]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/idr.c
Merge tag 'renesas-pinctrl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / lib / idr.c
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
40
41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
50 static struct kmem_cache *idr_layer_cache;
51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52 static DEFINE_PER_CPU(int, idr_preload_cnt);
53 static DEFINE_SPINLOCK(simple_ida_lock);
54
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers)
57 {
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61 }
62
63 /*
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
67 */
68 static int idr_layer_prefix_mask(int layer)
69 {
70 return ~idr_max(layer + 1);
71 }
72
73 static struct idr_layer *get_from_free_list(struct idr *idp)
74 {
75 struct idr_layer *p;
76 unsigned long flags;
77
78 spin_lock_irqsave(&idp->lock, flags);
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
83 }
84 spin_unlock_irqrestore(&idp->lock, flags);
85 return(p);
86 }
87
88 /**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
92 *
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
96 *
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
100 */
101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102 {
103 struct idr_layer *new;
104
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
108
109 /*
110 * Try to allocate directly from kmem_cache. We want to try this
111 * before preload buffer; otherwise, non-preloading idr_alloc()
112 * users will end up taking advantage of preloading ones. As the
113 * following is allowed to fail for preloaded cases, suppress
114 * warning this time.
115 */
116 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
117 if (new)
118 return new;
119
120 /*
121 * Try to fetch one from the per-cpu preload buffer if in process
122 * context. See idr_preload() for details.
123 */
124 if (!in_interrupt()) {
125 preempt_disable();
126 new = __this_cpu_read(idr_preload_head);
127 if (new) {
128 __this_cpu_write(idr_preload_head, new->ary[0]);
129 __this_cpu_dec(idr_preload_cnt);
130 new->ary[0] = NULL;
131 }
132 preempt_enable();
133 if (new)
134 return new;
135 }
136
137 /*
138 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so
139 * that memory allocation failure warning is printed as intended.
140 */
141 return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
142 }
143
144 static void idr_layer_rcu_free(struct rcu_head *head)
145 {
146 struct idr_layer *layer;
147
148 layer = container_of(head, struct idr_layer, rcu_head);
149 kmem_cache_free(idr_layer_cache, layer);
150 }
151
152 static inline void free_layer(struct idr *idr, struct idr_layer *p)
153 {
154 if (idr->hint && idr->hint == p)
155 RCU_INIT_POINTER(idr->hint, NULL);
156 call_rcu(&p->rcu_head, idr_layer_rcu_free);
157 }
158
159 /* only called when idp->lock is held */
160 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
161 {
162 p->ary[0] = idp->id_free;
163 idp->id_free = p;
164 idp->id_free_cnt++;
165 }
166
167 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
168 {
169 unsigned long flags;
170
171 /*
172 * Depends on the return element being zeroed.
173 */
174 spin_lock_irqsave(&idp->lock, flags);
175 __move_to_free_list(idp, p);
176 spin_unlock_irqrestore(&idp->lock, flags);
177 }
178
179 static void idr_mark_full(struct idr_layer **pa, int id)
180 {
181 struct idr_layer *p = pa[0];
182 int l = 0;
183
184 __set_bit(id & IDR_MASK, p->bitmap);
185 /*
186 * If this layer is full mark the bit in the layer above to
187 * show that this part of the radix tree is full. This may
188 * complete the layer above and require walking up the radix
189 * tree.
190 */
191 while (bitmap_full(p->bitmap, IDR_SIZE)) {
192 if (!(p = pa[++l]))
193 break;
194 id = id >> IDR_BITS;
195 __set_bit((id & IDR_MASK), p->bitmap);
196 }
197 }
198
199 int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
200 {
201 while (idp->id_free_cnt < MAX_IDR_FREE) {
202 struct idr_layer *new;
203 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
204 if (new == NULL)
205 return (0);
206 move_to_free_list(idp, new);
207 }
208 return 1;
209 }
210 EXPORT_SYMBOL(__idr_pre_get);
211
212 /**
213 * sub_alloc - try to allocate an id without growing the tree depth
214 * @idp: idr handle
215 * @starting_id: id to start search at
216 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
217 * @gfp_mask: allocation mask for idr_layer_alloc()
218 * @layer_idr: optional idr passed to idr_layer_alloc()
219 *
220 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
221 * growing its depth. Returns
222 *
223 * the allocated id >= 0 if successful,
224 * -EAGAIN if the tree needs to grow for allocation to succeed,
225 * -ENOSPC if the id space is exhausted,
226 * -ENOMEM if more idr_layers need to be allocated.
