]> git.proxmox.com Git - ovs.git/blob - lib/flow.h
ovs-rcu: Comment fixes.
[ovs.git] / lib / flow.h
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #ifndef FLOW_H
17 #define FLOW_H 1
18
19 #include <sys/types.h>
20 #include <netinet/in.h>
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include "byte-order.h"
25 #include "openflow/nicira-ext.h"
26 #include "openflow/openflow.h"
27 #include "packets.h"
28 #include "hash.h"
29 #include "util.h"
30
31 struct dpif_flow_stats;
32 struct ds;
33 struct flow_wildcards;
34 struct minimask;
35 struct dp_packet;
36 struct pkt_metadata;
37 struct match;
38
39 /* This sequence number should be incremented whenever anything involving flows
40 * or the wildcarding of flows changes. This will cause build assertion
41 * failures in places which likely need to be updated. */
42 #define FLOW_WC_SEQ 31
43
44 /* Number of Open vSwitch extension 32-bit registers. */
45 #define FLOW_N_REGS 8
46 BUILD_ASSERT_DECL(FLOW_N_REGS <= NXM_NX_MAX_REGS);
47 BUILD_ASSERT_DECL(FLOW_N_REGS % 2 == 0); /* Even. */
48
49 /* Number of OpenFlow 1.5+ 64-bit registers.
50 *
51 * Each of these overlays a pair of Open vSwitch 32-bit registers, so there
52 * are half as many of them.*/
53 #define FLOW_N_XREGS (FLOW_N_REGS / 2)
54
55 /* Used for struct flow's dl_type member for frames that have no Ethernet
56 * type, that is, pure 802.2 frames. */
57 #define FLOW_DL_TYPE_NONE 0x5ff
58
59 /* Fragment bits, used for IPv4 and IPv6, always zero for non-IP flows. */
60 #define FLOW_NW_FRAG_ANY (1 << 0) /* Set for any IP frag. */
61 #define FLOW_NW_FRAG_LATER (1 << 1) /* Set for IP frag with nonzero offset. */
62 #define FLOW_NW_FRAG_MASK (FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER)
63
64 BUILD_ASSERT_DECL(FLOW_NW_FRAG_ANY == NX_IP_FRAG_ANY);
65 BUILD_ASSERT_DECL(FLOW_NW_FRAG_LATER == NX_IP_FRAG_LATER);
66
67 #define FLOW_TNL_F_DONT_FRAGMENT (1 << 0)
68 #define FLOW_TNL_F_CSUM (1 << 1)
69 #define FLOW_TNL_F_KEY (1 << 2)
70 #define FLOW_TNL_F_OAM (1 << 3)
71
72 #define FLOW_TNL_F_MASK ((1 << 4) - 1)
73
74 const char *flow_tun_flag_to_string(uint32_t flags);
75
76 /* Maximum number of supported MPLS labels. */
77 #define FLOW_MAX_MPLS_LABELS 3
78
79 /*
80 * A flow in the network.
81 *
82 * Must be initialized to all zeros to make any compiler-induced padding
83 * zeroed. Helps also in keeping unused fields (such as mutually exclusive
84 * IPv4 and IPv6 addresses) zeroed out.
85 *
86 * The meaning of 'in_port' is context-dependent. In most cases, it is a
87 * 16-bit OpenFlow 1.0 port number. In the software datapath interface (dpif)
88 * layer and its implementations (e.g. dpif-netlink, dpif-netdev), it is
89 * instead a 32-bit datapath port number.
90 *
91 * The fields are organized in four segments to facilitate staged lookup, where
92 * lower layer fields are first used to determine if the later fields need to
93 * be looked at. This enables better wildcarding for datapath flows.
94 *
95 * NOTE: Order of the fields is significant, any change in the order must be
96 * reflected in miniflow_extract()!
