pull(const void **datap, size_t *sizep, size_t size)
97 {
98 const char *data = *datap;
99 *datap = data + size;
100 *sizep -= size;
101 return data;
102 }
103
104 /* If '*datap' has at least 'size' bytes of data, removes that many bytes from
105 * the head end of '*datap' and returns the first byte removed. Otherwise,
106 * returns a null pointer without modifying '*datap'. */
107 static inline const void *
108 data_try_pull(const void **datap, size_t *sizep, size_t size)
109 {
110 return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
111 }
112
113 /* Context for pushing data to a miniflow. */
114 struct mf_ctx {
115 struct flowmap map;
116 uint64_t *data;
117 uint64_t * const end;
118 };
119
120 /* miniflow_push_* macros allow filling in a miniflow data values in order.
121 * Assertions are needed only when the layout of the struct flow is modified.
122 * 'ofs' is a compile-time constant, which allows most of the code be optimized
123 * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
124 * defined as macros. */
125
126 #if (FLOW_WC_SEQ != 35)
127 #define MINIFLOW_ASSERT(X) ovs_assert(X)
128 BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
129 "assertions enabled. Consider updating FLOW_WC_SEQ after "
130 "testing")
131 #else
132 #define MINIFLOW_ASSERT(X)
133 #endif
134
135 /* True if 'IDX' and higher bits are not set. */
136 #define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \
137 { \
138 MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \
139 (MAP_MAX << ((IDX) % MAP_T_BITS)))); \
140 for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \
141 MINIFLOW_ASSERT(!(FM)->bits[i]); \
142 } \
143 }
144
145 #define miniflow_set_map(MF, OFS) \
146 { \
147 ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \
148 flowmap_set(&MF.map, (OFS), 1); \
149 }
150
151 #define miniflow_assert_in_map(MF, OFS) \
152 MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \
153 ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)
154
155 #define miniflow_push_uint64_(MF, OFS, VALUE) \
156 { \
157 MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \
158 *MF.data++ = VALUE; \
159 miniflow_set_map(MF, OFS / 8); \
160 }
161
162 #define miniflow_push_be64_(MF, OFS, VALUE) \
163 miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
164
165 #define miniflow_push_uint32_(MF, OFS, VALUE) \
166 { \
167 MINIFLOW_ASSERT(MF.data < MF.end); \
168 \
169 if ((OFS) % 8 == 0) { \
170 miniflow_set_map(MF, OFS / 8); \
171 *(uint32_t *)MF.data = VALUE; \
172 } else if ((OFS) % 8 == 4) { \
173 miniflow_assert_in_map(MF, OFS / 8); \
174 *((uint32_t *)MF.data + 1) = VALUE; \
175 MF.data++; \
176 } \
177 }
178
179 #define miniflow_push_be32_(MF, OFS, VALUE) \
180 miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
181
182 #define miniflow_push_uint16_(MF, OFS, VALUE) \
183 { \
184 MINIFLOW_ASSERT(MF.data < MF.end); \
185 \
186 if ((OFS) % 8 == 0) { \
187 miniflow_set_map(MF, OFS / 8); \
188 *(uint16_t *)MF.data = VALUE; \
189 } else if ((OFS) % 8 == 2) { \
190 miniflow_assert_in_map(MF, OFS / 8); \
191 *((uint16_t *)MF.data + 1) = VALUE; \
192 } else if ((OFS) % 8 == 4) { \
193 miniflow_assert_in_map(MF, OFS / 8); \
194 *((uint16_t *)MF.data + 2) = VALUE; \
195 } else if ((OFS) % 8 == 6) { \
196 miniflow_assert_in_map(MF, OFS / 8); \
197 *((uint16_t *)MF.data + 3) = VALUE; \
198 MF.data++; \
199 } \
200 }
201
202 #define miniflow_pad_to_64_(MF, OFS) \
203 { \
204 MINIFLOW_ASSERT((OFS) % 8 != 0); \
205 miniflow_assert_in_map(MF, OFS / 8); \
206 \
207 memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
208 MF.data++; \
209 }
210
211 #define miniflow_push_be16_(MF, OFS, VALUE) \
212 miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
213
214 #define miniflow_set_maps(MF, OFS, N_WORDS) \
215 { \
216 size_t ofs = (OFS); \
217 size_t n_words = (N_WORDS); \
218 \
219 MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \
220 ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \
221 flowmap_set(&MF.map, ofs, n_words); \
222 }
223
224 /* Data at 'valuep' may be unaligned. */
225 #define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
226 { \
227 MINIFLOW_ASSERT((OFS) % 8 == 0); \
228 miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \
229 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
230 MF.data += (N_WORDS); \
231 }
232
233 /* Push 32-bit words padded to 64-bits. */
234 #define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
235 { \
236 miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \
237 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
238 MF.data += DIV_ROUND_UP(N_WORDS, 2); \
239 if ((N_WORDS) & 1) { \
240 *((uint32_t *)MF.data - 1) = 0; \
241 } \
242 }
243
244 /* Data at 'valuep' may be unaligned. */
245 /* MACs start 64-aligned, and must be followed by other data or padding. */
246 #define miniflow_push_macs_(MF, OFS, VALUEP) \
247 { \
248 miniflow_set_maps(MF, (OFS) / 8, 2); \
249 memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
250 MF.data += 1; /* First word only. */ \
251 }
252
253 #define miniflow_push_uint32(MF, FIELD, VALUE) \
254 miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
255
256 #define miniflow_push_be32(MF, FIELD, VALUE) \
257 miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
258
259 #define miniflow_push_uint16(MF, FIELD, VALUE) \
260 miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
261
262 #define miniflow_push_be16(MF, FIELD, VALUE) \
263 miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
264
265 #define miniflow_pad_to_64(MF, FIELD) \
266 miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD))
267
268 #define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
269 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
270
271 #define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
272 miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
273
274 #define miniflow_push_macs(MF, FIELD, VALUEP) \
275 miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
276
277 /* Pulls the MPLS headers at '*datap' and returns the count of them. */
278 static inline int
279 parse_mpls(const void **datap, size_t *sizep)
280 {
281 const struct mpls_hdr *mh;
282 int count = 0;
283
284 while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
285 count++;
286 if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
287 break;
288 }
289 }
290 return MIN(count, FLOW_MAX_MPLS_LABELS);
291 }
292
293 static inline ovs_be16
294 parse_vlan(const void **datap, size_t *sizep)
295 {
296 const struct eth_header *eth = *datap;
297
298 struct qtag_prefix {
299 ovs_be16 eth_type; /* ETH_TYPE_VLAN */
300 ovs_be16 tci;
301 };
302
303 data_pull(datap, sizep, ETH_ADDR_LEN * 2);
304
305 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
306 if (OVS_LIKELY(*sizep
307 >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
308 const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
309 return qp->tci | htons(VLAN_CFI);
310 }
311 }
312 return 0;
313 }
314
315 static inline ovs_be16
316 parse_ethertype(const void **datap, size_t *sizep)
317 {
318 const struct llc_snap_header *llc;
319 ovs_be16 proto;
320
321 proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
322 if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
323 return proto;
324 }
325
326 if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
327 return htons(FLOW_DL_TYPE_NONE);
328 }
329
330 llc = *datap;
331 if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
332 || llc->llc.llc_ssap != LLC_SSAP_SNAP
333 || llc->llc.llc_cntl != LLC_CNTL_SNAP
334 || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
335 sizeof llc->snap.snap_org))) {
336 return htons(FLOW_DL_TYPE_NONE);
337 }
338
339 data_pull(datap, sizep, sizeof *llc);
340
341 if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
342 return llc->snap.snap_type;
343 }
344
345 return htons(FLOW_DL_TYPE_NONE);
346 }
347
348 static inline void
349 parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
350 const struct in6_addr **nd_target,
351 struct eth_addr arp_buf[2])
352 {
353 if (icmp->icmp6_code == 0 &&
354 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
355 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
356
357 *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
358 if (OVS_UNLIKELY(!*nd_target)) {
359 return;
360 }
361
362 while (*sizep >= 8) {
363 /* The minimum size of an option is 8 bytes, which also is
364 * the size of Ethernet link-layer options. */
365 const struct ovs_nd_opt *nd_opt = *datap;
366 int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN;
367
368 if (!opt_len || opt_len > *sizep) {
369 return;
370 }
371
372 /* Store the link layer address if the appropriate option is
373 * provided. It is considered an error if the same link
374 * layer option is specified twice. */
375 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
376 && opt_len == 8) {
377 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
378 arp_buf[0] = nd_opt->nd_opt_mac;
379 } else {
380 goto invalid;
381 }
382 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
383 && opt_len == 8) {
384 if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
385 arp_buf[1] = nd_opt->nd_opt_mac;
386 } else {
387 goto invalid;
388 }
389 }
390
391 if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
392 return;
393 }
394 }
395 }
396
397 return;
398
399 invalid:
400 *nd_target = NULL;
401 arp_buf[0] = eth_addr_zero;
402 arp_buf[1] = eth_addr_zero;
403 }
404
405 /* Initializes 'flow' members from 'packet' and 'md'
406 *
407 * Initializes 'packet' header l2 pointer to the start of the Ethernet
408 * header, and the layer offsets as follows:
409 *
410 * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
411 * when there is no MPLS shim header.
412 *
413 * - packet->l3_ofs to just past the Ethernet header, or just past the
414 * vlan_header if one is present, to the first byte of the payload of the
415 * Ethernet frame. UINT16_MAX if the frame is too short to contain an
416 * Ethernet header.
