]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/idr.c
idr: remove MAX_IDR_MASK and move left MAX_IDR_* into idr.c
[mirror_ubuntu-artful-kernel.git] / lib / idr.c
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
40
41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
50 static struct kmem_cache *idr_layer_cache;
51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52 static DEFINE_PER_CPU(int, idr_preload_cnt);
53 static DEFINE_SPINLOCK(simple_ida_lock);
54
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers)
57 {
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61 }
62
63 static struct idr_layer *get_from_free_list(struct idr *idp)
64 {
65 struct idr_layer *p;
66 unsigned long flags;
67
68 spin_lock_irqsave(&idp->lock, flags);
69 if ((p = idp->id_free)) {
70 idp->id_free = p->ary[0];
71 idp->id_free_cnt--;
72 p->ary[0] = NULL;
73 }
74 spin_unlock_irqrestore(&idp->lock, flags);
75 return(p);
76 }
77
78 /**
79 * idr_layer_alloc - allocate a new idr_layer
80 * @gfp_mask: allocation mask
81 * @layer_idr: optional idr to allocate from
82 *
83 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
84 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
85 * an idr_layer from @idr->id_free.
86 *
87 * @layer_idr is to maintain backward compatibility with the old alloc
88 * interface - idr_pre_get() and idr_get_new*() - and will be removed
89 * together with per-pool preload buffer.
90 */
91 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
92 {
93 struct idr_layer *new;
94
95 /* this is the old path, bypass to get_from_free_list() */
96 if (layer_idr)
97 return get_from_free_list(layer_idr);
98
99 /* try to allocate directly from kmem_cache */
100 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
101 if (new)
102 return new;
103
104 /*
105 * Try to fetch one from the per-cpu preload buffer if in process
106 * context. See idr_preload() for details.
107 */
108 if (in_interrupt())
109 return NULL;
110
111 preempt_disable();
112 new = __this_cpu_read(idr_preload_head);
113 if (new) {
114 __this_cpu_write(idr_preload_head, new->ary[0]);
115 __this_cpu_dec(idr_preload_cnt);
116 new->ary[0] = NULL;
117 }
118 preempt_enable();
119 return new;
120 }
121
122 static void idr_layer_rcu_free(struct rcu_head *head)
123 {
124 struct idr_layer *layer;
125
126 layer = container_of(head, struct idr_layer, rcu_head);
127 kmem_cache_free(idr_layer_cache, layer);
128 }
129
130 static inline void free_layer(struct idr_layer *p)
131 {
132 call_rcu(&p->rcu_head, idr_layer_rcu_free);
133 }
134
135 /* only called when idp->lock is held */
136 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
137 {
138 p->ary[0] = idp->id_free;
139 idp->id_free = p;
140 idp->id_free_cnt++;
141 }
142
143 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
144 {
145 unsigned long flags;
146
147 /*
148 * Depends on the return element being zeroed.
149 */
150 spin_lock_irqsave(&idp->lock, flags);
151 __move_to_free_list(idp, p);
152 spin_unlock_irqrestore(&idp->lock, flags);
153 }
154
155 static void idr_mark_full(struct idr_layer **pa, int id)
156 {
157 struct idr_layer *p = pa[0];
158 int l = 0;
159
160 __set_bit(id & IDR_MASK, &p->bitmap);
161 /*
162 * If this layer is full mark the bit in the layer above to
163 * show that this part of the radix tree is full. This may
164 * complete the layer above and require walking up the radix
165 * tree.
166 */
167 while (p->bitmap == IDR_FULL) {
168 if (!(p = pa[++l]))
169 break;
170 id = id >> IDR_BITS;
171 __set_bit((id & IDR_MASK), &p->bitmap);
172 }
173 }
174
175 /**
176 * idr_pre_get - reserve resources for idr allocation
177 * @idp: idr handle
178 * @gfp_mask: memory allocation flags
179 *
180 * This function should be called prior to calling the idr_get_new* functions.
181 * It preallocates enough memory to satisfy the worst possible allocation. The
182 * caller should pass in GFP_KERNEL if possible. This of course requires that
183 * no spinning locks be held.
184 *
185 * If the system is REALLY out of memory this function returns %0,
186 * otherwise %1.