227 */
228 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
229 gfp_t gfp_mask, struct idr *layer_idr)
230 {
231 int n, m, sh;
232 struct idr_layer *p, *new;
233 int l, id, oid;
234
235 id = *starting_id;
236 restart:
237 p = idp->top;
238 l = idp->layers;
239 pa[l--] = NULL;
240 while (1) {
241 /*
242 * We run around this while until we reach the leaf node...
243 */
244 n = (id >> (IDR_BITS*l)) & IDR_MASK;
245 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
246 if (m == IDR_SIZE) {
247 /* no space available go back to previous layer. */
248 l++;
249 oid = id;
250 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
251
252 /* if already at the top layer, we need to grow */
253 if (id >= 1 << (idp->layers * IDR_BITS)) {
254 *starting_id = id;
255 return -EAGAIN;
256 }
257 p = pa[l];
258 BUG_ON(!p);
259
260 /* If we need to go up one layer, continue the
261 * loop; otherwise, restart from the top.
262 */
263 sh = IDR_BITS * (l + 1);
264 if (oid >> sh == id >> sh)
265 continue;
266 else
267 goto restart;
268 }
269 if (m != n) {
270 sh = IDR_BITS*l;
271 id = ((id >> sh) ^ n ^ m) << sh;
272 }
273 if ((id >= MAX_IDR_BIT) || (id < 0))
274 return -ENOSPC;
275 if (l == 0)
276 break;
277 /*
278 * Create the layer below if it is missing.
279 */
280 if (!p->ary[m]) {
281 new = idr_layer_alloc(gfp_mask, layer_idr);
282 if (!new)
283 return -ENOMEM;
284 new->layer = l-1;
285 new->prefix = id & idr_layer_prefix_mask(new->layer);
286 rcu_assign_pointer(p->ary[m], new);
287 p->count++;
288 }
289 pa[l--] = p;
290 p = p->ary[m];
291 }
292
293 pa[l] = p;
294 return id;
295 }
296
297 static int idr_get_empty_slot(struct idr *idp, int starting_id,
298 struct idr_layer **pa, gfp_t gfp_mask,
299 struct idr *layer_idr)
300 {
301 struct idr_layer *p, *new;
302 int layers, v, id;
303 unsigned long flags;
304
305 id = starting_id;
306 build_up:
307 p = idp->top;
308 layers = idp->layers;
309 if (unlikely(!p)) {
310 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
311 return -ENOMEM;
312 p->layer = 0;
313 layers = 1;
314 }
315 /*
316 * Add a new layer to the top of the tree if the requested
317 * id is larger than the currently allocated space.
318 */
319 while (id > idr_max(layers)) {
320 layers++;
321 if (!p->count) {
322 /* special case: if the tree is currently empty,
323 * then we grow the tree by moving the top node
324 * upwards.
325 */
326 p->layer++;
327 WARN_ON_ONCE(p->prefix);
328 continue;
329 }
330 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
331 /*
332 * The allocation failed. If we built part of
333 * the structure tear it down.
334 */
335 spin_lock_irqsave(&idp->lock, flags);
336 for (new = p; p && p != idp->top; new = p) {
337 p = p->ary[0];
338 new->ary[0] = NULL;
339 new->count = 0;
340 bitmap_clear(new->bitmap, 0, IDR_SIZE);
341 __move_to_free_list(idp, new);
342 }
343 spin_unlock_irqrestore(&idp->lock, flags);
344 return -ENOMEM;
345 }
346 new->ary[0] = p;
347 new->count = 1;
348 new->layer = layers-1;
349 new->prefix = id & idr_layer_prefix_mask(new->layer);
350 if (bitmap_full(p->bitmap, IDR_SIZE))
351 __set_bit(0, new->bitmap);
352 p = new;
353 }
354 rcu_assign_pointer(idp->top, p);
355 idp->layers = layers;
356 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
357 if (v == -EAGAIN)
358 goto build_up;
359 return(v);
360 }
361
362 /*
363 * @id and @pa are from a successful allocation from idr_get_empty_slot().