417 *
418 * - packet->l4_ofs to just past the IPv4 header, if one is present and
419 * has at least the content used for the fields of interest for the flow,
420 * otherwise UINT16_MAX.
421 */
422 void
423 flow_extract(struct dp_packet *packet, struct flow *flow)
424 {
425 struct {
426 struct miniflow mf;
427 uint64_t buf[FLOW_U64S];
428 } m;
429
430 COVERAGE_INC(flow_extract);
431
432 miniflow_extract(packet, &m.mf);
433 miniflow_expand(&m.mf, flow);
434 }
435
436 /* Caller is responsible for initializing 'dst' with enough storage for
437 * FLOW_U64S * 8 bytes. */
438 void
439 miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
440 {
441 const struct pkt_metadata *md = &packet->md;
442 const void *data = dp_packet_data(packet);
443 size_t size = dp_packet_size(packet);
444 uint64_t *values = miniflow_values(dst);
445 struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
446 values + FLOW_U64S };
447 const char *l2;
448 ovs_be16 dl_type;
449 uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
450
451 /* Metadata. */
452 if (flow_tnl_dst_is_set(&md->tunnel)) {
453 miniflow_push_words(mf, tunnel, &md->tunnel,
454 offsetof(struct flow_tnl, metadata) /
455 sizeof(uint64_t));
456
457 if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
458 if (md->tunnel.metadata.present.map) {
459 miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
460 sizeof md->tunnel.metadata /
461 sizeof(uint64_t));
462 }
463 } else {
464 if (md->tunnel.metadata.present.len) {
465 miniflow_push_words(mf, tunnel.metadata.present,
466 &md->tunnel.metadata.present, 1);
467 miniflow_push_words(mf, tunnel.metadata.opts.gnv,
468 md->tunnel.metadata.opts.gnv,
469 DIV_ROUND_UP(md->tunnel.metadata.present.len,
470 sizeof(uint64_t)));
471 }
472 }
473 }
474 if (md->skb_priority || md->pkt_mark) {
475 miniflow_push_uint32(mf, skb_priority, md->skb_priority);
476 miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
477 }
478 miniflow_push_uint32(mf, dp_hash, md->dp_hash);
479 miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
480 if (md->recirc_id || md->ct_state) {
481 miniflow_push_uint32(mf, recirc_id, md->recirc_id);
482 miniflow_push_uint16(mf, ct_state, md->ct_state);
483 miniflow_push_uint16(mf, ct_zone, md->ct_zone);
484 }
485
486 if (md->ct_state) {
487 miniflow_push_uint32(mf, ct_mark, md->ct_mark);
488 miniflow_pad_to_64(mf, ct_mark);
489
490 if (!ovs_u128_is_zero(&md->ct_label)) {
491 miniflow_push_words(mf, ct_label, &md->ct_label,
492 sizeof md->ct_label / sizeof(uint64_t));
493 }
494 }
495
496 /* Initialize packet's layer pointer and offsets. */
497 l2 = data;
498 dp_packet_reset_offsets(packet);
499
500 /* Must have full Ethernet header to proceed. */
501 if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
502 goto out;
503 } else {
504 ovs_be16 vlan_tci;
505
506 /* Link layer. */
507 ASSERT_SEQUENTIAL(dl_dst, dl_src);
508 miniflow_push_macs(mf, dl_dst, data);
509 /* dl_type, vlan_tci. */
510 vlan_tci = parse_vlan(&data, &size);
511 dl_type = parse_ethertype(&data, &size);
512 miniflow_push_be16(mf, dl_type, dl_type);
513 miniflow_push_be16(mf, vlan_tci, vlan_tci);
514 }
515
516 /* Parse mpls. */
517 if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
518 int count;
519 const void *mpls = data;
520
521 packet->l2_5_ofs = (char *)data - l2;
522 count = parse_mpls(&data, &size);
523 miniflow_push_words_32(mf, mpls_lse, mpls, count);
524 }
525
526 /* Network layer. */
527 packet->l3_ofs = (char *)data - l2;
528
529 nw_frag = 0;
530 if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
531 const struct ip_header *nh = data;
532 int ip_len;
533 uint16_t tot_len;
534
535 if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
536 goto out;
537 }
538 ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
539
540 if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
541 goto out;
542 }
543 if (OVS_UNLIKELY(size < ip_len)) {
544 goto out;
545 }
546 tot_len = ntohs(nh->ip_tot_len);
547 if (OVS_UNLIKELY(tot_len > size)) {
548 goto out;
549 }
550 if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
551 goto out;
552 }
553 dp_packet_set_l2_pad_size(packet, size - tot_len);
554 size = tot_len; /* Never pull padding. */
555
556 /* Push both source and destination address at once. */
557 miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
558
559 miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
560
561 nw_tos = nh->ip_tos;
562 nw_ttl = nh->ip_ttl;
563 nw_proto = nh->ip_proto;
564 if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
565 nw_frag = FLOW_NW_FRAG_ANY;
566 if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
567 nw_frag |= FLOW_NW_FRAG_LATER;
568 }
569 }
570 data_pull(&data, &size, ip_len);
571 } else if (dl_type == htons(ETH_TYPE_IPV6)) {
572 const struct ovs_16aligned_ip6_hdr *nh;
573 ovs_be32 tc_flow;
574 uint16_t plen;
575
576 if (OVS_UNLIKELY(size < sizeof *nh)) {
577 goto out;
578 }
579 nh = data_pull(&data, &size, sizeof *nh);
580
581 plen = ntohs(nh->ip6_plen);
582 if (OVS_UNLIKELY(plen > size)) {
583 goto out;
584 }
585 /* Jumbo Payload option not supported yet. */
586 if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
587 goto out;
588 }
589 dp_packet_set_l2_pad_size(packet, size - plen);
590 size = plen; /* Never pull padding. */
591
592 miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
593 sizeof nh->ip6_src / 8);
594 miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
595 sizeof nh->ip6_dst / 8);
596
597 tc_flow = get_16aligned_be32(&nh->ip6_flow);
598 {
599 ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
600 miniflow_push_be32(mf, ipv6_label, label);
601 }
602
603 nw_tos = ntohl(tc_flow) >> 20;
604 nw_ttl = nh->ip6_hlim;
605 nw_proto = nh->ip6_nxt;
606
607 while (1) {
608 if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
609 && (nw_proto != IPPROTO_ROUTING)
610 && (nw_proto != IPPROTO_DSTOPTS)
611 && (nw_proto != IPPROTO_AH)
612 && (nw_proto != IPPROTO_FRAGMENT))) {
613 /* It's either a terminal header (e.g., TCP, UDP) or one we
614 * don't understand. In either case, we're done with the
615 * packet, so use it to fill in 'nw_proto'. */
616 break;
617 }
618
619 /* We only verify that at least 8 bytes of the next header are
620 * available, but many of these headers are longer. Ensure that
621 * accesses within the extension header are within those first 8
622 * bytes. All extension headers are required to be at least 8
623 * bytes. */
624 if (OVS_UNLIKELY(size < 8)) {
625 goto out;
626 }
627
628 if ((nw_proto == IPPROTO_HOPOPTS)
629 || (nw_proto == IPPROTO_ROUTING)
630 || (nw_proto == IPPROTO_DSTOPTS)) {
631 /* These headers, while different, have the fields we care
632 * about in the same location and with the same
633 * interpretation. */
634 const struct ip6_ext *ext_hdr = data;
635 nw_proto = ext_hdr->ip6e_nxt;
636 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
637 (ext_hdr->ip6e_len + 1) * 8))) {
638 goto out;
639 }
640 } else if (nw_proto == IPPROTO_AH) {
641 /* A standard AH definition isn't available, but the fields
642 * we care about are in the same location as the generic
643 * option header--only the header length is calculated
644 * differently. */
645 const struct ip6_ext *ext_hdr = data;
646 nw_proto = ext_hdr->ip6e_nxt;
647 if (OVS_UNLIKELY(!data_try_pull(&data, &size,
648 (ext_hdr->ip6e_len + 2) * 4))) {
649 goto out;
650 }
651 } else if (nw_proto == IPPROTO_FRAGMENT) {
652 const struct ovs_16aligned_ip6_frag *frag_hdr = data;
653
654 nw_proto = frag_hdr->ip6f_nxt;
655 if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
656 goto out;
657 }
658
659 /* We only process the first fragment. */
660 if (frag_hdr->ip6f_offlg != htons(0)) {
661 nw_frag = FLOW_NW_FRAG_ANY;
662 if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
663 nw_frag |= FLOW_NW_FRAG_LATER;
664 nw_proto = IPPROTO_FRAGMENT;
665 break;
666 }
667 }
668 }
669 }
670 } else {
671 if (dl_type == htons(ETH_TYPE_ARP) ||
672 dl_type == htons(ETH_TYPE_RARP)) {
673 struct eth_addr arp_buf[2];
674 const struct arp_eth_header *arp = (const struct arp_eth_header *)
675 data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
676
677 if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
678 && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
679 && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
680 && OVS_LIKELY(arp->ar_pln == 4)) {
681 miniflow_push_be32(mf, nw_src,
682 get_16aligned_be32(&arp->ar_spa));
683 miniflow_push_be32(mf, nw_dst,
684 get_16aligned_be32(&arp->ar_tpa));
685
686 /* We only match on the lower 8 bits of the opcode. */