187 */
188 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
189 {
190 while (idp->id_free_cnt < MAX_IDR_FREE) {
191 struct idr_layer *new;
192 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
193 if (new == NULL)
194 return (0);
195 move_to_free_list(idp, new);
196 }
197 return 1;
198 }
199 EXPORT_SYMBOL(idr_pre_get);
200
201 /**
202 * sub_alloc - try to allocate an id without growing the tree depth
203 * @idp: idr handle
204 * @starting_id: id to start search at
205 * @id: pointer to the allocated handle
206 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
207 * @gfp_mask: allocation mask for idr_layer_alloc()
208 * @layer_idr: optional idr passed to idr_layer_alloc()
209 *
210 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
211 * growing its depth. Returns
212 *
213 * the allocated id >= 0 if successful,
214 * -EAGAIN if the tree needs to grow for allocation to succeed,
215 * -ENOSPC if the id space is exhausted,
216 * -ENOMEM if more idr_layers need to be allocated.
217 */
218 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
219 gfp_t gfp_mask, struct idr *layer_idr)
220 {
221 int n, m, sh;
222 struct idr_layer *p, *new;
223 int l, id, oid;
224 unsigned long bm;
225
226 id = *starting_id;
227 restart:
228 p = idp->top;
229 l = idp->layers;
230 pa[l--] = NULL;
231 while (1) {
232 /*
233 * We run around this while until we reach the leaf node...
234 */
235 n = (id >> (IDR_BITS*l)) & IDR_MASK;
236 bm = ~p->bitmap;
237 m = find_next_bit(&bm, IDR_SIZE, n);
238 if (m == IDR_SIZE) {
239 /* no space available go back to previous layer. */
240 l++;
241 oid = id;
242 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
243
244 /* if already at the top layer, we need to grow */
245 if (id >= 1 << (idp->layers * IDR_BITS)) {
246 *starting_id = id;
247 return -EAGAIN;
248 }
249 p = pa[l];
250 BUG_ON(!p);
251
252 /* If we need to go up one layer, continue the
253 * loop; otherwise, restart from the top.
254 */
255 sh = IDR_BITS * (l + 1);
256 if (oid >> sh == id >> sh)
257 continue;
258 else
259 goto restart;
260 }
261 if (m != n) {
262 sh = IDR_BITS*l;
263 id = ((id >> sh) ^ n ^ m) << sh;
264 }
265 if ((id >= MAX_IDR_BIT) || (id < 0))
266 return -ENOSPC;
267 if (l == 0)
268 break;
269 /*
270 * Create the layer below if it is missing.
271 */
272 if (!p->ary[m]) {
273 new = idr_layer_alloc(gfp_mask, layer_idr);
274 if (!new)
275 return -ENOMEM;
276 new->layer = l-1;
277 rcu_assign_pointer(p->ary[m], new);
278 p->count++;
279 }
280 pa[l--] = p;
281 p = p->ary[m];
282 }
283
284 pa[l] = p;
285 return id;
286 }
287
288 static int idr_get_empty_slot(struct idr *idp, int starting_id,
289 struct idr_layer **pa, gfp_t gfp_mask,
290 struct idr *layer_idr)
291 {
292 struct idr_layer *p, *new;
293 int layers, v, id;
294 unsigned long flags;
295
296 id = starting_id;
297 build_up:
298 p = idp->top;
299 layers = idp->layers;
300 if (unlikely(!p)) {
301 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
302 return -ENOMEM;
303 p->layer = 0;
304 layers = 1;
305 }
306 /*
307 * Add a new layer to the top of the tree if the requested
308 * id is larger than the currently allocated space.
309 */
310 while (id > idr_max(layers)) {
311 layers++;
312 if (!p->count) {
313 /* special case: if the tree is currently empty,
314 * then we grow the tree by moving the top node
315 * upwards.
316 */
317 p->layer++;
318 continue;
319 }
320 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
321 /*
322 * The allocation failed. If we built part of
323 * the structure tear it down.
