2 * Basic general purpose allocator for managing special purpose
3 * memory, for example, memory that is not managed by the regular
4 * kmalloc/kfree interface. Uses for this includes on-device special
5 * memory, uncached memory etc.
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks. This
9 * is implemented by using atomic operations and retries on any
10 * conflicts. The disadvantage is that there may be livelocks in
11 * extreme cases. For better scalability, one allocator can be used
14 * The lockless operation only works if there is enough memory
15 * available. If new memory is added to the pool a lock has to be
16 * still taken. So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler. So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
27 * This source code is licensed under the GNU General Public License,
28 * Version 2. See the file COPYING for more details.
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
39 static inline size_t chunk_size(const struct gen_pool_chunk
*chunk
)
41 return chunk
->end_addr
- chunk
->start_addr
+ 1;
44 static int set_bits_ll(unsigned long *addr
, unsigned long mask_to_set
)
46 unsigned long val
, nval
;
51 if (val
& mask_to_set
)
54 } while ((nval
= cmpxchg(addr
, val
, val
| mask_to_set
)) != val
);
59 static int clear_bits_ll(unsigned long *addr
, unsigned long mask_to_clear
)
61 unsigned long val
, nval
;
66 if ((val
& mask_to_clear
) != mask_to_clear
)
69 } while ((nval
= cmpxchg(addr
, val
, val
& ~mask_to_clear
)) != val
);
75 * bitmap_set_ll - set the specified number of bits at the specified position
76 * @map: pointer to a bitmap
77 * @start: a bit position in @map
78 * @nr: number of bits to set
80 * Set @nr bits start from @start in @map lock-lessly. Several users
81 * can set/clear the same bitmap simultaneously without lock. If two
82 * users set the same bit, one user will return remain bits, otherwise
85 static int bitmap_set_ll(unsigned long *map
, int start
, int nr
)
87 unsigned long *p
= map
+ BIT_WORD(start
);
88 const int size
= start
+ nr
;
89 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
90 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
92 while (nr
- bits_to_set
>= 0) {
93 if (set_bits_ll(p
, mask_to_set
))
96 bits_to_set
= BITS_PER_LONG
;
101 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
102 if (set_bits_ll(p
, mask_to_set
))
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
120 static int bitmap_clear_ll(unsigned long *map
, int start
, int nr
)
122 unsigned long *p
= map
+ BIT_WORD(start
);
123 const int size
= start
+ nr
;
124 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
125 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
127 while (nr
- bits_to_clear
>= 0) {
128 if (clear_bits_ll(p
, mask_to_clear
))
131 bits_to_clear
= BITS_PER_LONG
;
132 mask_to_clear
= ~0UL;
136 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
137 if (clear_bits_ll(p
, mask_to_clear
))
145 * gen_pool_create - create a new special memory pool
146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147 * @nid: node id of the node the pool structure should be allocated on, or -1
149 * Create a new special memory pool that can be used to manage special purpose
150 * memory not managed by the regular kmalloc/kfree interface.
152 struct gen_pool
*gen_pool_create(int min_alloc_order
, int nid
)
154 struct gen_pool
*pool
;
156 pool
= kmalloc_node(sizeof(struct gen_pool
), GFP_KERNEL
, nid
);
158 spin_lock_init(&pool
->lock
);
159 INIT_LIST_HEAD(&pool
->chunks
);
160 pool
->min_alloc_order
= min_alloc_order
;
161 pool
->algo
= gen_pool_first_fit
;
167 EXPORT_SYMBOL(gen_pool_create
);
170 * gen_pool_add_virt - add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 * allocated on, or -1
178 * Add a new chunk of special memory to the specified pool.
180 * Returns 0 on success or a -ve errno on failure.
182 int gen_pool_add_virt(struct gen_pool
*pool
, unsigned long virt
, phys_addr_t phys
,
183 size_t size
, int nid
)
185 struct gen_pool_chunk
*chunk
;
186 int nbits
= size
>> pool
->min_alloc_order
;
187 int nbytes
= sizeof(struct gen_pool_chunk
) +
188 BITS_TO_LONGS(nbits
) * sizeof(long);
190 chunk
= kzalloc_node(nbytes
, GFP_KERNEL
, nid
);
191 if (unlikely(chunk
== NULL
))
194 chunk
->phys_addr
= phys
;
195 chunk
->start_addr
= virt
;
196 chunk
->end_addr
= virt
+ size
- 1;
197 atomic_set(&chunk
->avail
, size
);
199 spin_lock(&pool
->lock
);
200 list_add_rcu(&chunk
->next_chunk
, &pool
->chunks
);
201 spin_unlock(&pool
->lock
);
205 EXPORT_SYMBOL(gen_pool_add_virt
);
208 * gen_pool_virt_to_phys - return the physical address of memory
209 * @pool: pool to allocate from
210 * @addr: starting address of memory
212 * Returns the physical address on success, or -1 on error.