687 if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
688 miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
689 miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
690 }
691
692 /* Must be adjacent. */
693 ASSERT_SEQUENTIAL(arp_sha, arp_tha);
694
695 arp_buf[0] = arp->ar_sha;
696 arp_buf[1] = arp->ar_tha;
697 miniflow_push_macs(mf, arp_sha, arp_buf);
698 miniflow_pad_to_64(mf, arp_tha);
699 }
700 }
701 goto out;
702 }
703
704 packet->l4_ofs = (char *)data - l2;
705 miniflow_push_be32(mf, nw_frag,
706 BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
707
708 if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
709 if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
710 if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
711 const struct tcp_header *tcp = data;
712
713 miniflow_push_be32(mf, arp_tha.ea[2], 0);
714 miniflow_push_be32(mf, tcp_flags,
715 TCP_FLAGS_BE32(tcp->tcp_ctl));
716 miniflow_push_be16(mf, tp_src, tcp->tcp_src);
717 miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
718 miniflow_pad_to_64(mf, tp_dst);
719 }
720 } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
721 if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
722 const struct udp_header *udp = data;
723
724 miniflow_push_be16(mf, tp_src, udp->udp_src);
725 miniflow_push_be16(mf, tp_dst, udp->udp_dst);
726 miniflow_pad_to_64(mf, tp_dst);
727 }
728 } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
729 if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
730 const struct sctp_header *sctp = data;
731
732 miniflow_push_be16(mf, tp_src, sctp->sctp_src);
733 miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
734 miniflow_pad_to_64(mf, tp_dst);
735 }
736 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
737 if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
738 const struct icmp_header *icmp = data;
739
740 miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
741 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
742 miniflow_pad_to_64(mf, tp_dst);
743 }
744 } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
745 if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
746 const struct igmp_header *igmp = data;
747
748 miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
749 miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
750 miniflow_push_be32(mf, igmp_group_ip4,
751 get_16aligned_be32(&igmp->group));
752 }
753 } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
754 if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
755 const struct in6_addr *nd_target = NULL;
756 struct eth_addr arp_buf[2] = { { { { 0 } } } };
757 const struct icmp6_hdr *icmp = data_pull(&data, &size,
758 sizeof *icmp);
759 parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf);
760 if (nd_target) {
761 miniflow_push_words(mf, nd_target, nd_target,
762 sizeof *nd_target / sizeof(uint64_t));
763 }
764 miniflow_push_macs(mf, arp_sha, arp_buf);
765 miniflow_pad_to_64(mf, arp_tha);
766 miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
767 miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
768 miniflow_pad_to_64(mf, tp_dst);
769 }
770 }
771 }
772 out:
773 dst->map = mf.map;
774 }
775
776 /* For every bit of a field that is wildcarded in 'wildcards', sets the
777 * corresponding bit in 'flow' to zero. */
778 void
779 flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
780 {
781 uint64_t *flow_u64 = (uint64_t *) flow;
782 const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
783 size_t i;
784
785 for (i = 0; i < FLOW_U64S; i++) {
786 flow_u64[i] &= wc_u64[i];
787 }
788 }
789
790 void
791 flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
792 {
793 if (flow->nw_proto != IPPROTO_ICMP) {
794 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
795 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
796 } else {
797 wc->masks.tp_src = htons(0xff);
798 wc->masks.tp_dst = htons(0xff);
799 }
800 }
801
802 /* Initializes 'flow_metadata' with the metadata found in 'flow'. */
803 void
804 flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
805 {
806 int i;
807
808 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35);
809
810 match_init_catchall(flow_metadata);
811 if (flow->tunnel.tun_id != htonll(0)) {
812 match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
813 }
814 if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
815 match_set_tun_flags(flow_metadata,
816 flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
817 }
818 if (flow->tunnel.ip_src) {
819 match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
820 }
821 if (flow->tunnel.ip_dst) {
822 match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
823 }
824 if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) {
825 match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src);
826 }
827 if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) {
828 match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst);
829 }
830 if (flow->tunnel.gbp_id != htons(0)) {
831 match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
832 }
833 if (flow->tunnel.gbp_flags) {
834 match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
835 }
836 tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
837 if (flow->metadata != htonll(0)) {
838 match_set_metadata(flow_metadata, flow->metadata);
839 }
840
841 for (i = 0; i < FLOW_N_REGS; i++) {
842 if (flow->regs[i]) {
843 match_set_reg(flow_metadata, i, flow->regs[i]);
844 }
845 }
846
847 if (flow->pkt_mark != 0) {
848 match_set_pkt_mark(flow_metadata, flow->pkt_mark);
849 }
850
851 match_set_in_port(flow_metadata, flow->in_port.ofp_port);
852 if (flow->ct_state != 0) {
853 match_set_ct_state(flow_metadata, flow->ct_state);
854 }
855 if (flow->ct_zone != 0) {
856 match_set_ct_zone(flow_metadata, flow->ct_zone);
857 }
858 if (flow->ct_mark != 0) {
859 match_set_ct_mark(flow_metadata, flow->ct_mark);
860 }
861 if (!ovs_u128_is_zero(&flow->ct_label)) {
862 match_set_ct_label(flow_metadata, flow->ct_label);
863 }
864 }
865
866 const char *ct_state_to_string(uint32_t state)
867 {
868 switch (state) {
869 case CS_REPLY_DIR:
870 return "rpl";
871 case CS_TRACKED:
872 return "trk";
873 case CS_NEW:
874 return "new";
875 case CS_ESTABLISHED:
876 return "est";
877 case CS_RELATED:
878 return "rel";
879 case CS_INVALID:
880 return "inv";
881 case CS_SRC_NAT:
882 return "snat";
883 case CS_DST_NAT:
884 return "dnat";
885 default:
886 return NULL;
887 }
888 }
889
890 char *
891 flow_to_string(const struct flow *flow)
892 {
893 struct ds ds = DS_EMPTY_INITIALIZER;
894 flow_format(&ds, flow);
895 return ds_cstr(&ds);
896 }
897
898 const char *
899 flow_tun_flag_to_string(uint32_t flags)
900 {
901 switch (flags) {
902 case FLOW_TNL_F_DONT_FRAGMENT:
903 return "df";
904 case FLOW_TNL_F_CSUM:
905 return "csum";
906 case FLOW_TNL_F_KEY:
907 return "key";
908 case FLOW_TNL_F_OAM:
909 return "oam";
910 default:
911 return NULL;
912 }
913 }
914
915 void
916 format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
917 uint32_t flags, char del)
918 {
919 uint32_t bad = 0;
920
921 if (!flags) {
922 ds_put_char(ds, '0');
923 return;
924 }
925 while (flags) {
926 uint32_t bit = rightmost_1bit(flags);
927 const char *s;
928
929 s = bit_to_string(bit);
930 if (s) {
931 ds_put_format(ds, "%s%c", s, del);
932 } else {
933 bad |= bit;
934 }
935
936 flags &= ~bit;
937 }
938
939 if (bad) {
940 ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
941 }
942 ds_chomp(ds, del);
943 }
944
945 void
946 format_flags_masked(struct ds *ds, const char *name,
947 const char *(*bit_to_string)(uint32_t), uint32_t flags,
948 uint32_t mask, uint32_t max_mask)
949 {
950 if (name) {
951 ds_put_format(ds, "%s=", name);
952 }
953
954 if (mask == max_mask) {
955 format_flags(ds, bit_to_string, flags, '|');
956 return;
957 }
958
959 if (!mask) {
960 ds_put_cstr(ds, "0/0");
961 return;
962 }
963
964 while (mask) {
965 uint32_t bit = rightmost_1bit(mask);
966 const char *s = bit_to_string(bit);
967
968 ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
969 s ? s : "[Unknown]");
970 mask &= ~bit;
971 }
972 }
973
974 /* Scans a string 's' of flags to determine their numerical value and
975 * returns the number of characters parsed using 'bit_to_string' to
976 * lookup flag names. Scanning continues until the character 'end' is
977 * reached.
978 *
979 * In the event of a failure, a negative error code will be returned. In
980 * addition, if 'res_string' is non-NULL then a descriptive string will
981 * be returned incorporating the identifying string 'field_name'. This
982 * error string must be freed by the caller.
