]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - lib/iov_iter.c
media: tw68: Replace http links with https ones
[mirror_ubuntu-hirsute-kernel.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/uio.h>
5 #include <linux/pagemap.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/splice.h>
9 #include <net/checksum.h>
10 #include <linux/scatterlist.h>
11 #include <linux/instrumented.h>
12
13 #define PIPE_PARANOIA /* for now */
14
15 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \
16 size_t left; \
17 size_t wanted = n; \
18 __p = i->iov; \
19 __v.iov_len = min(n, __p->iov_len - skip); \
20 if (likely(__v.iov_len)) { \
21 __v.iov_base = __p->iov_base + skip; \
22 left = (STEP); \
23 __v.iov_len -= left; \
24 skip += __v.iov_len; \
25 n -= __v.iov_len; \
26 } else { \
27 left = 0; \
28 } \
29 while (unlikely(!left && n)) { \
30 __p++; \
31 __v.iov_len = min(n, __p->iov_len); \
32 if (unlikely(!__v.iov_len)) \
33 continue; \
34 __v.iov_base = __p->iov_base; \
35 left = (STEP); \
36 __v.iov_len -= left; \
37 skip = __v.iov_len; \
38 n -= __v.iov_len; \
39 } \
40 n = wanted - n; \
41 }
42
43 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \
44 size_t wanted = n; \
45 __p = i->kvec; \
46 __v.iov_len = min(n, __p->iov_len - skip); \
47 if (likely(__v.iov_len)) { \
48 __v.iov_base = __p->iov_base + skip; \
49 (void)(STEP); \
50 skip += __v.iov_len; \
51 n -= __v.iov_len; \
52 } \
53 while (unlikely(n)) { \
54 __p++; \
55 __v.iov_len = min(n, __p->iov_len); \
56 if (unlikely(!__v.iov_len)) \
57 continue; \
58 __v.iov_base = __p->iov_base; \
59 (void)(STEP); \
60 skip = __v.iov_len; \
61 n -= __v.iov_len; \
62 } \
63 n = wanted; \
64 }
65
66 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
67 struct bvec_iter __start; \
68 __start.bi_size = n; \
69 __start.bi_bvec_done = skip; \
70 __start.bi_idx = 0; \
71 for_each_bvec(__v, i->bvec, __bi, __start) { \
72 if (!__v.bv_len) \
73 continue; \
74 (void)(STEP); \
75 } \
76 }
77
78 #define iterate_all_kinds(i, n, v, I, B, K) { \
79 if (likely(n)) { \
80 size_t skip = i->iov_offset; \
81 if (unlikely(i->type & ITER_BVEC)) { \
82 struct bio_vec v; \
83 struct bvec_iter __bi; \
84 iterate_bvec(i, n, v, __bi, skip, (B)) \
85 } else if (unlikely(i->type & ITER_KVEC)) { \
86 const struct kvec *kvec; \
87 struct kvec v; \
88 iterate_kvec(i, n, v, kvec, skip, (K)) \
89 } else if (unlikely(i->type & ITER_DISCARD)) { \
90 } else { \
91 const struct iovec *iov; \
92 struct iovec v; \
93 iterate_iovec(i, n, v, iov, skip, (I)) \
94 } \
95 } \
96 }
97
98 #define iterate_and_advance(i, n, v, I, B, K) { \
99 if (unlikely(i->count < n)) \
100 n = i->count; \
101 if (i->count) { \
102 size_t skip = i->iov_offset; \
103 if (unlikely(i->type & ITER_BVEC)) { \
104 const struct bio_vec *bvec = i->bvec; \
105 struct bio_vec v; \
106 struct bvec_iter __bi; \
107 iterate_bvec(i, n, v, __bi, skip, (B)) \
108 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
109 i->nr_segs -= i->bvec - bvec; \
110 skip = __bi.bi_bvec_done; \
111 } else if (unlikely(i->type & ITER_KVEC)) { \
112 const struct kvec *kvec; \
113 struct kvec v; \
114 iterate_kvec(i, n, v, kvec, skip, (K)) \
115 if (skip == kvec->iov_len) { \
116 kvec++; \
117 skip = 0; \
118 } \
119 i->nr_segs -= kvec - i->kvec; \
120 i->kvec = kvec; \
121 } else if (unlikely(i->type & ITER_DISCARD)) { \
122 skip += n; \
123 } else { \
124 const struct iovec *iov; \
125 struct iovec v; \
126 iterate_iovec(i, n, v, iov, skip, (I)) \
127 if (skip == iov->iov_len) { \
128 iov++; \
129 skip = 0; \
130 } \
131 i->nr_segs -= iov - i->iov; \
132 i->iov = iov; \
133 } \
134 i->count -= n; \
135 i->iov_offset = skip; \
136 } \
137 }
138
139 static int copyout(void __user *to, const void *from, size_t n)
140 {
141 if (access_ok(to, n)) {
142 instrument_copy_to_user(to, from, n);
143 n = raw_copy_to_user(to, from, n);
144 }
145 return n;
146 }
147
148 static int copyin(void *to, const void __user *from, size_t n)
149 {
150 if (access_ok(from, n)) {
151 instrument_copy_from_user(to, from, n);
152 n = raw_copy_from_user(to, from, n);
153 }
154 return n;
155 }
156
157 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
158 struct iov_iter *i)
159 {
160 size_t skip, copy, left, wanted;
161 const struct iovec *iov;
162 char __user *buf;
163 void *kaddr, *from;
164
165 if (unlikely(bytes > i->count))
166 bytes = i->count;
167
168 if (unlikely(!bytes))
169 return 0;
170
171 might_fault();