214 phys_addr_t
gen_pool_virt_to_phys(struct gen_pool
*pool
, unsigned long addr
)
216 struct gen_pool_chunk
*chunk
;
217 phys_addr_t paddr
= -1;
220 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
221 if (addr
>= chunk
->start_addr
&& addr
<= chunk
->end_addr
) {
222 paddr
= chunk
->phys_addr
+ (addr
- chunk
->start_addr
);
230 EXPORT_SYMBOL(gen_pool_virt_to_phys
);
233 * gen_pool_destroy - destroy a special memory pool
234 * @pool: pool to destroy
236 * Destroy the specified special memory pool. Verifies that there are no
237 * outstanding allocations.
239 void gen_pool_destroy(struct gen_pool
*pool
)
241 struct list_head
*_chunk
, *_next_chunk
;
242 struct gen_pool_chunk
*chunk
;
243 int order
= pool
->min_alloc_order
;
246 list_for_each_safe(_chunk
, _next_chunk
, &pool
->chunks
) {
247 chunk
= list_entry(_chunk
, struct gen_pool_chunk
, next_chunk
);
248 list_del(&chunk
->next_chunk
);
250 end_bit
= chunk_size(chunk
) >> order
;
251 bit
= find_next_bit(chunk
->bits
, end_bit
, 0);
252 BUG_ON(bit
< end_bit
);
256 kfree_const(pool
->name
);
259 EXPORT_SYMBOL(gen_pool_destroy
);
262 * gen_pool_alloc - allocate special memory from the pool
263 * @pool: pool to allocate from
264 * @size: number of bytes to allocate from the pool
266 * Allocate the requested number of bytes from the specified pool.
267 * Uses the pool allocation function (with first-fit algorithm by default).
268 * Can not be used in NMI handler on architectures without
269 * NMI-safe cmpxchg implementation.
271 unsigned long gen_pool_alloc(struct gen_pool
*pool
, size_t size
)
273 struct gen_pool_chunk
*chunk
;
274 unsigned long addr
= 0;
275 int order
= pool
->min_alloc_order
;
276 int nbits
, start_bit
= 0, end_bit
, remain
;
278 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
285 nbits
= (size
+ (1UL << order
) - 1) >> order
;
287 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
288 if (size
> atomic_read(&chunk
->avail
))
291 end_bit
= chunk_size(chunk
) >> order
;
293 start_bit
= pool
->algo(chunk
->bits
, end_bit
, start_bit
, nbits
,
295 if (start_bit
>= end_bit
)
297 remain
= bitmap_set_ll(chunk
->bits
, start_bit
, nbits
);
299 remain
= bitmap_clear_ll(chunk
->bits
, start_bit
,
305 addr
= chunk
->start_addr
+ ((unsigned long)start_bit
<< order
);
306 size
= nbits
<< order
;
307 atomic_sub(size
, &chunk
->avail
);
313 EXPORT_SYMBOL(gen_pool_alloc
);
316 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
317 * @pool: pool to allocate from
318 * @size: number of bytes to allocate from the pool
319 * @dma: dma-view physical address return value. Use NULL if unneeded.
321 * Allocate the requested number of bytes from the specified pool.
322 * Uses the pool allocation function (with first-fit algorithm by default).
323 * Can not be used in NMI handler on architectures without
324 * NMI-safe cmpxchg implementation.
326 void *gen_pool_dma_alloc(struct gen_pool
*pool
, size_t size
, dma_addr_t
*dma
)
333 vaddr
= gen_pool_alloc(pool
, size
);
338 *dma
= gen_pool_virt_to_phys(pool
, vaddr
);
340 return (void *)vaddr
;
342 EXPORT_SYMBOL(gen_pool_dma_alloc
);
345 * gen_pool_free - free allocated special memory back to the pool
346 * @pool: pool to free to
347 * @addr: starting address of memory to free back to pool
348 * @size: size in bytes of memory to free
350 * Free previously allocated special memory back to the specified
351 * pool. Can not be used in NMI handler on architectures without
352 * NMI-safe cmpxchg implementation.