983 *
984 * Upon success, the flag values will be stored in 'res_flags' and
985 * optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
986 * present in the original string will be considered an error). The
987 * caller may restrict the acceptable set of values through the mask
988 * 'allowed'. */
989 int
990 parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
991 char end, const char *field_name, char **res_string,
992 uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
993 {
994 uint32_t result = 0;
995 int n;
996
997 /* Parse masked flags in numeric format? */
998 if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
999 res_flags, res_mask, &n) && n > 0) {
1000 if (*res_flags & ~allowed || *res_mask & ~allowed) {
1001 goto unknown;
1002 }
1003 return n;
1004 }
1005
1006 n = 0;
1007
1008 if (res_mask && (*s == '+' || *s == '-')) {
1009 uint32_t flags = 0, mask = 0;
1010
1011 /* Parse masked flags. */
1012 while (s[0] != end) {
1013 bool set;
1014 uint32_t bit;
1015 size_t len;
1016
1017 if (s[0] == '+') {
1018 set = true;
1019 } else if (s[0] == '-') {
1020 set = false;
1021 } else {
1022 if (res_string) {
1023 *res_string = xasprintf("%s: %s must be preceded by '+' "
1024 "(for SET) or '-' (NOT SET)", s,
1025 field_name);
1026 }
1027 return -EINVAL;
1028 }
1029 s++;
1030 n++;
1031
1032 for (bit = 1; bit; bit <<= 1) {
1033 const char *fname = bit_to_string(bit);
1034
1035 if (!fname) {
1036 continue;
1037 }
1038
1039 len = strlen(fname);
1040 if (strncmp(s, fname, len) ||
1041 (s[len] != '+' && s[len] != '-' && s[len] != end)) {
1042 continue;
1043 }
1044
1045 if (mask & bit) {
1046 /* bit already set. */
1047 if (res_string) {
1048 *res_string = xasprintf("%s: Each %s flag can be "
1049 "specified only once", s,
1050 field_name);
1051 }
1052 return -EINVAL;
1053 }
1054 if (!(bit & allowed)) {
1055 goto unknown;
1056 }
1057 if (set) {
1058 flags |= bit;
1059 }
1060 mask |= bit;
1061 break;
1062 }
1063
1064 if (!bit) {
1065 goto unknown;
1066 }
1067 s += len;
1068 n += len;
1069 }
1070
1071 *res_flags = flags;
1072 *res_mask = mask;
1073 return n;
1074 }
1075
1076 /* Parse unmasked flags. If a flag is present, it is set, otherwise
1077 * it is not set. */
1078 while (s[n] != end) {
1079 unsigned long long int flags;
1080 uint32_t bit;
1081 int n0;
1082
1083 if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
1084 if (flags & ~allowed) {
1085 goto unknown;
1086 }
1087 n += n0 + (s[n + n0] == '|');
1088 result |= flags;
1089 continue;
1090 }
1091
1092 for (bit = 1; bit; bit <<= 1) {
1093 const char *name = bit_to_string(bit);
1094 size_t len;
1095
1096 if (!name) {
1097 continue;
1098 }
1099
1100 len = strlen(name);
1101 if (!strncmp(s + n, name, len) &&
1102 (s[n + len] == '|' || s[n + len] == end)) {
1103 if (!(bit & allowed)) {
1104 goto unknown;
1105 }
1106 result |= bit;
1107 n += len + (s[n + len] == '|');
1108 break;
1109 }
1110 }
1111
1112 if (!bit) {
1113 goto unknown;
1114 }
1115 }
1116
1117 *res_flags = result;
1118 if (res_mask) {
1119 *res_mask = UINT32_MAX;
1120 }
1121 if (res_string) {
1122 *res_string = NULL;
1123 }
1124 return n;
1125
1126 unknown:
1127 if (res_string) {
1128 *res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
1129 }
1130 return -EINVAL;
1131 }
1132
1133 void
1134 flow_format(struct ds *ds, const struct flow *flow)
1135 {
1136 struct match match;
1137 struct flow_wildcards *wc = &match.wc;
1138
1139 match_wc_init(&match, flow);
1140
1141 /* As this function is most often used for formatting a packet in a
1142 * packet-in message, skip formatting the packet context fields that are
1143 * all-zeroes to make the print-out easier on the eyes. This means that a
1144 * missing context field implies a zero value for that field. This is
1145 * similar to OpenFlow encoding of these fields, as the specification
1146 * states that all-zeroes context fields should not be encoded in the
1147 * packet-in messages. */
1148 if (!flow->in_port.ofp_port) {
1149 WC_UNMASK_FIELD(wc, in_port);
1150 }
1151 if (!flow->skb_priority) {
1152 WC_UNMASK_FIELD(wc, skb_priority);
1153 }
1154 if (!flow->pkt_mark) {
1155 WC_UNMASK_FIELD(wc, pkt_mark);
1156 }
1157 if (!flow->recirc_id) {
1158 WC_UNMASK_FIELD(wc, recirc_id);
1159 }
1160 if (!flow->dp_hash) {
1161 WC_UNMASK_FIELD(wc, dp_hash);
1162 }
1163 if (!flow->ct_state) {
1164 WC_UNMASK_FIELD(wc, ct_state);
1165 }
1166 if (!flow->ct_zone) {
1167 WC_UNMASK_FIELD(wc, ct_zone);
1168 }
1169 if (!flow->ct_mark) {
1170 WC_UNMASK_FIELD(wc, ct_mark);
1171 }
1172 if (ovs_u128_is_zero(&flow->ct_label)) {
1173 WC_UNMASK_FIELD(wc, ct_label);
1174 }
1175 for (int i = 0; i < FLOW_N_REGS; i++) {
1176 if (!flow->regs[i]) {
1177 WC_UNMASK_FIELD(wc, regs[i]);
1178 }
1179 }
1180 if (!flow->metadata) {
1181 WC_UNMASK_FIELD(wc, metadata);
1182 }
1183
1184 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
1185 }
1186
1187 void
1188 flow_print(FILE *stream, const struct flow *flow)
1189 {
1190 char *s = flow_to_string(flow);
1191 fputs(s, stream);
1192 free(s);
1193 }
1194 \f
1195 /* flow_wildcards functions. */
1196
1197 /* Initializes 'wc' as a set of wildcards that matches every packet. */
1198 void
1199 flow_wildcards_init_catchall(struct flow_wildcards *wc)
1200 {
1201 memset(&wc->masks, 0, sizeof wc->masks);
1202 }
1203
1204 /* Converts a flow into flow wildcards. It sets the wildcard masks based on
1205 * the packet headers extracted to 'flow'. It will not set the mask for fields
1206 * that do not make sense for the packet type. OpenFlow-only metadata is
1207 * wildcarded, but other metadata is unconditionally exact-matched. */
1208 void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
1209 const struct flow *flow)
1210 {
1211 memset(&wc->masks, 0x0, sizeof wc->masks);
1212
1213 /* Update this function whenever struct flow changes. */
1214 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35);
1215
1216 if (flow_tnl_dst_is_set(&flow->tunnel)) {
1217 if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
1218 WC_MASK_FIELD(wc, tunnel.tun_id);
1219 }
1220 WC_MASK_FIELD(wc, tunnel.ip_src);
1221 WC_MASK_FIELD(wc, tunnel.ip_dst);
1222 WC_MASK_FIELD(wc, tunnel.ipv6_src);
1223 WC_MASK_FIELD(wc, tunnel.ipv6_dst);
1224 WC_MASK_FIELD(wc, tunnel.flags);
1225 WC_MASK_FIELD(wc, tunnel.ip_tos);
1226 WC_MASK_FIELD(wc, tunnel.ip_ttl);
1227 WC_MASK_FIELD(wc, tunnel.tp_src);
1228 WC_MASK_FIELD(wc, tunnel.tp_dst);
1229 WC_MASK_FIELD(wc, tunnel.gbp_id);
1230 WC_MASK_FIELD(wc, tunnel.gbp_flags);
1231
1232 if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
1233 if (flow->tunnel.metadata.present.map) {
1234 wc->masks.tunnel.metadata.present.map =
1235 flow->tunnel.metadata.present.map;
1236 WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
1237 }
1238 } else {
1239 WC_MASK_FIELD(wc, tunnel.metadata.present.len);
1240 memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
1241 flow->tunnel.metadata.present.len);
1242 }
1243 } else if (flow->tunnel.tun_id) {
1244 WC_MASK_FIELD(wc, tunnel.tun_id);
1245 }
1246
1247 /* metadata, regs, and conj_id wildcarded. */
1248
1249 WC_MASK_FIELD(wc, skb_priority);
1250 WC_MASK_FIELD(wc, pkt_mark);
1251 WC_MASK_FIELD(wc, ct_state);
1252 WC_MASK_FIELD(wc, ct_zone);
1253 WC_MASK_FIELD(wc, ct_mark);
1254 WC_MASK_FIELD(wc, ct_label);
1255 WC_MASK_FIELD(wc, recirc_id);
1256 WC_MASK_FIELD(wc, dp_hash);
1257 WC_MASK_FIELD(wc, in_port);
1258
1259 /* actset_output wildcarded. */
1260
1261 WC_MASK_FIELD(wc, dl_dst);
1262 WC_MASK_FIELD(wc, dl_src);
1263 WC_MASK_FIELD(wc, dl_type);
1264 WC_MASK_FIELD(wc, vlan_tci);
1265
1266 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1267 WC_MASK_FIELD(wc, nw_src);
1268 WC_MASK_FIELD(wc, nw_dst);
1269 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1270 WC_MASK_FIELD(wc, ipv6_src);
1271 WC_MASK_FIELD(wc, ipv6_dst);
1272 WC_MASK_FIELD(wc, ipv6_label);
1273 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1274 flow->dl_type == htons(ETH_TYPE_RARP)) {
1275 WC_MASK_FIELD(wc, nw_src);
1276 WC_MASK_FIELD(wc, nw_dst);
1277 WC_MASK_FIELD(wc, nw_proto);
1278 WC_MASK_FIELD(wc, arp_sha);
1279 WC_MASK_FIELD(wc, arp_tha);
1280 return;
1281 } else if (eth_type_mpls(flow->dl_type)) {
1282 for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
1283 WC_MASK_FIELD(wc, mpls_lse[i]);
1284 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1285 break;
1286 }
1287 }
1288 return;
1289 } else {
1290 return; /* Unknown ethertype. */
1291 }
1292
1293 /* IPv4 or IPv6. */
1294 WC_MASK_FIELD(wc, nw_frag);
1295 WC_MASK_FIELD(wc, nw_tos);
1296 WC_MASK_FIELD(wc, nw_ttl);
1297 WC_MASK_FIELD(wc, nw_proto);
1298
1299 /* No transport layer header in later fragments. */
1300 if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
1301 (flow->nw_proto == IPPROTO_ICMP ||
1302 flow->nw_proto == IPPROTO_ICMPV6 ||
1303 flow->nw_proto == IPPROTO_TCP ||
1304 flow->nw_proto == IPPROTO_UDP ||
1305 flow->nw_proto == IPPROTO_SCTP ||
1306 flow->nw_proto == IPPROTO_IGMP)) {
1307 WC_MASK_FIELD(wc, tp_src);
1308 WC_MASK_FIELD(wc, tp_dst);
1309
1310 if (flow->nw_proto == IPPROTO_TCP) {
1311 WC_MASK_FIELD(wc, tcp_flags);
1312 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
1313 WC_MASK_FIELD(wc, arp_sha);
1314 WC_MASK_FIELD(wc, arp_tha);
1315 WC_MASK_FIELD(wc, nd_target);
1316 } else if (flow->nw_proto == IPPROTO_IGMP) {
1317 WC_MASK_FIELD(wc, igmp_group_ip4);
1318 }
1319 }
1320 }
1321
1322 /* Return a map of possible fields for a packet of the same type as 'flow'.