324 */
325 spin_lock_irqsave(&idp->lock, flags);
326 for (new = p; p && p != idp->top; new = p) {
327 p = p->ary[0];
328 new->ary[0] = NULL;
329 new->bitmap = new->count = 0;
330 __move_to_free_list(idp, new);
331 }
332 spin_unlock_irqrestore(&idp->lock, flags);
333 return -ENOMEM;
334 }
335 new->ary[0] = p;
336 new->count = 1;
337 new->layer = layers-1;
338 if (p->bitmap == IDR_FULL)
339 __set_bit(0, &new->bitmap);
340 p = new;
341 }
342 rcu_assign_pointer(idp->top, p);
343 idp->layers = layers;
344 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
345 if (v == -EAGAIN)
346 goto build_up;
347 return(v);
348 }
349
350 /*
351 * @id and @pa are from a successful allocation from idr_get_empty_slot().
352 * Install the user pointer @ptr and mark the slot full.
353 */
354 static void idr_fill_slot(void *ptr, int id, struct idr_layer **pa)
355 {
356 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
357 pa[0]->count++;
358 idr_mark_full(pa, id);
359 }
360
361 /**
362 * idr_get_new_above - allocate new idr entry above or equal to a start id
363 * @idp: idr handle
364 * @ptr: pointer you want associated with the id
365 * @starting_id: id to start search at
366 * @id: pointer to the allocated handle
367 *
368 * This is the allocate id function. It should be called with any
369 * required locks.
370 *
371 * If allocation from IDR's private freelist fails, idr_get_new_above() will
372 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
373 * IDR's preallocation and then retry the idr_get_new_above() call.
374 *
375 * If the idr is full idr_get_new_above() will return %-ENOSPC.
376 *
377 * @id returns a value in the range @starting_id ... %0x7fffffff
378 */
379 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
380 {
381 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
382 int rv;
383
384 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
385 if (rv < 0)
386 return rv == -ENOMEM ? -EAGAIN : rv;
387
388 idr_fill_slot(ptr, rv, pa);
389 *id = rv;
390 return 0;
391 }
392 EXPORT_SYMBOL(idr_get_new_above);
393
394 /**
395 * idr_preload - preload for idr_alloc()
396 * @gfp_mask: allocation mask to use for preloading
397 *
398 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
399 * process context and each idr_preload() invocation should be matched with
400 * idr_preload_end(). Note that preemption is disabled while preloaded.
401 *
402 * The first idr_alloc() in the preloaded section can be treated as if it
403 * were invoked with @gfp_mask used for preloading. This allows using more
404 * permissive allocation masks for idrs protected by spinlocks.
405 *
406 * For example, if idr_alloc() below fails, the failure can be treated as
407 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
408 *
409 * idr_preload(GFP_KERNEL);
410 * spin_lock(lock);
411 *
412 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
413 *
414 * spin_unlock(lock);
415 * idr_preload_end();
416 * if (id < 0)
417 * error;
418 */
419 void idr_preload(gfp_t gfp_mask)
420 {
421 /*
422 * Consuming preload buffer from non-process context breaks preload
423 * allocation guarantee. Disallow usage from those contexts.
424 */
425 WARN_ON_ONCE(in_interrupt());
426 might_sleep_if(gfp_mask & __GFP_WAIT);
427
428 preempt_disable();
429
430 /*
431 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
432 * return value from idr_alloc() needs to be checked for failure
433 * anyway. Silently give up if allocation fails. The caller can
434 * treat failures from idr_alloc() as if idr_alloc() were called
435 * with @gfp_mask which should be enough.
436 */
437 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
438 struct idr_layer *new;
439
440 preempt_enable();
441 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
442 preempt_disable();
443 if (!new)
444 break;
445
446 /* link the new one to per-cpu preload list */
447 new->ary[0] = __this_cpu_read(idr_preload_head);
448 __this_cpu_write(idr_preload_head, new);
449 __this_cpu_inc(idr_preload_cnt);
450 }
451 }
452 EXPORT_SYMBOL(idr_preload);
453
454 /**
455 * idr_alloc - allocate new idr entry
456 * @idr: the (initialized) idr
457 * @ptr: pointer to be associated with the new id
458 * @start: the minimum id (inclusive)
459 * @end: the maximum id (exclusive, <= 0 for max)
460 * @gfp_mask: memory allocation flags
461 *
462 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
463 * available in the specified range, returns -ENOSPC. On memory allocation
464 * failure, returns -ENOMEM.