97 */
98 struct flow {
99 /* Metadata */
100 struct flow_tnl tunnel; /* Encapsulating tunnel parameters. */
101 ovs_be64 metadata; /* OpenFlow Metadata. */
102 uint32_t regs[FLOW_N_REGS]; /* Registers. */
103 uint32_t skb_priority; /* Packet priority for QoS. */
104 uint32_t pkt_mark; /* Packet mark. */
105 uint32_t dp_hash; /* Datapath computed hash value. The exact
106 * computation is opaque to the user space. */
107 union flow_in_port in_port; /* Input port.*/
108 uint32_t recirc_id; /* Must be exact match. */
109 uint32_t conj_id; /* Conjunction ID. */
110 ofp_port_t actset_output; /* Output port in action set. */
111 uint8_t pad1[6]; /* Pad to 64 bits. */
112
113 /* L2, Order the same as in the Ethernet header! (64-bit aligned) */
114 uint8_t dl_dst[ETH_ADDR_LEN]; /* Ethernet destination address. */
115 uint8_t dl_src[ETH_ADDR_LEN]; /* Ethernet source address. */
116 ovs_be16 dl_type; /* Ethernet frame type. */
117 ovs_be16 vlan_tci; /* If 802.1Q, TCI | VLAN_CFI; otherwise 0. */
118 ovs_be32 mpls_lse[ROUND_UP(FLOW_MAX_MPLS_LABELS, 2)]; /* MPLS label stack
119 (with padding). */
120 /* L3 (64-bit aligned) */
121 ovs_be32 nw_src; /* IPv4 source address. */
122 ovs_be32 nw_dst; /* IPv4 destination address. */
123 struct in6_addr ipv6_src; /* IPv6 source address. */
124 struct in6_addr ipv6_dst; /* IPv6 destination address. */
125 ovs_be32 ipv6_label; /* IPv6 flow label. */
126 uint8_t nw_frag; /* FLOW_FRAG_* flags. */
127 uint8_t nw_tos; /* IP ToS (including DSCP and ECN). */
128 uint8_t nw_ttl; /* IP TTL/Hop Limit. */
129 uint8_t nw_proto; /* IP protocol or low 8 bits of ARP opcode. */
130 struct in6_addr nd_target; /* IPv6 neighbor discovery (ND) target. */
131 uint8_t arp_sha[ETH_ADDR_LEN]; /* ARP/ND source hardware address. */
132 uint8_t arp_tha[ETH_ADDR_LEN]; /* ARP/ND target hardware address. */
133 ovs_be16 tcp_flags; /* TCP flags. With L3 to avoid matching L4. */
134 ovs_be16 pad2; /* Pad to 64 bits. */
135
136 /* L4 (64-bit aligned) */
137 ovs_be16 tp_src; /* TCP/UDP/SCTP source port. */
138 ovs_be16 tp_dst; /* TCP/UDP/SCTP destination port. */
139 ovs_be32 igmp_group_ip4; /* IGMP group IPv4 address.
140 * Keep last for BUILD_ASSERT_DECL below. */
141 };
142 BUILD_ASSERT_DECL(sizeof(struct flow) % sizeof(uint64_t) == 0);
143
144 #define FLOW_U64S (sizeof(struct flow) / sizeof(uint64_t))
145
146 /* Some flow fields are mutually exclusive or only appear within the flow
147 * pipeline. IPv6 headers are bigger than IPv4 and MPLS, and IPv6 ND packets
148 * are bigger than TCP,UDP and IGMP packets. */
149 #define FLOW_MAX_PACKET_U64S (FLOW_U64S \
150 /* Unused in datapath */ - FLOW_U64_SIZE(regs) \
151 - FLOW_U64_SIZE(metadata) \
152 /* L2.5/3 */ - FLOW_U64_SIZE(nw_src) /* incl. nw_dst */ \
153 - FLOW_U64_SIZE(mpls_lse) \
154 /* L4 */ - FLOW_U64_SIZE(tp_src) \
155 )
156
157 /* Remember to update FLOW_WC_SEQ when changing 'struct flow'. */
158 BUILD_ASSERT_DECL(offsetof(struct flow, igmp_group_ip4) + sizeof(uint32_t)
159 == sizeof(struct flow_tnl) + 192
160 && FLOW_WC_SEQ == 31);
161
162 /* Incremental points at which flow classification may be performed in
163 * segments.