364 * Install the user pointer @ptr and mark the slot full.
365 */
366 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
367 struct idr_layer **pa)
368 {
369 /* update hint used for lookup, cleared from free_layer() */
370 rcu_assign_pointer(idr->hint, pa[0]);
371
372 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
373 pa[0]->count++;
374 idr_mark_full(pa, id);
375 }
376
377 int __idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
378 {
379 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
380 int rv;
381
382 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
383 if (rv < 0)
384 return rv == -ENOMEM ? -EAGAIN : rv;
385
386 idr_fill_slot(idp, ptr, rv, pa);
387 *id = rv;
388 return 0;
389 }
390 EXPORT_SYMBOL(__idr_get_new_above);
391
392 /**
393 * idr_preload - preload for idr_alloc()
394 * @gfp_mask: allocation mask to use for preloading
395 *
396 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
397 * process context and each idr_preload() invocation should be matched with
398 * idr_preload_end(). Note that preemption is disabled while preloaded.
399 *
400 * The first idr_alloc() in the preloaded section can be treated as if it
401 * were invoked with @gfp_mask used for preloading. This allows using more
402 * permissive allocation masks for idrs protected by spinlocks.
403 *
404 * For example, if idr_alloc() below fails, the failure can be treated as
405 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
406 *
407 * idr_preload(GFP_KERNEL);
408 * spin_lock(lock);
409 *
410 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
411 *
412 * spin_unlock(lock);
413 * idr_preload_end();
414 * if (id < 0)
415 * error;
416 */
417 void idr_preload(gfp_t gfp_mask)
418 {
419 /*
420 * Consuming preload buffer from non-process context breaks preload
421 * allocation guarantee. Disallow usage from those contexts.
422 */
423 WARN_ON_ONCE(in_interrupt());
424 might_sleep_if(gfp_mask & __GFP_WAIT);
425
426 preempt_disable();
427
428 /*
429 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
430 * return value from idr_alloc() needs to be checked for failure
431 * anyway. Silently give up if allocation fails. The caller can
432 * treat failures from idr_alloc() as if idr_alloc() were called
433 * with @gfp_mask which should be enough.
434 */
435 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
436 struct idr_layer *new;
437
438 preempt_enable();
439 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
440 preempt_disable();
441 if (!new)
442 break;
443
444 /* link the new one to per-cpu preload list */
445 new->ary[0] = __this_cpu_read(idr_preload_head);
446 __this_cpu_write(idr_preload_head, new);
447 __this_cpu_inc(idr_preload_cnt);
448 }
449 }
450 EXPORT_SYMBOL(idr_preload);
451
452 /**
453 * idr_alloc - allocate new idr entry
454 * @idr: the (initialized) idr
455 * @ptr: pointer to be associated with the new id
456 * @start: the minimum id (inclusive)
457 * @end: the maximum id (exclusive, <= 0 for max)
458 * @gfp_mask: memory allocation flags
459 *
460 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
461 * available in the specified range, returns -ENOSPC. On memory allocation
462 * failure, returns -ENOMEM.
463 *
464 * Note that @end is treated as max when <= 0. This is to always allow
465 * using @start + N as @end as long as N is inside integer range.
466 *
467 * The user is responsible for exclusively synchronizing all operations
468 * which may modify @idr. However, read-only accesses such as idr_find()
469 * or iteration can be performed under RCU read lock provided the user
470 * destroys @ptr in RCU-safe way after removal from idr.