465 *
466 * Note that @end is treated as max when <= 0. This is to always allow
467 * using @start + N as @end as long as N is inside integer range.
468 *
469 * The user is responsible for exclusively synchronizing all operations
470 * which may modify @idr. However, read-only accesses such as idr_find()
471 * or iteration can be performed under RCU read lock provided the user
472 * destroys @ptr in RCU-safe way after removal from idr.
473 */
474 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
475 {
476 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
477 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
478 int id;
479
480 might_sleep_if(gfp_mask & __GFP_WAIT);
481
482 /* sanity checks */
483 if (WARN_ON_ONCE(start < 0))
484 return -EINVAL;
485 if (unlikely(max < start))
486 return -ENOSPC;
487
488 /* allocate id */
489 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
490 if (unlikely(id < 0))
491 return id;
492 if (unlikely(id > max))
493 return -ENOSPC;
494
495 idr_fill_slot(ptr, id, pa);
496 return id;
497 }
498 EXPORT_SYMBOL_GPL(idr_alloc);
499
500 static void idr_remove_warning(int id)
501 {
502 printk(KERN_WARNING
503 "idr_remove called for id=%d which is not allocated.\n", id);
504 dump_stack();
505 }
506
507 static void sub_remove(struct idr *idp, int shift, int id)
508 {
509 struct idr_layer *p = idp->top;
510 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
511 struct idr_layer ***paa = &pa[0];
512 struct idr_layer *to_free;
513 int n;
514
515 *paa = NULL;
516 *++paa = &idp->top;
517
518 while ((shift > 0) && p) {
519 n = (id >> shift) & IDR_MASK;
520 __clear_bit(n, &p->bitmap);
521 *++paa = &p->ary[n];
522 p = p->ary[n];
523 shift -= IDR_BITS;
524 }
525 n = id & IDR_MASK;
526 if (likely(p != NULL && test_bit(n, &p->bitmap))){
527 __clear_bit(n, &p->bitmap);
528 rcu_assign_pointer(p->ary[n], NULL);
529 to_free = NULL;
530 while(*paa && ! --((**paa)->count)){
531 if (to_free)
532 free_layer(to_free);
533 to_free = **paa;
534 **paa-- = NULL;
535 }
536 if (!*paa)
537 idp->layers = 0;
538 if (to_free)
539 free_layer(to_free);
540 } else
541 idr_remove_warning(id);
542 }
543
544 /**
545 * idr_remove - remove the given id and free its slot
546 * @idp: idr handle
547 * @id: unique key
548 */
549 void idr_remove(struct idr *idp, int id)
550 {
551 struct idr_layer *p;
552 struct idr_layer *to_free;
553
554 if (WARN_ON_ONCE(id < 0))
555 return;
556
557 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
558 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
559 idp->top->ary[0]) {
560 /*
561 * Single child at leftmost slot: we can shrink the tree.
562 * This level is not needed anymore since when layers are
563 * inserted, they are inserted at the top of the existing
564 * tree.
565 */
566 to_free = idp->top;
567 p = idp->top->ary[0];
568 rcu_assign_pointer(idp->top, p);
569 --idp->layers;
570 to_free->bitmap = to_free->count = 0;
571 free_layer(to_free);
572 }
573 while (idp->id_free_cnt >= MAX_IDR_FREE) {
574 p = get_from_free_list(idp);
575 /*
576 * Note: we don't call the rcu callback here, since the only
577 * layers that fall into the freelist are those that have been
578 * preallocated.