164 * This is located here since this is dependent on the structure of the
165 * struct flow defined above:
166 * Each offset must be on a distinct, successive U64 boundary strictly
167 * within the struct flow. */
168 enum {
169 FLOW_SEGMENT_1_ENDS_AT = offsetof(struct flow, dl_dst),
170 FLOW_SEGMENT_2_ENDS_AT = offsetof(struct flow, nw_src),
171 FLOW_SEGMENT_3_ENDS_AT = offsetof(struct flow, tp_src),
172 };
173 BUILD_ASSERT_DECL(FLOW_SEGMENT_1_ENDS_AT % sizeof(uint64_t) == 0);
174 BUILD_ASSERT_DECL(FLOW_SEGMENT_2_ENDS_AT % sizeof(uint64_t) == 0);
175 BUILD_ASSERT_DECL(FLOW_SEGMENT_3_ENDS_AT % sizeof(uint64_t) == 0);
176 BUILD_ASSERT_DECL( 0 < FLOW_SEGMENT_1_ENDS_AT);
177 BUILD_ASSERT_DECL(FLOW_SEGMENT_1_ENDS_AT < FLOW_SEGMENT_2_ENDS_AT);
178 BUILD_ASSERT_DECL(FLOW_SEGMENT_2_ENDS_AT < FLOW_SEGMENT_3_ENDS_AT);
179 BUILD_ASSERT_DECL(FLOW_SEGMENT_3_ENDS_AT < sizeof(struct flow));
180
181 extern const uint8_t flow_segment_u64s[];
182
183 void flow_extract(struct dp_packet *, struct flow *);
184
185 void flow_zero_wildcards(struct flow *, const struct flow_wildcards *);
186 void flow_unwildcard_tp_ports(const struct flow *, struct flow_wildcards *);
187 void flow_get_metadata(const struct flow *, struct match *flow_metadata);
188
189 char *flow_to_string(const struct flow *);
190 void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
191 uint32_t flags, char del);
192 void format_flags_masked(struct ds *ds, const char *name,
193 const char *(*bit_to_string)(uint32_t),
194 uint32_t flags, uint32_t mask);
195
196 void flow_format(struct ds *, const struct flow *);
197 void flow_print(FILE *, const struct flow *);
198 static inline int flow_compare_3way(const struct flow *, const struct flow *);
199 static inline bool flow_equal(const struct flow *, const struct flow *);
200 static inline size_t flow_hash(const struct flow *, uint32_t basis);
201
202 void flow_set_dl_vlan(struct flow *, ovs_be16 vid);
203 void flow_set_vlan_vid(struct flow *, ovs_be16 vid);
204 void flow_set_vlan_pcp(struct flow *, uint8_t pcp);
205
206 int flow_count_mpls_labels(const struct flow *, struct flow_wildcards *);
207 int flow_count_common_mpls_labels(const struct flow *a, int an,
208 const struct flow *b, int bn,
209 struct flow_wildcards *wc);
210 void flow_push_mpls(struct flow *, int n, ovs_be16 mpls_eth_type,
211 struct flow_wildcards *);
212 bool flow_pop_mpls(struct flow *, int n, ovs_be16 eth_type,
213 struct flow_wildcards *);
214 void flow_set_mpls_label(struct flow *, int idx, ovs_be32 label);
215 void flow_set_mpls_ttl(struct flow *, int idx, uint8_t ttl);
216 void flow_set_mpls_tc(struct flow *, int idx, uint8_t tc);
217 void flow_set_mpls_bos(struct flow *, int idx, uint8_t stack);
218 void flow_set_mpls_lse(struct flow *, int idx, ovs_be32 lse);
219
220 void flow_compose(struct dp_packet *, const struct flow *);
221
222 static inline uint64_t
223 flow_get_xreg(const struct flow *flow, int idx)
224 {
225 return ((uint64_t) flow->regs[idx * 2] << 32) | flow->regs[idx * 2 + 1];
226 }
227
228 static inline void
229 flow_set_xreg(struct flow *flow, int idx, uint64_t value)
230 {
231 flow->regs[idx * 2] = value >> 32;
232 flow->regs[idx * 2 + 1] = value;
233 }
234
235 static inline int
236 flow_compare_3way(const struct flow *a, const struct flow *b)
237 {
238 return memcmp(a, b, sizeof *a);
239 }
240
241 static inline bool
242 flow_equal(const struct flow *a, const struct flow *b)
243 {
244 return !flow_compare_3way(a, b);
245 }
246
247 static inline size_t
248 flow_hash(const struct flow *flow, uint32_t basis)
249 {
250 return hash_words64((const uint64_t *)flow,
251 sizeof *flow / sizeof(uint64_t), basis);