471 */
472 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
473 {
474 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
475 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
476 int id;
477
478 might_sleep_if(gfp_mask & __GFP_WAIT);
479
480 /* sanity checks */
481 if (WARN_ON_ONCE(start < 0))
482 return -EINVAL;
483 if (unlikely(max < start))
484 return -ENOSPC;
485
486 /* allocate id */
487 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
488 if (unlikely(id < 0))
489 return id;
490 if (unlikely(id > max))
491 return -ENOSPC;
492
493 idr_fill_slot(idr, ptr, id, pa);
494 return id;
495 }
496 EXPORT_SYMBOL_GPL(idr_alloc);
497
498 /**
499 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
500 * @idr: the (initialized) idr
501 * @ptr: pointer to be associated with the new id
502 * @start: the minimum id (inclusive)
503 * @end: the maximum id (exclusive, <= 0 for max)
504 * @gfp_mask: memory allocation flags
505 *
506 * Essentially the same as idr_alloc, but prefers to allocate progressively
507 * higher ids if it can. If the "cur" counter wraps, then it will start again
508 * at the "start" end of the range and allocate one that has already been used.
509 */
510 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
511 gfp_t gfp_mask)
512 {
513 int id;
514
515 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
516 if (id == -ENOSPC)
517 id = idr_alloc(idr, ptr, start, end, gfp_mask);
518
519 if (likely(id >= 0))
520 idr->cur = id + 1;
521 return id;
522 }
523 EXPORT_SYMBOL(idr_alloc_cyclic);
524
525 static void idr_remove_warning(int id)
526 {
527 printk(KERN_WARNING
528 "idr_remove called for id=%d which is not allocated.\n", id);
529 dump_stack();
530 }
531
532 static void sub_remove(struct idr *idp, int shift, int id)
533 {
534 struct idr_layer *p = idp->top;
535 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
536 struct idr_layer ***paa = &pa[0];
537 struct idr_layer *to_free;
538 int n;
539
540 *paa = NULL;
541 *++paa = &idp->top;
542
543 while ((shift > 0) && p) {
544 n = (id >> shift) & IDR_MASK;
545 __clear_bit(n, p->bitmap);
546 *++paa = &p->ary[n];
547 p = p->ary[n];
548 shift -= IDR_BITS;
549 }
550 n = id & IDR_MASK;
551 if (likely(p != NULL && test_bit(n, p->bitmap))) {
552 __clear_bit(n, p->bitmap);
553 rcu_assign_pointer(p->ary[n], NULL);
554 to_free = NULL;
555 while(*paa && ! --((**paa)->count)){
556 if (to_free)
557 free_layer(idp, to_free);
558 to_free = **paa;
559 **paa-- = NULL;
560 }
561 if (!*paa)
562 idp->layers = 0;
563 if (to_free)
564 free_layer(idp, to_free);
565 } else
566 idr_remove_warning(id);
567 }
568
569 /**
570 * idr_remove - remove the given id and free its slot
571 * @idp: idr handle
572 * @id: unique key
573 */
574 void idr_remove(struct idr *idp, int id)
575 {
576 struct idr_layer *p;
577 struct idr_layer *to_free;
578
579 if (id < 0)
580 return;
581
582 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
583 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
584 idp->top->ary[0]) {
585 /*
586 * Single child at leftmost slot: we can shrink the tree.
587 * This level is not needed anymore since when layers are
588 * inserted, they are inserted at the top of the existing
589 * tree.
590 */
591 to_free = idp->top;
592 p = idp->top->ary[0];
593 rcu_assign_pointer(idp->top, p);
594 --idp->layers;
595 to_free->count = 0;
596 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
597 free_layer(idp, to_free);
598 }
599 while (idp->id_free_cnt >= MAX_IDR_FREE) {
600 p = get_from_free_list(idp);
601 /*
602 * Note: we don't call the rcu callback here, since the only
603 * layers that fall into the freelist are those that have been
604 * preallocated.