354 void gen_pool_free(struct gen_pool
*pool
, unsigned long addr
, size_t size
)
356 struct gen_pool_chunk
*chunk
;
357 int order
= pool
->min_alloc_order
;
358 int start_bit
, nbits
, remain
;
360 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
364 nbits
= (size
+ (1UL << order
) - 1) >> order
;
366 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
367 if (addr
>= chunk
->start_addr
&& addr
<= chunk
->end_addr
) {
368 BUG_ON(addr
+ size
- 1 > chunk
->end_addr
);
369 start_bit
= (addr
- chunk
->start_addr
) >> order
;
370 remain
= bitmap_clear_ll(chunk
->bits
, start_bit
, nbits
);
372 size
= nbits
<< order
;
373 atomic_add(size
, &chunk
->avail
);
381 EXPORT_SYMBOL(gen_pool_free
);
384 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
385 * @pool: the generic memory pool
386 * @func: func to call
387 * @data: additional data used by @func
389 * Call @func for every chunk of generic memory pool. The @func is
390 * called with rcu_read_lock held.
392 void gen_pool_for_each_chunk(struct gen_pool
*pool
,
393 void (*func
)(struct gen_pool
*pool
, struct gen_pool_chunk
*chunk
, void *data
),
396 struct gen_pool_chunk
*chunk
;
399 list_for_each_entry_rcu(chunk
, &(pool
)->chunks
, next_chunk
)
400 func(pool
, chunk
, data
);
403 EXPORT_SYMBOL(gen_pool_for_each_chunk
);
406 * addr_in_gen_pool - checks if an address falls within the range of a pool
407 * @pool: the generic memory pool
408 * @start: start address
409 * @size: size of the region
411 * Check if the range of addresses falls within the specified pool. Returns
412 * true if the entire range is contained in the pool and false otherwise.
414 bool addr_in_gen_pool(struct gen_pool
*pool
, unsigned long start
,
418 unsigned long end
= start
+ size
- 1;
419 struct gen_pool_chunk
*chunk
;
422 list_for_each_entry_rcu(chunk
, &(pool
)->chunks
, next_chunk
) {
423 if (start
>= chunk
->start_addr
&& start
<= chunk
->end_addr
) {
424 if (end
<= chunk
->end_addr
) {
435 * gen_pool_avail - get available free space of the pool
436 * @pool: pool to get available free space
438 * Return available free space of the specified pool.
440 size_t gen_pool_avail(struct gen_pool
*pool
)
442 struct gen_pool_chunk
*chunk
;
446 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
)
447 avail
+= atomic_read(&chunk
->avail
);
451 EXPORT_SYMBOL_GPL(gen_pool_avail
);
454 * gen_pool_size - get size in bytes of memory managed by the pool
455 * @pool: pool to get size
457 * Return size in bytes of memory managed by the pool.
459 size_t gen_pool_size(struct gen_pool
*pool
)
461 struct gen_pool_chunk
*chunk
;
465 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
)
466 size
+= chunk_size(chunk
);
470 EXPORT_SYMBOL_GPL(gen_pool_size
);
473 * gen_pool_set_algo - set the allocation algorithm
474 * @pool: pool to change allocation algorithm
475 * @algo: custom algorithm function
476 * @data: additional data used by @algo
478 * Call @algo for each memory allocation in the pool.
479 * If @algo is NULL use gen_pool_first_fit as default
480 * memory allocation function.
482 void gen_pool_set_algo(struct gen_pool
*pool
, genpool_algo_t algo
, void *data
)
488 pool
->algo
= gen_pool_first_fit
;
494 EXPORT_SYMBOL(gen_pool_set_algo
);
497 * gen_pool_first_fit - find the first available region
498 * of memory matching the size requirement (no alignment constraint)
499 * @map: The address to base the search on
500 * @size: The bitmap size in bits
501 * @start: The bitnumber to start searching at
502 * @nr: The number of zeroed bits we're looking for
503 * @data: additional data - unused
505 unsigned long gen_pool_first_fit(unsigned long *map
, unsigned long size
,
506 unsigned long start
, unsigned int nr
, void *data
)
508 return bitmap_find_next_zero_area(map
, size
, start
, nr
, 0);
510 EXPORT_SYMBOL(gen_pool_first_fit
);
513 * gen_pool_first_fit_order_align - find the first available region
514 * of memory matching the size requirement. The region will be aligned
515 * to the order of the size specified.