252 }
253
254 static inline uint16_t
255 ofp_to_u16(ofp_port_t ofp_port)
256 {
257 return (OVS_FORCE uint16_t) ofp_port;
258 }
259
260 static inline uint32_t
261 odp_to_u32(odp_port_t odp_port)
262 {
263 return (OVS_FORCE uint32_t) odp_port;
264 }
265
266 static inline uint32_t
267 ofp11_to_u32(ofp11_port_t ofp11_port)
268 {
269 return (OVS_FORCE uint32_t) ofp11_port;
270 }
271
272 static inline ofp_port_t
273 u16_to_ofp(uint16_t port)
274 {
275 return OFP_PORT_C(port);
276 }
277
278 static inline odp_port_t
279 u32_to_odp(uint32_t port)
280 {
281 return ODP_PORT_C(port);
282 }
283
284 static inline ofp11_port_t
285 u32_to_ofp11(uint32_t port)
286 {
287 return OFP11_PORT_C(port);
288 }
289
290 static inline uint32_t
291 hash_ofp_port(ofp_port_t ofp_port)
292 {
293 return hash_int(ofp_to_u16(ofp_port), 0);
294 }
295
296 static inline uint32_t
297 hash_odp_port(odp_port_t odp_port)
298 {
299 return hash_int(odp_to_u32(odp_port), 0);
300 }
301 \f
302 /* Wildcards for a flow.
303 *
304 * A 1-bit in each bit in 'masks' indicates that the corresponding bit of
305 * the flow is significant (must match). A 0-bit indicates that the
306 * corresponding bit of the flow is wildcarded (need not match). */
307 struct flow_wildcards {
308 struct flow masks;
309 };
310
311 #define WC_MASK_FIELD(WC, FIELD) \
312 memset(&(WC)->masks.FIELD, 0xff, sizeof (WC)->masks.FIELD)
313 #define WC_UNMASK_FIELD(WC, FIELD) \
314 memset(&(WC)->masks.FIELD, 0, sizeof (WC)->masks.FIELD)
315
316 void flow_wildcards_init_catchall(struct flow_wildcards *);
317
318 void flow_wildcards_init_for_packet(struct flow_wildcards *,
319 const struct flow *);
320 uint64_t flow_wc_map(const struct flow *);
321
322 void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *);
323
324 bool flow_wildcards_is_catchall(const struct flow_wildcards *);
325
326 void flow_wildcards_set_reg_mask(struct flow_wildcards *,
327 int idx, uint32_t mask);
328 void flow_wildcards_set_xreg_mask(struct flow_wildcards *,
329 int idx, uint64_t mask);
330
331 void flow_wildcards_and(struct flow_wildcards *dst,
332 const struct flow_wildcards *src1,
333 const struct flow_wildcards *src2);
334 void flow_wildcards_or(struct flow_wildcards *dst,
335 const struct flow_wildcards *src1,
336 const struct flow_wildcards *src2);
337 bool flow_wildcards_has_extra(const struct flow_wildcards *,
338 const struct flow_wildcards *);
339 uint32_t flow_wildcards_hash(const struct flow_wildcards *, uint32_t basis);
340 bool flow_wildcards_equal(const struct flow_wildcards *,
341 const struct flow_wildcards *);
342 uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis);
343 uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis);
344
345 /* Initialize a flow with random fields that matter for nx_hash_fields. */
346 void flow_random_hash_fields(struct flow *);
347 void flow_mask_hash_fields(const struct flow *, struct flow_wildcards *,
348 enum nx_hash_fields);
349 uint32_t flow_hash_fields(const struct flow *, enum nx_hash_fields,
350 uint16_t basis);
351 const char *flow_hash_fields_to_str(enum nx_hash_fields);
352 bool flow_hash_fields_valid(enum nx_hash_fields);
353
354 uint32_t flow_hash_in_wildcards(const struct flow *,
355 const struct flow_wildcards *,
356 uint32_t basis);
357
358 bool flow_equal_except(const struct flow *a, const struct flow *b,
359 const struct flow_wildcards *);
360 \f
361 /* Compressed flow. */
362
363 /* Number of 64-bit words present in struct miniflow. */
364 #define MINI_N_INLINE 4
365
366 /* Maximum number of 64-bit words supported. */
367 BUILD_ASSERT_DECL(FLOW_U64S <= 63);
368
369 /* A sparse representation of a "struct flow".