605 */
606 kmem_cache_free(idr_layer_cache, p);
607 }
608 return;
609 }
610 EXPORT_SYMBOL(idr_remove);
611
612 void __idr_remove_all(struct idr *idp)
613 {
614 int n, id, max;
615 int bt_mask;
616 struct idr_layer *p;
617 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
618 struct idr_layer **paa = &pa[0];
619
620 n = idp->layers * IDR_BITS;
621 p = idp->top;
622 rcu_assign_pointer(idp->top, NULL);
623 max = idr_max(idp->layers);
624
625 id = 0;
626 while (id >= 0 && id <= max) {
627 while (n > IDR_BITS && p) {
628 n -= IDR_BITS;
629 *paa++ = p;
630 p = p->ary[(id >> n) & IDR_MASK];
631 }
632
633 bt_mask = id;
634 id += 1 << n;
635 /* Get the highest bit that the above add changed from 0->1. */
636 while (n < fls(id ^ bt_mask)) {
637 if (p)
638 free_layer(idp, p);
639 n += IDR_BITS;
640 p = *--paa;
641 }
642 }
643 idp->layers = 0;
644 }
645 EXPORT_SYMBOL(__idr_remove_all);
646
647 /**
648 * idr_destroy - release all cached layers within an idr tree
649 * @idp: idr handle
650 *
651 * Free all id mappings and all idp_layers. After this function, @idp is
652 * completely unused and can be freed / recycled. The caller is
653 * responsible for ensuring that no one else accesses @idp during or after
654 * idr_destroy().
655 *
656 * A typical clean-up sequence for objects stored in an idr tree will use
657 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
658 * free up the id mappings and cached idr_layers.
659 */
660 void idr_destroy(struct idr *idp)
661 {
662 __idr_remove_all(idp);
663
664 while (idp->id_free_cnt) {
665 struct idr_layer *p = get_from_free_list(idp);
666 kmem_cache_free(idr_layer_cache, p);
667 }
668 }
669 EXPORT_SYMBOL(idr_destroy);
670
671 void *idr_find_slowpath(struct idr *idp, int id)
672 {
673 int n;
674 struct idr_layer *p;
675
676 if (id < 0)
677 return NULL;
678
679 p = rcu_dereference_raw(idp->top);
680 if (!p)
681 return NULL;
682 n = (p->layer+1) * IDR_BITS;
683
684 if (id > idr_max(p->layer + 1))
685 return NULL;
686 BUG_ON(n == 0);
687
688 while (n > 0 && p) {
689 n -= IDR_BITS;
690 BUG_ON(n != p->layer*IDR_BITS);
691 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
692 }
693 return((void *)p);
694 }
695 EXPORT_SYMBOL(idr_find_slowpath);
696
697 /**
698 * idr_for_each - iterate through all stored pointers
699 * @idp: idr handle
700 * @fn: function to be called for each pointer
701 * @data: data passed back to callback function
702 *
703 * Iterate over the pointers registered with the given idr. The
704 * callback function will be called for each pointer currently
705 * registered, passing the id, the pointer and the data pointer passed
706 * to this function. It is not safe to modify the idr tree while in
707 * the callback, so functions such as idr_get_new and idr_remove are
708 * not allowed.
709 *
710 * We check the return of @fn each time. If it returns anything other
711 * than %0, we break out and return that value.
712 *
713 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
714 */
715 int idr_for_each(struct idr *idp,
716 int (*fn)(int id, void *p, void *data), void *data)
717 {
718 int n, id, max, error = 0;
719 struct idr_layer *p;
720 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
721 struct idr_layer **paa = &pa[0];
722
723 n = idp->layers * IDR_BITS;
724 p = rcu_dereference_raw(idp->top);
725 max = idr_max(idp->layers);
726
727 id = 0;
728 while (id >= 0 && id <= max) {
729 while (n > 0 && p) {
730 n -= IDR_BITS;
731 *paa++ = p;
732 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
733 }
734
735 if (p) {
736 error = fn(id, (void *)p, data);
737 if (error)
738 break;
739 }
740
741 id += 1 << n;
742 while (n < fls(id)) {
743 n += IDR_BITS;
744 p = *--paa;
745 }
746 }
747
748 return error;
749 }
750 EXPORT_SYMBOL(idr_for_each);
751
752 /**
753 * idr_get_next - lookup next object of id to given id.
754 * @idp: idr handle
755 * @nextidp: pointer to lookup key
756 *
757 * Returns pointer to registered object with id, which is next number to
758 * given id. After being looked up, *@nextidp will be updated for the next
759 * iteration.