579 */
580 kmem_cache_free(idr_layer_cache, p);
581 }
582 return;
583 }
584 EXPORT_SYMBOL(idr_remove);
585
586 void __idr_remove_all(struct idr *idp)
587 {
588 int n, id, max;
589 int bt_mask;
590 struct idr_layer *p;
591 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
592 struct idr_layer **paa = &pa[0];
593
594 n = idp->layers * IDR_BITS;
595 p = idp->top;
596 rcu_assign_pointer(idp->top, NULL);
597 max = idr_max(idp->layers);
598
599 id = 0;
600 while (id >= 0 && id <= max) {
601 while (n > IDR_BITS && p) {
602 n -= IDR_BITS;
603 *paa++ = p;
604 p = p->ary[(id >> n) & IDR_MASK];
605 }
606
607 bt_mask = id;
608 id += 1 << n;
609 /* Get the highest bit that the above add changed from 0->1. */
610 while (n < fls(id ^ bt_mask)) {
611 if (p)
612 free_layer(p);
613 n += IDR_BITS;
614 p = *--paa;
615 }
616 }
617 idp->layers = 0;
618 }
619 EXPORT_SYMBOL(__idr_remove_all);
620
621 /**
622 * idr_destroy - release all cached layers within an idr tree
623 * @idp: idr handle
624 *
625 * Free all id mappings and all idp_layers. After this function, @idp is
626 * completely unused and can be freed / recycled. The caller is
627 * responsible for ensuring that no one else accesses @idp during or after
628 * idr_destroy().
629 *
630 * A typical clean-up sequence for objects stored in an idr tree will use
631 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
632 * free up the id mappings and cached idr_layers.
633 */
634 void idr_destroy(struct idr *idp)
635 {
636 __idr_remove_all(idp);
637
638 while (idp->id_free_cnt) {
639 struct idr_layer *p = get_from_free_list(idp);
640 kmem_cache_free(idr_layer_cache, p);
641 }
642 }
643 EXPORT_SYMBOL(idr_destroy);
644
645 /**
646 * idr_find - return pointer for given id
647 * @idp: idr handle
648 * @id: lookup key
649 *
650 * Return the pointer given the id it has been registered with. A %NULL
651 * return indicates that @id is not valid or you passed %NULL in
652 * idr_get_new().
653 *
654 * This function can be called under rcu_read_lock(), given that the leaf
655 * pointers lifetimes are correctly managed.
656 */
657 void *idr_find(struct idr *idp, int id)
658 {
659 int n;
660 struct idr_layer *p;
661
662 if (WARN_ON_ONCE(id < 0))
663 return NULL;
664
665 p = rcu_dereference_raw(idp->top);
666 if (!p)
667 return NULL;
668 n = (p->layer+1) * IDR_BITS;
669
670 if (id > idr_max(p->layer + 1))
671 return NULL;
672 BUG_ON(n == 0);
673
674 while (n > 0 && p) {
675 n -= IDR_BITS;
676 BUG_ON(n != p->layer*IDR_BITS);
677 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
678 }
679 return((void *)p);
680 }
681 EXPORT_SYMBOL(idr_find);
682
683 /**
684 * idr_for_each - iterate through all stored pointers
685 * @idp: idr handle
686 * @fn: function to be called for each pointer
687 * @data: data passed back to callback function
688 *
689 * Iterate over the pointers registered with the given idr. The
690 * callback function will be called for each pointer currently
691 * registered, passing the id, the pointer and the data pointer passed
692 * to this function. It is not safe to modify the idr tree while in
693 * the callback, so functions such as idr_get_new and idr_remove are
694 * not allowed.
695 *
696 * We check the return of @fn each time. If it returns anything other
697 * than %0, we break out and return that value.
698 *
699 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
700 */
701 int idr_for_each(struct idr *idp,
702 int (*fn)(int id, void *p, void *data), void *data)
703 {
704 int n, id, max, error = 0;
705 struct idr_layer *p;
706 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
707 struct idr_layer **paa = &pa[0];
708
709 n = idp->layers * IDR_BITS;
710 p = rcu_dereference_raw(idp->top);
711 max = idr_max(idp->layers);
712
713 id = 0;
714 while (id >= 0 && id <= max) {
715 while (n > 0 && p) {
716 n -= IDR_BITS;
717 *paa++ = p;
718 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
719 }
720
721 if (p) {
722 error = fn(id, (void *)p, data);
723 if (error)
724 break;
725 }
726
727 id += 1 << n;
728 while (n < fls(id)) {
729 n += IDR_BITS;
730 p = *--paa;
731 }
732 }
733
734 return error;
735 }
736 EXPORT_SYMBOL(idr_for_each);
737
738 /**
739 * idr_get_next - lookup next object of id to given id.