370 *
371 * A "struct flow" is fairly large and tends to be mostly zeros. Sparse
372 * representation has two advantages. First, it saves memory. Second, it
373 * saves time when the goal is to iterate over only the nonzero parts of the
374 * struct.
375 *
376 * The 'map' member holds one bit for each uint64_t in a "struct flow". Each
377 * 0-bit indicates that the corresponding uint64_t is zero, each 1-bit that it
378 * *may* be nonzero (see below how this applies to minimasks).
379 *
380 * The 'values_inline' boolean member indicates that the values are at
381 * 'inline_values'. If 'values_inline' is zero, then the values are
382 * offline at 'offline_values'. In either case, values is an array that has
383 * one element for each 1-bit in 'map'. The least-numbered 1-bit is in
384 * the first element of the values array, the next 1-bit is in the next array
385 * element, and so on.
386 *
387 * MINI_N_INLINE is the default number of inline words. When a miniflow is
388 * dynamically allocated the actual amount of inline storage may be different.
389 * In that case 'inline_values' contains storage at least for the number
390 * of words indicated by 'map' (one uint64_t for each 1-bit in the map).
391 *
392 * Elements in values array are allowed to be zero. This is useful for "struct
393 * minimatch", for which ensuring that the miniflow and minimask members have
394 * same 'map' allows optimization. This allowance applies only to a miniflow
395 * that is not a mask. That is, a minimask may NOT have zero elements in
396 * its 'values'.
397 */
398 struct miniflow {
399 uint64_t map:63;
400 uint64_t values_inline:1;
401 union {
402 uint64_t *offline_values;
403 uint64_t inline_values[MINI_N_INLINE]; /* Minimum inline size. */
404 };
405 };
406 BUILD_ASSERT_DECL(sizeof(struct miniflow)
407 == sizeof(uint64_t) + MINI_N_INLINE * sizeof(uint64_t));
408
409 #define MINIFLOW_VALUES_SIZE(COUNT) ((COUNT) * sizeof(uint64_t))
410
411 static inline uint64_t *miniflow_values(struct miniflow *mf)
412 {
413 return OVS_LIKELY(mf->values_inline)
414 ? mf->inline_values : mf->offline_values;
415 }
416
417 static inline const uint64_t *miniflow_get_values(const struct miniflow *mf)
418 {
419 return OVS_LIKELY(mf->values_inline)
420 ? mf->inline_values : mf->offline_values;
421 }
422
423 /* This is useful for initializing a miniflow for a miniflow_extract() call. */
424 static inline void miniflow_initialize(struct miniflow *mf,
425 uint64_t buf[FLOW_U64S])
426 {
427 mf->map = 0;
428 mf->values_inline = (buf == (uint64_t *)(mf + 1));
429 if (!mf->values_inline) {
430 mf->offline_values = buf;
431 }
432 }
433
434 struct pkt_metadata;
435
436 /* The 'dst->values' must be initialized with a buffer with space for
437 * FLOW_U64S. 'dst->map' is ignored on input and set on output to
438 * indicate which fields were extracted. */
439 void miniflow_extract(struct dp_packet *packet, struct miniflow *dst);
440 void miniflow_init(struct miniflow *, const struct flow *);
441 void miniflow_init_with_minimask(struct miniflow *, const struct flow *,
442 const struct minimask *);
443 void miniflow_clone(struct miniflow *, const struct miniflow *);
444 void miniflow_clone_inline(struct miniflow *, const struct miniflow *,
445 size_t n_values);
446 void miniflow_move(struct miniflow *dst, struct miniflow *);
447 void miniflow_destroy(struct miniflow *);
448
449 void miniflow_expand(const struct miniflow *, struct flow *);
450
451 static inline uint64_t flow_u64_value(const struct flow *flow, size_t index)
452 {
453 return ((uint64_t *)(flow))[index];