760 *
761 * This function can be called under rcu_read_lock(), given that the leaf
762 * pointers lifetimes are correctly managed.
763 */
764 void *idr_get_next(struct idr *idp, int *nextidp)
765 {
766 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
767 struct idr_layer **paa = &pa[0];
768 int id = *nextidp;
769 int n, max;
770
771 /* find first ent */
772 p = rcu_dereference_raw(idp->top);
773 if (!p)
774 return NULL;
775 n = (p->layer + 1) * IDR_BITS;
776 max = idr_max(p->layer + 1);
777
778 while (id >= 0 && id <= max) {
779 while (n > 0 && p) {
780 n -= IDR_BITS;
781 *paa++ = p;
782 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
783 }
784
785 if (p) {
786 *nextidp = id;
787 return p;
788 }
789
790 /*
791 * Proceed to the next layer at the current level. Unlike
792 * idr_for_each(), @id isn't guaranteed to be aligned to
793 * layer boundary at this point and adding 1 << n may
794 * incorrectly skip IDs. Make sure we jump to the
795 * beginning of the next layer using round_up().
796 */
797 id = round_up(id + 1, 1 << n);
798 while (n < fls(id)) {
799 n += IDR_BITS;
800 p = *--paa;
801 }
802 }
803 return NULL;
804 }
805 EXPORT_SYMBOL(idr_get_next);
806
807
808 /**
809 * idr_replace - replace pointer for given id
810 * @idp: idr handle
811 * @ptr: pointer you want associated with the id
812 * @id: lookup key
813 *
814 * Replace the pointer registered with an id and return the old value.
815 * A %-ENOENT return indicates that @id was not found.
816 * A %-EINVAL return indicates that @id was not within valid constraints.
817 *
818 * The caller must serialize with writers.
819 */
820 void *idr_replace(struct idr *idp, void *ptr, int id)
821 {
822 int n;
823 struct idr_layer *p, *old_p;
824
825 if (id < 0)
826 return ERR_PTR(-EINVAL);
827
828 p = idp->top;
829 if (!p)
830 return ERR_PTR(-EINVAL);
831
832 n = (p->layer+1) * IDR_BITS;
833
834 if (id >= (1 << n))
835 return ERR_PTR(-EINVAL);
836
837 n -= IDR_BITS;
838 while ((n > 0) && p) {
839 p = p->ary[(id >> n) & IDR_MASK];
840 n -= IDR_BITS;
841 }
842
843 n = id & IDR_MASK;
844 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
845 return ERR_PTR(-ENOENT);
846
847 old_p = p->ary[n];
848 rcu_assign_pointer(p->ary[n], ptr);
849
850 return old_p;
851 }
852 EXPORT_SYMBOL(idr_replace);
853
854 void __init idr_init_cache(void)
855 {
856 idr_layer_cache = kmem_cache_create("idr_layer_cache",
857 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
858 }
859
860 /**
861 * idr_init - initialize idr handle
862 * @idp: idr handle
863 *
864 * This function is use to set up the handle (@idp) that you will pass
865 * to the rest of the functions.
866 */
867 void idr_init(struct idr *idp)
868 {
869 memset(idp, 0, sizeof(struct idr));
870 spin_lock_init(&idp->lock);
871 }
872 EXPORT_SYMBOL(idr_init);
873
874
875 /**
876 * DOC: IDA description
877 * IDA - IDR based ID allocator
878 *
879 * This is id allocator without id -> pointer translation. Memory
880 * usage is much lower than full blown idr because each id only
881 * occupies a bit. ida uses a custom leaf node which contains
882 * IDA_BITMAP_BITS slots.
883 *
884 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
885 */
886
887 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
888 {
889 unsigned long flags;
890
891 if (!ida->free_bitmap) {
892 spin_lock_irqsave(&ida->idr.lock, flags);
893 if (!ida->free_bitmap) {
894 ida->free_bitmap = bitmap;
895 bitmap = NULL;
896 }
897 spin_unlock_irqrestore(&ida->idr.lock, flags);
898 }
899
900 kfree(bitmap);
901 }
902
903 /**
904 * ida_pre_get - reserve resources for ida allocation
905 * @ida: ida handle
906 * @gfp_mask: memory allocation flag
907 *
908 * This function should be called prior to locking and calling the
909 * following function. It preallocates enough memory to satisfy the
910 * worst possible allocation.