740 * @idp: idr handle
741 * @nextidp: pointer to lookup key
742 *
743 * Returns pointer to registered object with id, which is next number to
744 * given id. After being looked up, *@nextidp will be updated for the next
745 * iteration.
746 *
747 * This function can be called under rcu_read_lock(), given that the leaf
748 * pointers lifetimes are correctly managed.
749 */
750 void *idr_get_next(struct idr *idp, int *nextidp)
751 {
752 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
753 struct idr_layer **paa = &pa[0];
754 int id = *nextidp;
755 int n, max;
756
757 /* find first ent */
758 p = rcu_dereference_raw(idp->top);
759 if (!p)
760 return NULL;
761 n = (p->layer + 1) * IDR_BITS;
762 max = idr_max(p->layer + 1);
763
764 while (id >= 0 && id <= max) {
765 while (n > 0 && p) {
766 n -= IDR_BITS;
767 *paa++ = p;
768 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
769 }
770
771 if (p) {
772 *nextidp = id;
773 return p;
774 }
775
776 /*
777 * Proceed to the next layer at the current level. Unlike
778 * idr_for_each(), @id isn't guaranteed to be aligned to
779 * layer boundary at this point and adding 1 << n may
780 * incorrectly skip IDs. Make sure we jump to the
781 * beginning of the next layer using round_up().
782 */
783 id = round_up(id + 1, 1 << n);
784 while (n < fls(id)) {
785 n += IDR_BITS;
786 p = *--paa;
787 }
788 }
789 return NULL;
790 }
791 EXPORT_SYMBOL(idr_get_next);
792
793
794 /**
795 * idr_replace - replace pointer for given id
796 * @idp: idr handle
797 * @ptr: pointer you want associated with the id
798 * @id: lookup key
799 *
800 * Replace the pointer registered with an id and return the old value.
801 * A %-ENOENT return indicates that @id was not found.
802 * A %-EINVAL return indicates that @id was not within valid constraints.
803 *
804 * The caller must serialize with writers.
805 */
806 void *idr_replace(struct idr *idp, void *ptr, int id)
807 {
808 int n;
809 struct idr_layer *p, *old_p;
810
811 if (WARN_ON_ONCE(id < 0))
812 return ERR_PTR(-EINVAL);
813
814 p = idp->top;
815 if (!p)
816 return ERR_PTR(-EINVAL);
817
818 n = (p->layer+1) * IDR_BITS;
819
820 if (id >= (1 << n))
821 return ERR_PTR(-EINVAL);
822
823 n -= IDR_BITS;
824 while ((n > 0) && p) {
825 p = p->ary[(id >> n) & IDR_MASK];
826 n -= IDR_BITS;
827 }
828
829 n = id & IDR_MASK;
830 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
831 return ERR_PTR(-ENOENT);
832
833 old_p = p->ary[n];
834 rcu_assign_pointer(p->ary[n], ptr);
835
836 return old_p;
837 }
838 EXPORT_SYMBOL(idr_replace);
839
840 void __init idr_init_cache(void)
841 {
842 idr_layer_cache = kmem_cache_create("idr_layer_cache",
843 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
844 }
845
846 /**
847 * idr_init - initialize idr handle
848 * @idp: idr handle
849 *
850 * This function is use to set up the handle (@idp) that you will pass
851 * to the rest of the functions.
852 */
853 void idr_init(struct idr *idp)
854 {
855 memset(idp, 0, sizeof(struct idr));
856 spin_lock_init(&idp->lock);
857 }
858 EXPORT_SYMBOL(idr_init);
859
860
861 /**
862 * DOC: IDA description
863 * IDA - IDR based ID allocator
864 *
865 * This is id allocator without id -> pointer translation. Memory
866 * usage is much lower than full blown idr because each id only
867 * occupies a bit. ida uses a custom leaf node which contains
868 * IDA_BITMAP_BITS slots.