454 }
455
456 static inline uint64_t *flow_u64_lvalue(struct flow *flow, size_t index)
457 {
458 return &((uint64_t *)(flow))[index];
459 }
460
461 static inline bool
462 flow_get_next_in_map(const struct flow *flow, uint64_t map, uint64_t *value)
463 {
464 if (map) {
465 *value = flow_u64_value(flow, raw_ctz(map));
466 return true;
467 }
468 return false;
469 }
470
471 /* Iterate through all flow u64 values specified by 'MAP'. */
472 #define FLOW_FOR_EACH_IN_MAP(VALUE, FLOW, MAP) \
473 for (uint64_t map__ = (MAP); \
474 flow_get_next_in_map(FLOW, map__, &(VALUE)); \
475 map__ = zero_rightmost_1bit(map__))
476
477 /* Iterate through all struct flow u64 indices specified by 'MAP'. */
478 #define MAP_FOR_EACH_INDEX(U64IDX, MAP) \
479 for (uint64_t map__ = (MAP); \
480 map__ && ((U64IDX) = raw_ctz(map__), true); \
481 map__ = zero_rightmost_1bit(map__))
482
483 #define FLOW_U64_SIZE(FIELD) \
484 DIV_ROUND_UP(sizeof(((struct flow *)0)->FIELD), sizeof(uint64_t))
485
486 #define MINIFLOW_MAP(FIELD) \
487 (((UINT64_C(1) << FLOW_U64_SIZE(FIELD)) - 1) \
488 << (offsetof(struct flow, FIELD) / sizeof(uint64_t)))
489
490 struct mf_for_each_in_map_aux {
491 const uint64_t *values;
492 uint64_t fmap;
493 uint64_t map;
494 };
495
496 static inline bool
497 mf_get_next_in_map(struct mf_for_each_in_map_aux *aux, uint64_t *value)
498 {
499 if (aux->map) {
500 uint64_t rm1bit = rightmost_1bit(aux->map);
501 aux->map -= rm1bit;
502
503 if (aux->fmap & rm1bit) {
504 /* Advance 'aux->values' to point to the value for 'rm1bit'. */
505 uint64_t trash = aux->fmap & (rm1bit - 1);
506 if (trash) {
507 aux->fmap -= trash;
508 aux->values += count_1bits(trash);
509 }
510
511 /* Retrieve the value for 'rm1bit' then advance past it. */
512 aux->fmap -= rm1bit;
513 *value = *aux->values++;
514 } else {
515 *value = 0;
516 }
517 return true;
518 } else {
519 return false;
520 }
521 }
522
523 /* Iterate through all miniflow u64 values specified by 'MAP'. */
524 #define MINIFLOW_FOR_EACH_IN_MAP(VALUE, FLOW, MAP) \
525 for (struct mf_for_each_in_map_aux aux__ \
526 = { miniflow_get_values(FLOW), (FLOW)->map, MAP }; \
527 mf_get_next_in_map(&aux__, &(VALUE)); \
528 )
529
530 /* This can be used when it is known that 'u64_idx' is set in 'map'. */
531 static inline uint64_t
532 miniflow_values_get__(const uint64_t *values, uint64_t map, int u64_idx)
533 {
534 return values[count_1bits(map & ((UINT64_C(1) << u64_idx) - 1))];
535 }
536
537 /* This can be used when it is known that 'u64_idx' is set in
538 * the map of 'mf'. */
539 static inline uint64_t
540 miniflow_get__(const struct miniflow *mf, int u64_idx)
541 {
542 return miniflow_values_get__(miniflow_get_values(mf), mf->map, u64_idx);
543 }
544
545 /* Get the value of 'FIELD' of an up to 8 byte wide integer type 'TYPE' of
546 * a miniflow. */
547 #define MINIFLOW_GET_TYPE(MF, TYPE, OFS) \
548 (((MF)->map & (UINT64_C(1) << (OFS) / sizeof(uint64_t))) \
549 ? ((OVS_FORCE const TYPE *) \
550 (miniflow_get_values(MF) \
551 + count_1bits((MF)->map & \
552 ((UINT64_C(1) << (OFS) / sizeof(uint64_t)) - 1)))) \
553 [(OFS) % sizeof(uint64_t) / sizeof(TYPE)] \
554 : 0) \
555
556 #define MINIFLOW_GET_U8(FLOW, FIELD) \
557 MINIFLOW_GET_TYPE(FLOW, uint8_t, offsetof(struct flow, FIELD))
558 #define MINIFLOW_GET_U16(FLOW, FIELD) \
559 MINIFLOW_GET_TYPE(FLOW, uint16_t, offsetof(struct flow, FIELD))
560 #define MINIFLOW_GET_BE16(FLOW, FIELD) \
561 MINIFLOW_GET_TYPE(FLOW, ovs_be16, offsetof(struct flow, FIELD))
562 #define MINIFLOW_GET_U32(FLOW, FIELD) \
563 MINIFLOW_GET_TYPE(FLOW, uint32_t, offsetof(struct flow, FIELD))