911 *
912 * If the system is REALLY out of memory this function returns %0,
913 * otherwise %1.
914 */
915 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
916 {
917 /* allocate idr_layers */
918 if (!__idr_pre_get(&ida->idr, gfp_mask))
919 return 0;
920
921 /* allocate free_bitmap */
922 if (!ida->free_bitmap) {
923 struct ida_bitmap *bitmap;
924
925 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
926 if (!bitmap)
927 return 0;
928
929 free_bitmap(ida, bitmap);
930 }
931
932 return 1;
933 }
934 EXPORT_SYMBOL(ida_pre_get);
935
936 /**
937 * ida_get_new_above - allocate new ID above or equal to a start id
938 * @ida: ida handle
939 * @starting_id: id to start search at
940 * @p_id: pointer to the allocated handle
941 *
942 * Allocate new ID above or equal to @starting_id. It should be called
943 * with any required locks.
944 *
945 * If memory is required, it will return %-EAGAIN, you should unlock
946 * and go back to the ida_pre_get() call. If the ida is full, it will
947 * return %-ENOSPC.
948 *
949 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
950 */
951 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
952 {
953 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
954 struct ida_bitmap *bitmap;
955 unsigned long flags;
956 int idr_id = starting_id / IDA_BITMAP_BITS;
957 int offset = starting_id % IDA_BITMAP_BITS;
958 int t, id;
959
960 restart:
961 /* get vacant slot */
962 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
963 if (t < 0)
964 return t == -ENOMEM ? -EAGAIN : t;
965
966 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
967 return -ENOSPC;
968
969 if (t != idr_id)
970 offset = 0;
971 idr_id = t;
972
973 /* if bitmap isn't there, create a new one */
974 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
975 if (!bitmap) {
976 spin_lock_irqsave(&ida->idr.lock, flags);
977 bitmap = ida->free_bitmap;
978 ida->free_bitmap = NULL;
979 spin_unlock_irqrestore(&ida->idr.lock, flags);
980
981 if (!bitmap)
982 return -EAGAIN;
983
984 memset(bitmap, 0, sizeof(struct ida_bitmap));
985 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
986 (void *)bitmap);
987 pa[0]->count++;
988 }
989
990 /* lookup for empty slot */
991 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
992 if (t == IDA_BITMAP_BITS) {
993 /* no empty slot after offset, continue to the next chunk */
994 idr_id++;
995 offset = 0;
996 goto restart;
997 }
998
999 id = idr_id * IDA_BITMAP_BITS + t;
1000 if (id >= MAX_IDR_BIT)
1001 return -ENOSPC;
1002
1003 __set_bit(t, bitmap->bitmap);
1004 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
1005 idr_mark_full(pa, idr_id);
1006
1007 *p_id = id;
1008
1009 /* Each leaf node can handle nearly a thousand slots and the
1010 * whole idea of ida is to have small memory foot print.
1011 * Throw away extra resources one by one after each successful
1012 * allocation.