1323 * Including extra bits in the returned mask is not wrong, it is just less
1324 * optimal.
1325 *
1326 * This is a less precise version of flow_wildcards_init_for_packet() above. */
1327 void
1328 flow_wc_map(const struct flow *flow, struct flowmap *map)
1329 {
1330 /* Update this function whenever struct flow changes. */
1331 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35);
1332
1333 flowmap_init(map);
1334
1335 if (flow_tnl_dst_is_set(&flow->tunnel)) {
1336 FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
1337 if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
1338 if (flow->tunnel.metadata.present.map) {
1339 FLOWMAP_SET(map, tunnel.metadata);
1340 }
1341 } else {
1342 FLOWMAP_SET(map, tunnel.metadata.present.len);
1343 FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
1344 flow->tunnel.metadata.present.len);
1345 }
1346 }
1347
1348 /* Metadata fields that can appear on packet input. */
1349 FLOWMAP_SET(map, skb_priority);
1350 FLOWMAP_SET(map, pkt_mark);
1351 FLOWMAP_SET(map, recirc_id);
1352 FLOWMAP_SET(map, dp_hash);
1353 FLOWMAP_SET(map, in_port);
1354 FLOWMAP_SET(map, dl_dst);
1355 FLOWMAP_SET(map, dl_src);
1356 FLOWMAP_SET(map, dl_type);
1357 FLOWMAP_SET(map, vlan_tci);
1358 FLOWMAP_SET(map, ct_state);
1359 FLOWMAP_SET(map, ct_zone);
1360 FLOWMAP_SET(map, ct_mark);
1361 FLOWMAP_SET(map, ct_label);
1362
1363 /* Ethertype-dependent fields. */
1364 if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
1365 FLOWMAP_SET(map, nw_src);
1366 FLOWMAP_SET(map, nw_dst);
1367 FLOWMAP_SET(map, nw_proto);
1368 FLOWMAP_SET(map, nw_frag);
1369 FLOWMAP_SET(map, nw_tos);
1370 FLOWMAP_SET(map, nw_ttl);
1371
1372 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
1373 FLOWMAP_SET(map, igmp_group_ip4);
1374 } else {
1375 FLOWMAP_SET(map, tcp_flags);
1376 FLOWMAP_SET(map, tp_src);
1377 FLOWMAP_SET(map, tp_dst);
1378 }
1379 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1380 FLOWMAP_SET(map, ipv6_src);
1381 FLOWMAP_SET(map, ipv6_dst);
1382 FLOWMAP_SET(map, ipv6_label);
1383 FLOWMAP_SET(map, nw_proto);
1384 FLOWMAP_SET(map, nw_frag);
1385 FLOWMAP_SET(map, nw_tos);
1386 FLOWMAP_SET(map, nw_ttl);
1387
1388 if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
1389 FLOWMAP_SET(map, nd_target);
1390 FLOWMAP_SET(map, arp_sha);
1391 FLOWMAP_SET(map, arp_tha);
1392 } else {
1393 FLOWMAP_SET(map, tcp_flags);
1394 FLOWMAP_SET(map, tp_src);
1395 FLOWMAP_SET(map, tp_dst);
1396 }
1397 } else if (eth_type_mpls(flow->dl_type)) {
1398 FLOWMAP_SET(map, mpls_lse);
1399 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1400 flow->dl_type == htons(ETH_TYPE_RARP)) {
1401 FLOWMAP_SET(map, nw_src);
1402 FLOWMAP_SET(map, nw_dst);
1403 FLOWMAP_SET(map, nw_proto);
1404 FLOWMAP_SET(map, arp_sha);
1405 FLOWMAP_SET(map, arp_tha);
1406 }
1407 }
1408
1409 /* Clear the metadata and register wildcard masks. They are not packet
1410 * header fields. */
1411 void
1412 flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
1413 {
1414 /* Update this function whenever struct flow changes. */
1415 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35);
1416
1417 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
1418 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
1419 wc->masks.actset_output = 0;
1420 wc->masks.conj_id = 0;
1421 }
1422
1423 /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
1424 * fields. */
1425 bool
1426 flow_wildcards_is_catchall(const struct flow_wildcards *wc)
1427 {
1428 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1429 size_t i;
1430
1431 for (i = 0; i < FLOW_U64S; i++) {
1432 if (wc_u64[i]) {
1433 return false;
1434 }
1435 }
1436 return true;
1437 }
1438
1439 /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
1440 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
1441 * in 'src1' or 'src2' or both. */
1442 void
1443 flow_wildcards_and(struct flow_wildcards *dst,
1444 const struct flow_wildcards *src1,
1445 const struct flow_wildcards *src2)
1446 {
1447 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1448 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1449 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
1450 size_t i;
1451
1452 for (i = 0; i < FLOW_U64S; i++) {
1453 dst_u64[i] = src1_u64[i] & src2_u64[i];
1454 }
1455 }
1456
1457 /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
1458 * is, a bit or a field is wildcarded in 'dst' if it is neither
1459 * wildcarded in 'src1' nor 'src2'. */
1460 void
1461 flow_wildcards_or(struct flow_wildcards *dst,
1462 const struct flow_wildcards *src1,
1463 const struct flow_wildcards *src2)
1464 {
1465 uint64_t *dst_u64 = (uint64_t *) &dst->masks;
1466 const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
1467 const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
1468 size_t i;
1469
1470 for (i = 0; i < FLOW_U64S; i++) {
1471 dst_u64[i] = src1_u64[i] | src2_u64[i];
1472 }
1473 }
1474
1475 /* Returns a hash of the wildcards in 'wc'. */
1476 uint32_t
1477 flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
1478 {
1479 return flow_hash(&wc->masks, basis);
1480 }
1481
1482 /* Returns true if 'a' and 'b' represent the same wildcards, false if they are
1483 * different. */
1484 bool
1485 flow_wildcards_equal(const struct flow_wildcards *a,
1486 const struct flow_wildcards *b)
1487 {
1488 return flow_equal(&a->masks, &b->masks);
1489 }
1490
1491 /* Returns true if at least one bit or field is wildcarded in 'a' but not in
1492 * 'b', false otherwise. */
1493 bool
1494 flow_wildcards_has_extra(const struct flow_wildcards *a,
1495 const struct flow_wildcards *b)
1496 {
1497 const uint64_t *a_u64 = (const uint64_t *) &a->masks;
1498 const uint64_t *b_u64 = (const uint64_t *) &b->masks;
1499 size_t i;
1500
1501 for (i = 0; i < FLOW_U64S; i++) {
1502 if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
1503 return true;
1504 }
1505 }
1506 return false;
1507 }
1508
1509 /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
1510 * in 'wc' do not need to be equal in 'a' and 'b'. */
1511 bool
1512 flow_equal_except(const struct flow *a, const struct flow *b,
1513 const struct flow_wildcards *wc)
1514 {
1515 const uint64_t *a_u64 = (const uint64_t *) a;
1516 const uint64_t *b_u64 = (const uint64_t *) b;
1517 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1518 size_t i;
1519
1520 for (i = 0; i < FLOW_U64S; i++) {
1521 if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
1522 return false;
1523 }
1524 }
1525 return true;
1526 }
1527
1528 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1529 * (A 0-bit indicates a wildcard bit.) */
1530 void
1531 flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
1532 {
1533 wc->masks.regs[idx] = mask;
1534 }
1535
1536 /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
1537 * (A 0-bit indicates a wildcard bit.) */
1538 void
1539 flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
1540 {
1541 flow_set_xreg(&wc->masks, idx, mask);
1542 }
1543
1544 /* Calculates the 5-tuple hash from the given miniflow.