564 #define MINIFLOW_GET_BE32(FLOW, FIELD) \
565 MINIFLOW_GET_TYPE(FLOW, ovs_be32, offsetof(struct flow, FIELD))
566 #define MINIFLOW_GET_U64(FLOW, FIELD) \
567 MINIFLOW_GET_TYPE(FLOW, uint64_t, offsetof(struct flow, FIELD))
568 #define MINIFLOW_GET_BE64(FLOW, FIELD) \
569 MINIFLOW_GET_TYPE(FLOW, ovs_be64, offsetof(struct flow, FIELD))
570
571 static inline uint64_t miniflow_get(const struct miniflow *,
572 unsigned int u64_ofs);
573 static inline uint32_t miniflow_get_u32(const struct miniflow *,
574 unsigned int u32_ofs);
575 static inline ovs_be32 miniflow_get_be32(const struct miniflow *,
576 unsigned int be32_ofs);
577 static inline uint16_t miniflow_get_vid(const struct miniflow *);
578 static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *);
579 static inline ovs_be64 miniflow_get_metadata(const struct miniflow *);
580
581 bool miniflow_equal(const struct miniflow *a, const struct miniflow *b);
582 bool miniflow_equal_in_minimask(const struct miniflow *a,
583 const struct miniflow *b,
584 const struct minimask *);
585 bool miniflow_equal_flow_in_minimask(const struct miniflow *a,
586 const struct flow *b,
587 const struct minimask *);
588 uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis);
589
590 \f
591 /* Compressed flow wildcards. */
592
593 /* A sparse representation of a "struct flow_wildcards".
594 *
595 * See the large comment on struct miniflow for details.
596 *
597 * Note: While miniflow can have zero data for a 1-bit in the map,
598 * a minimask may not! We rely on this in the implementation. */
599 struct minimask {
600 struct miniflow masks;
601 };
602
603 void minimask_init(struct minimask *, const struct flow_wildcards *);
604 void minimask_clone(struct minimask *, const struct minimask *);
605 void minimask_move(struct minimask *dst, struct minimask *src);
606 void minimask_combine(struct minimask *dst,
607 const struct minimask *a, const struct minimask *b,
608 uint64_t storage[FLOW_U64S]);
609 void minimask_destroy(struct minimask *);
610
611 void minimask_expand(const struct minimask *, struct flow_wildcards *);
612
613 static inline uint32_t minimask_get_u32(const struct minimask *,
614 unsigned int u32_ofs);
615 static inline ovs_be32 minimask_get_be32(const struct minimask *,
616 unsigned int be32_ofs);
617 static inline uint16_t minimask_get_vid_mask(const struct minimask *);
618 static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *);
619
620 bool minimask_equal(const struct minimask *a, const struct minimask *b);
621 bool minimask_has_extra(const struct minimask *, const struct minimask *);
622
623 \f
624 /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
625 * or fields. */
626 static inline bool
627 minimask_is_catchall(const struct minimask *mask)
628 {
629 /* For every 1-bit in mask's map, the corresponding value is non-zero,
630 * so the only way the mask can not fix any bits or fields is for the
631 * map the be zero. */
632 return mask->masks.map == 0;
633 }
634
635 /* Returns the uint64_t that would be at byte offset '8 * u64_ofs' if 'flow'
636 * were expanded into a "struct flow". */
637 static inline uint64_t miniflow_get(const struct miniflow *flow,
638 unsigned int u64_ofs)
639 {
640 return flow->map & (UINT64_C(1) << u64_ofs)
641 ? miniflow_get__(flow, u64_ofs) : 0;
642 }
643
644 static inline uint32_t miniflow_get_u32(const struct miniflow *flow,
645 unsigned int u32_ofs)
646 {
647 uint64_t value = miniflow_get(flow, u32_ofs / 2);
648
649 #if WORDS_BIGENDIAN
650 return (u32_ofs & 1) ? value : value >> 32;
651 #else