1013 */
1014 if (ida->idr.id_free_cnt || ida->free_bitmap) {
1015 struct idr_layer *p = get_from_free_list(&ida->idr);
1016 if (p)
1017 kmem_cache_free(idr_layer_cache, p);
1018 }
1019
1020 return 0;
1021 }
1022 EXPORT_SYMBOL(ida_get_new_above);
1023
1024 /**
1025 * ida_remove - remove the given ID
1026 * @ida: ida handle
1027 * @id: ID to free
1028 */
1029 void ida_remove(struct ida *ida, int id)
1030 {
1031 struct idr_layer *p = ida->idr.top;
1032 int shift = (ida->idr.layers - 1) * IDR_BITS;
1033 int idr_id = id / IDA_BITMAP_BITS;
1034 int offset = id % IDA_BITMAP_BITS;
1035 int n;
1036 struct ida_bitmap *bitmap;
1037
1038 /* clear full bits while looking up the leaf idr_layer */
1039 while ((shift > 0) && p) {
1040 n = (idr_id >> shift) & IDR_MASK;
1041 __clear_bit(n, p->bitmap);
1042 p = p->ary[n];
1043 shift -= IDR_BITS;
1044 }
1045
1046 if (p == NULL)
1047 goto err;
1048
1049 n = idr_id & IDR_MASK;
1050 __clear_bit(n, p->bitmap);
1051
1052 bitmap = (void *)p->ary[n];
1053 if (!test_bit(offset, bitmap->bitmap))
1054 goto err;
1055
1056 /* update bitmap and remove it if empty */
1057 __clear_bit(offset, bitmap->bitmap);
1058 if (--bitmap->nr_busy == 0) {
1059 __set_bit(n, p->bitmap); /* to please idr_remove() */
1060 idr_remove(&ida->idr, idr_id);
1061 free_bitmap(ida, bitmap);
1062 }
1063
1064 return;
1065
1066 err:
1067 printk(KERN_WARNING
1068 "ida_remove called for id=%d which is not allocated.\n", id);
1069 }
1070 EXPORT_SYMBOL(ida_remove);
1071
1072 /**
1073 * ida_destroy - release all cached layers within an ida tree
1074 * @ida: ida handle
1075 */
1076 void ida_destroy(struct ida *ida)
1077 {
1078 idr_destroy(&ida->idr);
1079 kfree(ida->free_bitmap);
1080 }
1081 EXPORT_SYMBOL(ida_destroy);
1082
1083 /**
1084 * ida_simple_get - get a new id.
1085 * @ida: the (initialized) ida.
1086 * @start: the minimum id (inclusive, < 0x8000000)
1087 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1088 * @gfp_mask: memory allocation flags
1089 *
1090 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1091 * On memory allocation failure, returns -ENOMEM.
1092 *
1093 * Use ida_simple_remove() to get rid of an id.
1094 */
1095 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1096 gfp_t gfp_mask)
1097 {
1098 int ret, id;
1099 unsigned int max;
1100 unsigned long flags;
1101
1102 BUG_ON((int)start < 0);
1103 BUG_ON((int)end < 0);
1104
1105 if (end == 0)
1106 max = 0x80000000;
1107 else {
1108 BUG_ON(end < start);
1109 max = end - 1;
1110 }
1111
1112 again:
1113 if (!ida_pre_get(ida, gfp_mask))
1114 return -ENOMEM;
1115
1116 spin_lock_irqsave(&simple_ida_lock, flags);
1117 ret = ida_get_new_above(ida, start, &id);
1118 if (!ret) {
1119 if (id > max) {
1120 ida_remove(ida, id);
1121 ret = -ENOSPC;
1122 } else {
1123 ret = id;
1124 }
1125 }
1126 spin_unlock_irqrestore(&simple_ida_lock, flags);
1127
1128 if (unlikely(ret == -EAGAIN))
1129 goto again;
1130
1131 return ret;
1132 }
1133 EXPORT_SYMBOL(ida_simple_get);
1134
1135 /**
1136 * ida_simple_remove - remove an allocated id.
1137 * @ida: the (initialized) ida.
1138 * @id: the id returned by ida_simple_get.
1139 */
1140 void ida_simple_remove(struct ida *ida, unsigned int id)
1141 {
1142 unsigned long flags;
1143
1144 BUG_ON((int)id < 0);
1145 spin_lock_irqsave(&simple_ida_lock, flags);
1146 ida_remove(ida, id);
1147 spin_unlock_irqrestore(&simple_ida_lock, flags);
1148 }
1149 EXPORT_SYMBOL(ida_simple_remove);
1150
1151 /**
1152 * ida_init - initialize ida handle
1153 * @ida: ida handle
1154 *
1155 * This function is use to set up the handle (@ida) that you will pass
1156 * to the rest of the functions.
1157 */
1158 void ida_init(struct ida *ida)
1159 {
1160 memset(ida, 0, sizeof(struct ida));
1161 idr_init(&ida->idr);
1162
1163 }
1164 EXPORT_SYMBOL(ida_init);