1545 * This returns the same value as flow_hash_5tuple for the corresponding
1546 * flow. */
1547 uint32_t
1548 miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
1549 {
1550 uint32_t hash = basis;
1551
1552 if (flow) {
1553 ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
1554
1555 hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto));
1556
1557 /* Separate loops for better optimization. */
1558 if (dl_type == htons(ETH_TYPE_IPV6)) {
1559 struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
1560 uint64_t value;
1561
1562 FLOWMAP_SET(&map, ipv6_src);
1563 FLOWMAP_SET(&map, ipv6_dst);
1564
1565 MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
1566 hash = hash_add64(hash, value);
1567 }
1568 } else {
1569 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
1570 hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
1571 }
1572 /* Add both ports at once. */
1573 hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
1574 hash = hash_finish(hash, 42); /* Arbitrary number. */
1575 }
1576 return hash;
1577 }
1578
1579 ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
1580 ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);
1581
1582 /* Calculates the 5-tuple hash from the given flow. */
1583 uint32_t
1584 flow_hash_5tuple(const struct flow *flow, uint32_t basis)
1585 {
1586 uint32_t hash = basis;
1587
1588 if (flow) {
1589 hash = hash_add(hash, flow->nw_proto);
1590
1591 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1592 const uint64_t *flow_u64 = (const uint64_t *)flow;
1593 int ofs = offsetof(struct flow, ipv6_src) / 8;
1594 int end = ofs + 2 * sizeof flow->ipv6_src / 8;
1595
1596 for (;ofs < end; ofs++) {
1597 hash = hash_add64(hash, flow_u64[ofs]);
1598 }
1599 } else {
1600 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
1601 hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
1602 }
1603 /* Add both ports at once. */
1604 hash = hash_add(hash,
1605 ((const uint32_t *)flow)[offsetof(struct flow, tp_src)
1606 / sizeof(uint32_t)]);
1607 hash = hash_finish(hash, 42); /* Arbitrary number. */
1608 }
1609 return hash;
1610 }
1611
1612 /* Hashes 'flow' based on its L2 through L4 protocol information. */
1613 uint32_t
1614 flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
1615 {
1616 struct {
1617 union {
1618 ovs_be32 ipv4_addr;
1619 struct in6_addr ipv6_addr;
1620 };
1621 ovs_be16 eth_type;
1622 ovs_be16 vlan_tci;
1623 ovs_be16 tp_port;
1624 struct eth_addr eth_addr;
1625 uint8_t ip_proto;
1626 } fields;
1627
1628 int i;
1629
1630 memset(&fields, 0, sizeof fields);
1631 for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
1632 fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
1633 }
1634 fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
1635 fields.eth_type = flow->dl_type;
1636
1637 /* UDP source and destination port are not taken into account because they
1638 * will not necessarily be symmetric in a bidirectional flow. */
1639 if (fields.eth_type == htons(ETH_TYPE_IP)) {
1640 fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
1641 fields.ip_proto = flow->nw_proto;
1642 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
1643 fields.tp_port = flow->tp_src ^ flow->tp_dst;
1644 }
1645 } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
1646 const uint8_t *a = &flow->ipv6_src.s6_addr[0];
1647 const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
1648 uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
1649
1650 for (i=0; i<16; i++) {
1651 ipv6_addr[i] = a[i] ^ b[i];
1652 }
1653 fields.ip_proto = flow->nw_proto;
1654 if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
1655 fields.tp_port = flow->tp_src ^ flow->tp_dst;
1656 }
1657 }
1658 return jhash_bytes(&fields, sizeof fields, basis);
1659 }
1660
1661 /* Hashes 'flow' based on its L3 through L4 protocol information */
1662 uint32_t
1663 flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
1664 bool inc_udp_ports)
1665 {
1666 uint32_t hash = basis;
1667
1668 /* UDP source and destination port are also taken into account. */
1669 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1670 hash = hash_add(hash,
1671 (OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
1672 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1673 /* IPv6 addresses are 64-bit aligned inside struct flow. */
1674 const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
1675 const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);
1676
1677 for (int i = 0; i < 4; i++) {
1678 hash = hash_add64(hash, a[i] ^ b[i]);
1679 }
1680 } else {
1681 /* Cannot hash non-IP flows */
1682 return 0;
1683 }
1684
1685 hash = hash_add(hash, flow->nw_proto);
1686 if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
1687 (inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) {
1688 hash = hash_add(hash,
1689 (OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
1690 }
1691
1692 return hash_finish(hash, basis);
1693 }
1694
1695 /* Initialize a flow with random fields that matter for nx_hash_fields. */
1696 void
1697 flow_random_hash_fields(struct flow *flow)
1698 {
1699 uint16_t rnd = random_uint16();
1700
1701 /* Initialize to all zeros. */
1702 memset(flow, 0, sizeof *flow);
1703
1704 eth_addr_random(&flow->dl_src);
1705 eth_addr_random(&flow->dl_dst);
1706
1707 flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
1708
1709 /* Make most of the random flows IPv4, some IPv6, and rest random. */
1710 flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
1711 rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
1712
1713 if (dl_type_is_ip_any(flow->dl_type)) {
1714 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1715 flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
1716 flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
1717 } else {
1718 random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
1719 random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
1720 }
1721 /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
1722 rnd = random_uint16();
1723 flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
1724 rnd < 0xc000 ? IPPROTO_UDP :
1725 rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
1726 if (flow->nw_proto == IPPROTO_TCP ||
1727 flow->nw_proto == IPPROTO_UDP ||
1728 flow->nw_proto == IPPROTO_SCTP) {
1729 flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
1730 flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
1731 }
1732 }
1733 }
1734
1735 /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
1736 void
1737 flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
1738 enum nx_hash_fields fields)
1739 {
1740 switch (fields) {
1741 case NX_HASH_FIELDS_ETH_SRC:
1742 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1743 break;
1744
1745 case NX_HASH_FIELDS_SYMMETRIC_L4:
1746 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1747 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1748 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1749 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1750 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1751 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1752 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1753 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1754 }
1755 if (is_ip_any(flow)) {
1756 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1757 flow_unwildcard_tp_ports(flow, wc);
1758 }
1759 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1760 break;
1761
1762 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
1763 if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) {
1764 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
1765 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
1766 }
1767 /* no break */
1768 case NX_HASH_FIELDS_SYMMETRIC_L3L4:
1769 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1770 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1771 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1772 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1773 memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
1774 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
1775 } else {
1776 break; /* non-IP flow */
1777 }
1778
1779 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1780 if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) {
1781 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
1782 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
1783 }
1784 break;
1785
1786 default:
1787 OVS_NOT_REACHED();
1788 }
1789 }
1790
1791 /* Hashes the portions of 'flow' designated by 'fields'. */
1792 uint32_t
1793 flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
1794 uint16_t basis)
1795 {
1796 switch (fields) {
1797
1798 case NX_HASH_FIELDS_ETH_SRC:
1799 return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);
1800
1801 case NX_HASH_FIELDS_SYMMETRIC_L4:
1802 return flow_hash_symmetric_l4(flow, basis);
1803
1804 case NX_HASH_FIELDS_SYMMETRIC_L3L4:
1805 return flow_hash_symmetric_l3l4(flow, basis, false);
1806
1807 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
1808 return flow_hash_symmetric_l3l4(flow, basis, true);
1809
1810 }
1811
1812 OVS_NOT_REACHED();
1813 }
1814
1815 /* Returns a string representation of 'fields'. */
1816 const char *
1817 flow_hash_fields_to_str(enum nx_hash_fields fields)
1818 {
1819 switch (fields) {
1820 case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
1821 case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
1822 case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
1823 case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
1824 default: return "<unknown>";
1825 }
1826 }
1827
1828 /* Returns true if the value of 'fields' is supported. Otherwise false. */
1829 bool
1830 flow_hash_fields_valid(enum nx_hash_fields fields)
1831 {
1832 return fields == NX_HASH_FIELDS_ETH_SRC
1833 || fields == NX_HASH_FIELDS_SYMMETRIC_L4
1834 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
1835 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP;
1836 }
1837
1838 /* Returns a hash value for the bits of 'flow' that are active based on
1839 * 'wc', given 'basis'. */
1840 uint32_t
1841 flow_hash_in_wildcards(const struct flow *flow,
1842 const struct flow_wildcards *wc, uint32_t basis)
1843 {
1844 const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
1845 const uint64_t *flow_u64 = (const uint64_t *) flow;
1846 uint32_t hash;
1847 size_t i;
1848
1849 hash = basis;
1850 for (i = 0; i < FLOW_U64S; i++) {
1851 hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
1852 }
1853 return hash_finish(hash, 8 * FLOW_U64S);
1854 }
1855
1856 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1857 * OpenFlow 1.0 "dl_vlan" value:
1858 *
1859 * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
1860 * that VLAN. Any existing PCP match is unchanged (it becomes 0 if
1861 * 'flow' previously matched packets without a VLAN header).
1862 *
1863 * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
1864 * without a VLAN tag.
1865 *
1866 * - Other values of 'vid' should not be used. */
1867 void
1868 flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
1869 {
1870 if (vid == htons(OFP10_VLAN_NONE)) {
1871 flow->vlan_tci = htons(0);
1872 } else {
1873 vid &= htons(VLAN_VID_MASK);
1874 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
1875 flow->vlan_tci |= htons(VLAN_CFI) | vid;
1876 }
1877 }
1878
1879 /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
1880 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
1881 * plus CFI). */
1882 void
1883 flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
1884 {
1885 ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
1886 flow->vlan_tci &= ~mask;
1887 flow->vlan_tci |= vid & mask;
1888 }
1889
1890 /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
1891 * range 0...7.
1892 *
1893 * This function has no effect on the VLAN ID that 'flow' matches.
1894 *
1895 * After calling this function, 'flow' will not match packets without a VLAN
1896 * header. */
1897 void
1898 flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
1899 {
1900 pcp &= 0x07;
1901 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
1902 flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
1903 }
1904
1905 /* Returns the number of MPLS LSEs present in 'flow'
1906 *
1907 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
1908 * Otherwise traverses 'flow''s MPLS label stack stopping at the
1909 * first entry that has the BoS bit set. If no such entry exists then
1910 * the maximum number of LSEs that can be stored in 'flow' is returned.