652 return (u32_ofs & 1) ? value >> 32 : value;
653 #endif
654 }
655
656 static inline ovs_be32 miniflow_get_be32(const struct miniflow *flow,
657 unsigned int be32_ofs)
658 {
659 return (OVS_FORCE ovs_be32)miniflow_get_u32(flow, be32_ofs);
660 }
661
662 /* Returns the VID within the vlan_tci member of the "struct flow" represented
663 * by 'flow'. */
664 static inline uint16_t
665 miniflow_get_vid(const struct miniflow *flow)
666 {
667 ovs_be16 tci = MINIFLOW_GET_BE16(flow, vlan_tci);
668 return vlan_tci_to_vid(tci);
669 }
670
671 /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
672 * were expanded into a "struct flow_wildcards". */
673 static inline uint32_t
674 minimask_get_u32(const struct minimask *mask, unsigned int u32_ofs)
675 {
676 return miniflow_get_u32(&mask->masks, u32_ofs);
677 }
678
679 static inline ovs_be32
680 minimask_get_be32(const struct minimask *mask, unsigned int be32_ofs)
681 {
682 return (OVS_FORCE ovs_be32)minimask_get_u32(mask, be32_ofs);
683 }
684
685 /* Returns the VID mask within the vlan_tci member of the "struct
686 * flow_wildcards" represented by 'mask'. */
687 static inline uint16_t
688 minimask_get_vid_mask(const struct minimask *mask)
689 {
690 return miniflow_get_vid(&mask->masks);
691 }
692
693 /* Returns the value of the "tcp_flags" field in 'flow'. */
694 static inline uint16_t
695 miniflow_get_tcp_flags(const struct miniflow *flow)
696 {
697 return ntohs(MINIFLOW_GET_BE16(flow, tcp_flags));
698 }
699
700 /* Returns the value of the OpenFlow 1.1+ "metadata" field in 'flow'. */
701 static inline ovs_be64
702 miniflow_get_metadata(const struct miniflow *flow)
703 {
704 return MINIFLOW_GET_BE64(flow, metadata);
705 }
706
707 /* Returns the mask for the OpenFlow 1.1+ "metadata" field in 'mask'.
708 *
709 * The return value is all-1-bits if 'mask' matches on the whole value of the
710 * metadata field, all-0-bits if 'mask' entirely wildcards the metadata field,
711 * or some other value if the metadata field is partially matched, partially
712 * wildcarded. */
713 static inline ovs_be64
714 minimask_get_metadata_mask(const struct minimask *mask)
715 {
716 return MINIFLOW_GET_BE64(&mask->masks, metadata);
717 }
718
719 /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
720 * fields in 'dst', storing the result in 'dst'. */
721 static inline void
722 flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
723 {
724 uint64_t *dst_u64 = (uint64_t *) dst;
725 const uint64_t *p = miniflow_get_values(src);
726 int idx;
727
728 MAP_FOR_EACH_INDEX(idx, src->map) {
729 dst_u64[idx] |= *p++;
730 }
731 }
732
733 static inline void
734 pkt_metadata_from_flow(struct pkt_metadata *md, const struct flow *flow)
735 {
736 md->recirc_id = flow->recirc_id;
737 md->dp_hash = flow->dp_hash;
738 md->tunnel = flow->tunnel;
739 md->skb_priority = flow->skb_priority;
740 md->pkt_mark = flow->pkt_mark;
741 md->in_port = flow->in_port;
742 }
743
744 static inline bool is_ip_any(const struct flow *flow)
745 {
746 return dl_type_is_ip_any(flow->dl_type);
747 }
748
749 static inline bool is_icmpv4(const struct flow *flow)
750 {
751 return (flow->dl_type == htons(ETH_TYPE_IP)
752 && flow->nw_proto == IPPROTO_ICMP);
753 }
754
755 static inline bool is_icmpv6(const struct flow *flow)
756 {
757 return (flow->dl_type == htons(ETH_TYPE_IPV6)
758 && flow->nw_proto == IPPROTO_ICMPV6);
759 }
760
761 static inline bool is_stp(const struct flow *flow)
762 {
763 return (eth_addr_equals(flow->dl_dst, eth_addr_stp)
764 && flow->dl_type == htons(FLOW_DL_TYPE_NONE));
765 }
766
767 #endif /* flow.h */