869 *
870 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
871 */
872
873 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
874 {
875 unsigned long flags;
876
877 if (!ida->free_bitmap) {
878 spin_lock_irqsave(&ida->idr.lock, flags);
879 if (!ida->free_bitmap) {
880 ida->free_bitmap = bitmap;
881 bitmap = NULL;
882 }
883 spin_unlock_irqrestore(&ida->idr.lock, flags);
884 }
885
886 kfree(bitmap);
887 }
888
889 /**
890 * ida_pre_get - reserve resources for ida allocation
891 * @ida: ida handle
892 * @gfp_mask: memory allocation flag
893 *
894 * This function should be called prior to locking and calling the
895 * following function. It preallocates enough memory to satisfy the
896 * worst possible allocation.
897 *
898 * If the system is REALLY out of memory this function returns %0,
899 * otherwise %1.
900 */
901 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
902 {
903 /* allocate idr_layers */
904 if (!idr_pre_get(&ida->idr, gfp_mask))
905 return 0;
906
907 /* allocate free_bitmap */
908 if (!ida->free_bitmap) {
909 struct ida_bitmap *bitmap;
910
911 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
912 if (!bitmap)
913 return 0;
914
915 free_bitmap(ida, bitmap);
916 }
917
918 return 1;
919 }
920 EXPORT_SYMBOL(ida_pre_get);
921
922 /**
923 * ida_get_new_above - allocate new ID above or equal to a start id
924 * @ida: ida handle
925 * @starting_id: id to start search at
926 * @p_id: pointer to the allocated handle
927 *
928 * Allocate new ID above or equal to @starting_id. It should be called
929 * with any required locks.
930 *
931 * If memory is required, it will return %-EAGAIN, you should unlock
932 * and go back to the ida_pre_get() call. If the ida is full, it will
933 * return %-ENOSPC.
934 *
935 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
936 */
937 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
938 {
939 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
940 struct ida_bitmap *bitmap;
941 unsigned long flags;
942 int idr_id = starting_id / IDA_BITMAP_BITS;
943 int offset = starting_id % IDA_BITMAP_BITS;
944 int t, id;
945
946 restart:
947 /* get vacant slot */
948 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
949 if (t < 0)
950 return t == -ENOMEM ? -EAGAIN : t;
951
952 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
953 return -ENOSPC;
954
955 if (t != idr_id)
956 offset = 0;
957 idr_id = t;
958
959 /* if bitmap isn't there, create a new one */
960 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
961 if (!bitmap) {
962 spin_lock_irqsave(&ida->idr.lock, flags);
963 bitmap = ida->free_bitmap;
964 ida->free_bitmap = NULL;
965 spin_unlock_irqrestore(&ida->idr.lock, flags);
966
967 if (!bitmap)
968 return -EAGAIN;
969
970 memset(bitmap, 0, sizeof(struct ida_bitmap));
971 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
972 (void *)bitmap);
973 pa[0]->count++;
974 }
975
976 /* lookup for empty slot */
977 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
978 if (t == IDA_BITMAP_BITS) {
979 /* no empty slot after offset, continue to the next chunk */
980 idr_id++;
981 offset = 0;
982 goto restart;
983 }
984
985 id = idr_id * IDA_BITMAP_BITS + t;
986 if (id >= MAX_IDR_BIT)
987 return -ENOSPC;
988
989 __set_bit(t, bitmap->bitmap);
990 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
991 idr_mark_full(pa, idr_id);
992
993 *p_id = id;
994
995 /* Each leaf node can handle nearly a thousand slots and the
996 * whole idea of ida is to have small memory foot print.
997 * Throw away extra resources one by one after each successful
998 * allocation.