1911 */
1912 int
1913 flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
1914 {
1915 /* dl_type is always masked. */
1916 if (eth_type_mpls(flow->dl_type)) {
1917 int i;
1918 int cnt;
1919
1920 cnt = 0;
1921 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
1922 if (wc) {
1923 wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
1924 }
1925 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
1926 return i + 1;
1927 }
1928 if (flow->mpls_lse[i]) {
1929 cnt++;
1930 }
1931 }
1932 return cnt;
1933 } else {
1934 return 0;
1935 }
1936 }
1937
1938 /* Returns the number consecutive of MPLS LSEs, starting at the
1939 * innermost LSE, that are common in 'a' and 'b'.
1940 *
1941 * 'an' must be flow_count_mpls_labels(a).
1942 * 'bn' must be flow_count_mpls_labels(b).
1943 */
1944 int
1945 flow_count_common_mpls_labels(const struct flow *a, int an,
1946 const struct flow *b, int bn,
1947 struct flow_wildcards *wc)
1948 {
1949 int min_n = MIN(an, bn);
1950 if (min_n == 0) {
1951 return 0;
1952 } else {
1953 int common_n = 0;
1954 int a_last = an - 1;
1955 int b_last = bn - 1;
1956 int i;
1957
1958 for (i = 0; i < min_n; i++) {
1959 if (wc) {
1960 wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
1961 wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
1962 }
1963 if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
1964 break;
1965 } else {
1966 common_n++;
1967 }
1968 }
1969
1970 return common_n;
1971 }
1972 }
1973
1974 /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
1975 * to 'mpls_eth_type', which must be an MPLS Ethertype.
1976 *
1977 * If the new label is the first MPLS label in 'flow', it is generated as;
1978 *
1979 * - label: 2, if 'flow' is IPv6, otherwise 0.
1980 *
1981 * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
1982 *
1983 * - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
1984 *
1985 * - BoS: 1.
1986 *
1987 * If the new label is the second or later label MPLS label in 'flow', it is
1988 * generated as;
1989 *
1990 * - label: Copied from outer label.
1991 *
1992 * - TTL: Copied from outer label.
1993 *
1994 * - TC: Copied from outer label.
1995 *
1996 * - BoS: 0.
1997 *
1998 * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
1999 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
2000 */
2001 void
2002 flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
2003 struct flow_wildcards *wc)
2004 {
2005 ovs_assert(eth_type_mpls(mpls_eth_type));
2006 ovs_assert(n < FLOW_MAX_MPLS_LABELS);
2007
2008 if (n) {
2009 int i;
2010
2011 if (wc) {
2012 memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
2013 }
2014 for (i = n; i >= 1; i--) {
2015 flow->mpls_lse[i] = flow->mpls_lse[i - 1];
2016 }
2017 flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
2018 } else {
2019 int label = 0; /* IPv4 Explicit Null. */
2020 int tc = 0;
2021 int ttl = 64;
2022
2023 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2024 label = 2;
2025 }
2026
2027 if (is_ip_any(flow)) {
2028 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
2029 if (wc) {
2030 wc->masks.nw_tos |= IP_DSCP_MASK;
2031 wc->masks.nw_ttl = 0xff;
2032 }
2033
2034 if (flow->nw_ttl) {
2035 ttl = flow->nw_ttl;
2036 }
2037 }
2038
2039 flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
2040
2041 /* Clear all L3 and L4 fields and dp_hash. */
2042 BUILD_ASSERT(FLOW_WC_SEQ == 35);
2043 memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
2044 sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
2045 flow->dp_hash = 0;
2046 }
2047 flow->dl_type = mpls_eth_type;
2048 }
2049
2050 /* Tries to remove the outermost MPLS label from 'flow'. Returns true if
2051 * successful, false otherwise. On success, sets 'flow''s Ethernet type to
2052 * 'eth_type'.
2053 *
2054 * 'n' must be flow_count_mpls_labels(flow). */
2055 bool
2056 flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
2057 struct flow_wildcards *wc)
2058 {
2059 int i;
2060
2061 if (n == 0) {
2062 /* Nothing to pop. */
2063 return false;
2064 } else if (n == FLOW_MAX_MPLS_LABELS) {
2065 if (wc) {
2066 wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
2067 }
2068 if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
2069 /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
2070 return false;
2071 }
2072 }
2073
2074 if (wc) {
2075 memset(&wc->masks.mpls_lse[1], 0xff,
2076 sizeof *wc->masks.mpls_lse * (n - 1));
2077 }
2078 for (i = 1; i < n; i++) {
2079 flow->mpls_lse[i - 1] = flow->mpls_lse[i];
2080 }
2081 flow->mpls_lse[n - 1] = 0;
2082 flow->dl_type = eth_type;
2083 return true;
2084 }
2085
2086 /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
2087 * as an OpenFlow 1.1 "mpls_label" value. */
2088 void
2089 flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
2090 {
2091 set_mpls_lse_label(&flow->mpls_lse[idx], label);
2092 }
2093
2094 /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
2095 * range 0...255. */
2096 void
2097 flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
2098 {
2099 set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
2100 }
2101
2102 /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
2103 * range 0...7. */
2104 void
2105 flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
2106 {
2107 set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
2108 }
2109
2110 /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
2111 void
2112 flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
2113 {
2114 set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
2115 }
2116
2117 /* Sets the entire MPLS LSE. */
2118 void
2119 flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
2120 {
2121 flow->mpls_lse[idx] = lse;
2122 }
2123
2124 static size_t
2125 flow_compose_l4(struct dp_packet *p, const struct flow *flow)
2126 {
2127 size_t l4_len = 0;
2128
2129 if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
2130 || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
2131 if (flow->nw_proto == IPPROTO_TCP) {
2132 struct tcp_header *tcp;
2133
2134 l4_len = sizeof *tcp;
2135 tcp = dp_packet_put_zeros(p, l4_len);
2136 tcp->tcp_src = flow->tp_src;
2137 tcp->tcp_dst = flow->tp_dst;
2138 tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
2139 } else if (flow->nw_proto == IPPROTO_UDP) {
2140 struct udp_header *udp;
2141
2142 l4_len = sizeof *udp;
2143 udp = dp_packet_put_zeros(p, l4_len);
2144 udp->udp_src = flow->tp_src;
2145 udp->udp_dst = flow->tp_dst;
2146 } else if (flow->nw_proto == IPPROTO_SCTP) {
2147 struct sctp_header *sctp;
2148
2149 l4_len = sizeof *sctp;
2150 sctp = dp_packet_put_zeros(p, l4_len);
2151 sctp->sctp_src = flow->tp_src;
2152 sctp->sctp_dst = flow->tp_dst;
2153 } else if (flow->nw_proto == IPPROTO_ICMP) {
2154 struct icmp_header *icmp;
2155
2156 l4_len = sizeof *icmp;
2157 icmp = dp_packet_put_zeros(p, l4_len);
2158 icmp->icmp_type = ntohs(flow->tp_src);
2159 icmp->icmp_code = ntohs(flow->tp_dst);
2160 icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
2161 } else if (flow->nw_proto == IPPROTO_IGMP) {
2162 struct igmp_header *igmp;
2163
2164 l4_len = sizeof *igmp;
2165 igmp = dp_packet_put_zeros(p, l4_len);
2166 igmp->igmp_type = ntohs(flow->tp_src);
2167 igmp->igmp_code = ntohs(flow->tp_dst);
2168 put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
2169 igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
2170 } else if (flow->nw_proto == IPPROTO_ICMPV6) {
2171 struct icmp6_hdr *icmp;
2172
2173 l4_len = sizeof *icmp;
2174 icmp = dp_packet_put_zeros(p, l4_len);
2175 icmp->icmp6_type = ntohs(flow->tp_src);
2176 icmp->icmp6_code = ntohs(flow->tp_dst);
2177
2178 if (icmp->icmp6_code == 0 &&
2179 (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
2180 icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
2181 struct in6_addr *nd_target;
2182 struct ovs_nd_opt *nd_opt;
2183
2184 l4_len += sizeof *nd_target;
2185 nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
2186 *nd_target = flow->nd_target;
2187
2188 if (!eth_addr_is_zero(flow->arp_sha)) {
2189 l4_len += 8;
2190 nd_opt = dp_packet_put_zeros(p, 8);
2191 nd_opt->nd_opt_len = 1;
2192 nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
2193 nd_opt->nd_opt_mac = flow->arp_sha;
2194 }
2195 if (!eth_addr_is_zero(flow->arp_tha)) {
2196 l4_len += 8;
2197 nd_opt = dp_packet_put_zeros(p, 8);
2198 nd_opt->nd_opt_len = 1;
2199 nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
2200 nd_opt->nd_opt_mac = flow->arp_tha;
2201 }
2202 }
2203 icmp->icmp6_cksum = (OVS_FORCE uint16_t)
2204 csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp);
2205 }
2206 }
2207 return l4_len;
2208 }
2209
2210 /* Puts into 'b' a packet that flow_extract() would parse as having the given
2211 * 'flow'.