516 * @map: The address to base the search on
517 * @size: The bitmap size in bits
518 * @start: The bitnumber to start searching at
519 * @nr: The number of zeroed bits we're looking for
520 * @data: additional data - unused
522 unsigned long gen_pool_first_fit_order_align(unsigned long *map
,
523 unsigned long size
, unsigned long start
,
524 unsigned int nr
, void *data
)
526 unsigned long align_mask
= roundup_pow_of_two(nr
) - 1;
528 return bitmap_find_next_zero_area(map
, size
, start
, nr
, align_mask
);
530 EXPORT_SYMBOL(gen_pool_first_fit_order_align
);
533 * gen_pool_best_fit - find the best fitting region of memory
534 * macthing the size requirement (no alignment constraint)
535 * @map: The address to base the search on
536 * @size: The bitmap size in bits
537 * @start: The bitnumber to start searching at
538 * @nr: The number of zeroed bits we're looking for
539 * @data: additional data - unused
541 * Iterate over the bitmap to find the smallest free region
542 * which we can allocate the memory.
544 unsigned long gen_pool_best_fit(unsigned long *map
, unsigned long size
,
545 unsigned long start
, unsigned int nr
, void *data
)
547 unsigned long start_bit
= size
;
548 unsigned long len
= size
+ 1;
551 index
= bitmap_find_next_zero_area(map
, size
, start
, nr
, 0);
553 while (index
< size
) {
554 int next_bit
= find_next_bit(map
, size
, index
+ nr
);
555 if ((next_bit
- index
) < len
) {
556 len
= next_bit
- index
;
561 index
= bitmap_find_next_zero_area(map
, size
,
562 next_bit
+ 1, nr
, 0);
567 EXPORT_SYMBOL(gen_pool_best_fit
);
569 static void devm_gen_pool_release(struct device
*dev
, void *res
)
571 gen_pool_destroy(*(struct gen_pool
**)res
);
574 static int devm_gen_pool_match(struct device
*dev
, void *res
, void *data
)
576 struct gen_pool
**p
= res
;
578 /* NULL data matches only a pool without an assigned name */
579 if (!data
&& !(*p
)->name
)
582 if (!data
|| !(*p
)->name
)
585 return !strcmp((*p
)->name
, data
);
589 * gen_pool_get - Obtain the gen_pool (if any) for a device
590 * @dev: device to retrieve the gen_pool from
591 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
593 * Returns the gen_pool for the device if one is present, or NULL.
595 struct gen_pool
*gen_pool_get(struct device
*dev
, const char *name
)
599 p
= devres_find(dev
, devm_gen_pool_release
, devm_gen_pool_match
,
605 EXPORT_SYMBOL_GPL(gen_pool_get
);
608 * devm_gen_pool_create - managed gen_pool_create
609 * @dev: device that provides the gen_pool
610 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
611 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
612 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
614 * Create a new special memory pool that can be used to manage special purpose
615 * memory not managed by the regular kmalloc/kfree interface. The pool will be
616 * automatically destroyed by the device management code.
618 struct gen_pool
*devm_gen_pool_create(struct device
*dev
, int min_alloc_order
,
619 int nid
, const char *name
)
621 struct gen_pool
**ptr
, *pool
;
622 const char *pool_name
= NULL
;
624 /* Check that genpool to be created is uniquely addressed on device */
625 if (gen_pool_get(dev
, name
))
626 return ERR_PTR(-EINVAL
);
629 pool_name
= kstrdup_const(name
, GFP_KERNEL
);
631 return ERR_PTR(-ENOMEM
);
634 ptr
= devres_alloc(devm_gen_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
638 pool
= gen_pool_create(min_alloc_order
, nid
);
643 pool
->name
= pool_name
;
644 devres_add(dev
, ptr
);
651 kfree_const(pool_name
);
653 return ERR_PTR(-ENOMEM
);
655 EXPORT_SYMBOL(devm_gen_pool_create
);
659 * of_gen_pool_get - find a pool by phandle property
661 * @propname: property name containing phandle(s)
662 * @index: index into the phandle array
664 * Returns the pool that contains the chunk starting at the physical
665 * address of the device tree node pointed at by the phandle property,
666 * or NULL if not found.
668 struct gen_pool
*of_gen_pool_get(struct device_node
*np
,
669 const char *propname
, int index
)
671 struct platform_device
*pdev
;
672 struct device_node
*np_pool
, *parent
;
673 const char *name
= NULL
;
674 struct gen_pool
*pool
= NULL
;
676 np_pool
= of_parse_phandle(np
, propname
, index
);
680 pdev
= of_find_device_by_node(np_pool
);
682 /* Check if named gen_pool is created by parent node device */
683 parent
= of_get_parent(np_pool
);
684 pdev
= of_find_device_by_node(parent
);
687 of_property_read_string(np_pool
, "label", &name
);
689 name
= np_pool
->name
;
692 pool
= gen_pool_get(&pdev
->dev
, name
);
693 of_node_put(np_pool
);
697 EXPORT_SYMBOL_GPL(of_gen_pool_get
);
698 #endif /* CONFIG_OF */