999 */
1000 if (ida->idr.id_free_cnt || ida->free_bitmap) {
1001 struct idr_layer *p = get_from_free_list(&ida->idr);
1002 if (p)
1003 kmem_cache_free(idr_layer_cache, p);
1004 }
1005
1006 return 0;
1007 }
1008 EXPORT_SYMBOL(ida_get_new_above);
1009
1010 /**
1011 * ida_remove - remove the given ID
1012 * @ida: ida handle
1013 * @id: ID to free
1014 */
1015 void ida_remove(struct ida *ida, int id)
1016 {
1017 struct idr_layer *p = ida->idr.top;
1018 int shift = (ida->idr.layers - 1) * IDR_BITS;
1019 int idr_id = id / IDA_BITMAP_BITS;
1020 int offset = id % IDA_BITMAP_BITS;
1021 int n;
1022 struct ida_bitmap *bitmap;
1023
1024 /* clear full bits while looking up the leaf idr_layer */
1025 while ((shift > 0) && p) {
1026 n = (idr_id >> shift) & IDR_MASK;
1027 __clear_bit(n, &p->bitmap);
1028 p = p->ary[n];
1029 shift -= IDR_BITS;
1030 }
1031
1032 if (p == NULL)
1033 goto err;
1034
1035 n = idr_id & IDR_MASK;
1036 __clear_bit(n, &p->bitmap);
1037
1038 bitmap = (void *)p->ary[n];
1039 if (!test_bit(offset, bitmap->bitmap))
1040 goto err;
1041
1042 /* update bitmap and remove it if empty */
1043 __clear_bit(offset, bitmap->bitmap);
1044 if (--bitmap->nr_busy == 0) {
1045 __set_bit(n, &p->bitmap); /* to please idr_remove() */
1046 idr_remove(&ida->idr, idr_id);
1047 free_bitmap(ida, bitmap);
1048 }
1049
1050 return;
1051
1052 err:
1053 printk(KERN_WARNING
1054 "ida_remove called for id=%d which is not allocated.\n", id);
1055 }
1056 EXPORT_SYMBOL(ida_remove);
1057
1058 /**
1059 * ida_destroy - release all cached layers within an ida tree
1060 * @ida: ida handle
1061 */
1062 void ida_destroy(struct ida *ida)
1063 {
1064 idr_destroy(&ida->idr);
1065 kfree(ida->free_bitmap);
1066 }
1067 EXPORT_SYMBOL(ida_destroy);
1068
1069 /**
1070 * ida_simple_get - get a new id.
1071 * @ida: the (initialized) ida.
1072 * @start: the minimum id (inclusive, < 0x8000000)
1073 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1074 * @gfp_mask: memory allocation flags
1075 *
1076 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1077 * On memory allocation failure, returns -ENOMEM.
1078 *
1079 * Use ida_simple_remove() to get rid of an id.
1080 */
1081 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1082 gfp_t gfp_mask)
1083 {
1084 int ret, id;
1085 unsigned int max;
1086 unsigned long flags;
1087
1088 BUG_ON((int)start < 0);
1089 BUG_ON((int)end < 0);
1090
1091 if (end == 0)
1092 max = 0x80000000;
1093 else {
1094 BUG_ON(end < start);
1095 max = end - 1;
1096 }
1097
1098 again:
1099 if (!ida_pre_get(ida, gfp_mask))
1100 return -ENOMEM;
1101
1102 spin_lock_irqsave(&simple_ida_lock, flags);
1103 ret = ida_get_new_above(ida, start, &id);
1104 if (!ret) {
1105 if (id > max) {
1106 ida_remove(ida, id);
1107 ret = -ENOSPC;
1108 } else {
1109 ret = id;
1110 }
1111 }
1112 spin_unlock_irqrestore(&simple_ida_lock, flags);
1113
1114 if (unlikely(ret == -EAGAIN))
1115 goto again;
1116
1117 return ret;
1118 }
1119 EXPORT_SYMBOL(ida_simple_get);
1120
1121 /**
1122 * ida_simple_remove - remove an allocated id.
1123 * @ida: the (initialized) ida.
1124 * @id: the id returned by ida_simple_get.
1125 */
1126 void ida_simple_remove(struct ida *ida, unsigned int id)
1127 {
1128 unsigned long flags;
1129
1130 BUG_ON((int)id < 0);
1131 spin_lock_irqsave(&simple_ida_lock, flags);
1132 ida_remove(ida, id);
1133 spin_unlock_irqrestore(&simple_ida_lock, flags);
1134 }
1135 EXPORT_SYMBOL(ida_simple_remove);
1136
1137 /**
1138 * ida_init - initialize ida handle
1139 * @ida: ida handle
1140 *
1141 * This function is use to set up the handle (@ida) that you will pass
1142 * to the rest of the functions.
1143 */
1144 void ida_init(struct ida *ida)
1145 {
1146 memset(ida, 0, sizeof(struct ida));
1147 idr_init(&ida->idr);
1148
1149 }
1150 EXPORT_SYMBOL(ida_init);