2212 *
2213 * (This is useful only for testing, obviously, and the packet isn't really
2214 * valid. It hasn't got some checksums filled in, for one, and lots of fields
2215 * are just zeroed.) */
2216 void
2217 flow_compose(struct dp_packet *p, const struct flow *flow)
2218 {
2219 size_t l4_len;
2220
2221 /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
2222 eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
2223 if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
2224 struct eth_header *eth = dp_packet_l2(p);
2225 eth->eth_type = htons(dp_packet_size(p));
2226 return;
2227 }
2228
2229 if (flow->vlan_tci & htons(VLAN_CFI)) {
2230 eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci);
2231 }
2232
2233 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2234 struct ip_header *ip;
2235
2236 ip = dp_packet_put_zeros(p, sizeof *ip);
2237 ip->ip_ihl_ver = IP_IHL_VER(5, 4);
2238 ip->ip_tos = flow->nw_tos;
2239 ip->ip_ttl = flow->nw_ttl;
2240 ip->ip_proto = flow->nw_proto;
2241 put_16aligned_be32(&ip->ip_src, flow->nw_src);
2242 put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
2243
2244 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
2245 ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
2246 if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
2247 ip->ip_frag_off |= htons(100);
2248 }
2249 }
2250
2251 dp_packet_set_l4(p, dp_packet_tail(p));
2252
2253 l4_len = flow_compose_l4(p, flow);
2254
2255 ip = dp_packet_l3(p);
2256 ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
2257 ip->ip_csum = csum(ip, sizeof *ip);
2258 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2259 struct ovs_16aligned_ip6_hdr *nh;
2260
2261 nh = dp_packet_put_zeros(p, sizeof *nh);
2262 put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
2263 htonl(flow->nw_tos << 20) | flow->ipv6_label);
2264 nh->ip6_hlim = flow->nw_ttl;
2265 nh->ip6_nxt = flow->nw_proto;
2266
2267 memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
2268 memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
2269
2270 dp_packet_set_l4(p, dp_packet_tail(p));
2271
2272 l4_len = flow_compose_l4(p, flow);
2273
2274 nh = dp_packet_l3(p);
2275 nh->ip6_plen = htons(l4_len);
2276 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
2277 flow->dl_type == htons(ETH_TYPE_RARP)) {
2278 struct arp_eth_header *arp;
2279
2280 arp = dp_packet_put_zeros(p, sizeof *arp);
2281 dp_packet_set_l3(p, arp);
2282 arp->ar_hrd = htons(1);
2283 arp->ar_pro = htons(ETH_TYPE_IP);
2284 arp->ar_hln = ETH_ADDR_LEN;
2285 arp->ar_pln = 4;
2286 arp->ar_op = htons(flow->nw_proto);
2287
2288 if (flow->nw_proto == ARP_OP_REQUEST ||
2289 flow->nw_proto == ARP_OP_REPLY) {
2290 put_16aligned_be32(&arp->ar_spa, flow->nw_src);
2291 put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
2292 arp->ar_sha = flow->arp_sha;
2293 arp->ar_tha = flow->arp_tha;
2294 }
2295 }
2296
2297 if (eth_type_mpls(flow->dl_type)) {
2298 int n;
2299
2300 p->l2_5_ofs = p->l3_ofs;
2301 for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
2302 if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
2303 break;
2304 }
2305 }
2306 while (n > 0) {
2307 push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
2308 }
2309 }
2310 }
2311 \f
2312 /* Compressed flow. */
2313
2314 /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
2315 * the caller. The caller must have already computed 'dst->map' properly to
2316 * indicate the significant uint64_t elements of 'src'.
2317 *
2318 * Normally the significant elements are the ones that are non-zero. However,
2319 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
2320 * so that the flow and mask always have the same maps. */
2321 void
2322 miniflow_init(struct miniflow *dst, const struct flow *src)
2323 {
2324 uint64_t *dst_u64 = miniflow_values(dst);
2325 size_t idx;
2326
2327 FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
2328 *dst_u64++ = flow_u64_value(src, idx);
2329 }
2330 }
2331
2332 /* Initialize the maps of 'flow' from 'src'. */
2333 void
2334 miniflow_map_init(struct miniflow *flow, const struct flow *src)
2335 {
2336 /* Initialize map, counting the number of nonzero elements. */
2337 flowmap_init(&flow->map);
2338 for (size_t i = 0; i < FLOW_U64S; i++) {
2339 if (flow_u64_value(src, i)) {
2340 flowmap_set(&flow->map, i, 1);
2341 }
2342 }
2343 }
2344
2345 /* Allocates 'n' count of miniflows, consecutive in memory, initializing the
2346 * map of each from 'src'.
2347 * Returns the size of the miniflow data. */
2348 size_t
2349 miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
2350 {
2351 size_t n_values = miniflow_n_values(src);
2352 size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
2353 struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
2354 size_t i;
2355
2356 COVERAGE_INC(miniflow_malloc);
2357
2358 for (i = 0; i < n; i++) {
2359 *dst = *src; /* Copy maps. */
2360 dsts[i] = dst;
2361 dst += 1; /* Just past the maps. */
2362 dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
2363 }
2364 return data_size;
2365 }
2366
2367 /* Returns a miniflow copy of 'src'. The caller must eventually free() the
2368 * returned miniflow. */
2369 struct miniflow *
2370 miniflow_create(const struct flow *src)
2371 {
2372 struct miniflow tmp;
2373 struct miniflow *dst;
2374
2375 miniflow_map_init(&tmp, src);
2376
2377 miniflow_alloc(&dst, 1, &tmp);
2378 miniflow_init(dst, src);
2379 return dst;
2380 }
2381
2382 /* Initializes 'dst' as a copy of 'src'. The caller must have allocated
2383 * 'dst' to have inline space for 'n_values' data in 'src'. */
2384 void
2385 miniflow_clone(struct miniflow *dst, const struct miniflow *src,
2386 size_t n_values)
2387 {
2388 *dst = *src; /* Copy maps. */
2389 memcpy(miniflow_values(dst), miniflow_get_values(src),
2390 MINIFLOW_VALUES_SIZE(n_values));
2391 }
2392
2393 /* Initializes 'dst' as a copy of 'src'. */
2394 void
2395 miniflow_expand(const struct miniflow *src, struct flow *dst)
2396 {
2397 memset(dst, 0, sizeof *dst);
2398 flow_union_with_miniflow(dst, src);
2399 }
2400
2401 /* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
2402 bool
2403 miniflow_equal(const struct miniflow *a, const struct miniflow *b)
2404 {
2405 const uint64_t *ap = miniflow_get_values(a);
2406 const uint64_t *bp = miniflow_get_values(b);
2407
2408 /* This is mostly called after a matching hash, so it is highly likely that
2409 * the maps are equal as well. */
2410 if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
2411 return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
2412 } else {
2413 size_t idx;
2414
2415 FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
2416 if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
2417 != (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
2418 return false;
2419 }
2420 }
2421 }
2422
2423 return true;
2424 }
2425
2426 /* Returns false if 'a' and 'b' differ at the places where there are 1-bits
2427 * in 'mask', true otherwise. */
2428 bool
2429 miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
2430 const struct minimask *mask)
2431 {
2432 const uint64_t *p = miniflow_get_values(&mask->masks);
2433 size_t idx;
2434
2435 FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2436 if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
2437 return false;
2438 }
2439 }
2440
2441 return true;
2442 }
2443
2444 /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
2445 * in 'mask', false if they differ. */
2446 bool
2447 miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
2448 const struct minimask *mask)
2449 {
2450 const uint64_t *p = miniflow_get_values(&mask->masks);
2451 size_t idx;
2452
2453 FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
2454 if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
2455 return false;
2456 }
2457 }
2458
2459 return true;
2460 }
2461
2462 \f
2463 void
2464 minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
2465 {
2466 miniflow_init(&mask->masks, &wc->masks);
2467 }
2468
2469 /* Returns a minimask copy of 'wc'. The caller must eventually free the
2470 * returned minimask with free(). */
2471 struct minimask *
2472 minimask_create(const struct flow_wildcards *wc)
2473 {
2474 return (struct minimask *)miniflow_create(&wc->masks);
2475 }
2476
2477 /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
2478 *
2479 * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
2480 * must follow '*dst_' in memory, for use by 'dst_'. The caller must *not*
2481 * free 'dst_' free(). */
2482 void
2483 minimask_combine(struct minimask *dst_,
2484 const struct minimask *a_, const struct minimask *b_,
2485 uint64_t storage[FLOW_U64S])
2486 {
2487 struct miniflow *dst = &dst_->masks;
2488 uint64_t *dst_values = storage;
2489 const struct miniflow *a = &a_->masks;
2490 const struct miniflow *b = &b_->masks;
2491 size_t idx;
2492
2493 flowmap_init(&dst->map);
2494
2495 FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
2496 /* Both 'a' and 'b' have non-zero data at 'idx'. */
2497 uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);
2498
2499 if (mask) {
2500 flowmap_set(&dst->map, idx, 1);
2501 *dst_values++ = mask;
2502 }
2503 }
2504 }
2505
2506 /* Initializes 'wc' as a copy of 'mask'. */
2507 void
2508 minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
2509 {
2510 miniflow_expand(&mask->masks, &wc->masks);
2511 }
2512
2513 /* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
2514 * Minimasks may not have zero data values, so for the minimasks to be the
2515 * same, they need to have the same map and the same data values. */
2516 bool
2517 minimask_equal(const struct minimask *a, const struct minimask *b)
2518 {
2519 return !memcmp(a, b, sizeof *a
2520 + MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks)));
2521 }
2522
2523 /* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
2524 * false otherwise. */
2525 bool
2526 minimask_has_extra(const struct minimask *a, const struct minimask *b)
2527 {
2528 const uint64_t *bp = miniflow_get_values(&b->masks);
2529 size_t idx;
2530
2531 FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
2532 uint64_t b_u64 = *bp++;
2533
2534 /* 'b_u64' is non-zero, check if the data in 'a' is either zero
2535 * or misses some of the bits in 'b_u64'. */
2536 if (!MINIFLOW_IN_MAP(&a->masks, idx)
2537 || ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
2538 return true; /* 'a' wildcards some bits 'b' doesn't. */
2539 }
2540 }
2541
2542 return false;
2543 }