172 wanted = bytes;
173 iov = i->iov;
174 skip = i->iov_offset;
175 buf = iov->iov_base + skip;
176 copy = min(bytes, iov->iov_len - skip);
177
178 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
179 kaddr = kmap_atomic(page);
180 from = kaddr + offset;
181
182 /* first chunk, usually the only one */
183 left = copyout(buf, from, copy);
184 copy -= left;
185 skip += copy;
186 from += copy;
187 bytes -= copy;
188
189 while (unlikely(!left && bytes)) {
190 iov++;
191 buf = iov->iov_base;
192 copy = min(bytes, iov->iov_len);
193 left = copyout(buf, from, copy);
194 copy -= left;
195 skip = copy;
196 from += copy;
197 bytes -= copy;
198 }
199 if (likely(!bytes)) {
200 kunmap_atomic(kaddr);
201 goto done;
202 }
203 offset = from - kaddr;
204 buf += copy;
205 kunmap_atomic(kaddr);
206 copy = min(bytes, iov->iov_len - skip);
207 }
208 /* Too bad - revert to non-atomic kmap */
209
210 kaddr = kmap(page);
211 from = kaddr + offset;
212 left = copyout(buf, from, copy);
213 copy -= left;
214 skip += copy;
215 from += copy;
216 bytes -= copy;
217 while (unlikely(!left && bytes)) {
218 iov++;
219 buf = iov->iov_base;
220 copy = min(bytes, iov->iov_len);
221 left = copyout(buf, from, copy);
222 copy -= left;
223 skip = copy;
224 from += copy;
225 bytes -= copy;
226 }
227 kunmap(page);
228
229 done:
230 if (skip == iov->iov_len) {
231 iov++;
232 skip = 0;
233 }
234 i->count -= wanted - bytes;
235 i->nr_segs -= iov - i->iov;
236 i->iov = iov;
237 i->iov_offset = skip;
238 return wanted - bytes;
239 }
240
241 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
242 struct iov_iter *i)
243 {
244 size_t skip, copy, left, wanted;
245 const struct iovec *iov;
246 char __user *buf;
247 void *kaddr, *to;
248
249 if (unlikely(bytes > i->count))
250 bytes = i->count;
251
252 if (unlikely(!bytes))
253 return 0;
254
255 might_fault();
256 wanted = bytes;
257 iov = i->iov;
258 skip = i->iov_offset;
259 buf = iov->iov_base + skip;
260 copy = min(bytes, iov->iov_len - skip);
261
262 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
263 kaddr = kmap_atomic(page);
264 to = kaddr + offset;
265
266 /* first chunk, usually the only one */
267 left = copyin(to, buf, copy);
268 copy -= left;
269 skip += copy;
270 to += copy;
271 bytes -= copy;
272
273 while (unlikely(!left && bytes)) {
274 iov++;
275 buf = iov->iov_base;
276 copy = min(bytes, iov->iov_len);
277 left = copyin(to, buf, copy);
278 copy -= left;
279 skip = copy;
280 to += copy;
281 bytes -= copy;
282 }
283 if (likely(!bytes)) {
284 kunmap_atomic(kaddr);
285 goto done;
286 }
287 offset = to - kaddr;
288 buf += copy;
289 kunmap_atomic(kaddr);
290 copy = min(bytes, iov->iov_len - skip);
291 }
292 /* Too bad - revert to non-atomic kmap */
293
294 kaddr = kmap(page);
295 to = kaddr + offset;
296 left = copyin(to, buf, copy);
297 copy -= left;
298 skip += copy;
299 to += copy;
300 bytes -= copy;
301 while (unlikely(!left && bytes)) {
302 iov++;
303 buf = iov->iov_base;
304 copy = min(bytes, iov->iov_len);
305 left = copyin(to, buf, copy);
306 copy -= left;
307 skip = copy;
308 to += copy;
309 bytes -= copy;
310 }
311 kunmap(page);
312
313 done:
314 if (skip == iov->iov_len) {
315 iov++;
316 skip = 0;
317 }
318 i->count -= wanted - bytes;
319 i->nr_segs -= iov - i->iov;
320 i->iov = iov;
321 i->iov_offset = skip;
322 return wanted - bytes;
323 }
324
325 #ifdef PIPE_PARANOIA
326 static bool sanity(const struct iov_iter *i)
327 {
328 struct pipe_inode_info *pipe = i->pipe;
329 unsigned int p_head = pipe->head;
330 unsigned int p_tail = pipe->tail;
331 unsigned int p_mask = pipe->ring_size - 1;
332 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
333 unsigned int i_head = i->head;
334 unsigned int idx;
335
336 if (i->iov_offset) {
337 struct pipe_buffer *p;
338 if (unlikely(p_occupancy == 0))
339 goto Bad; // pipe must be non-empty
340 if (unlikely(i_head != p_head - 1))
341 goto Bad; // must be at the last buffer...
342
343 p = &pipe->bufs[i_head & p_mask];
344 if (unlikely(p->offset + p->len != i->iov_offset))
345 goto Bad; // ... at the end of segment
346 } else {
347 if (i_head != p_head)
348 goto Bad; // must be right after the last buffer
349 }
350 return true;
351 Bad:
352 printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
353 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
354 p_head, p_tail, pipe->ring_size);
355 for (idx = 0; idx < pipe->ring_size; idx++)
356 printk(KERN_ERR "[%p %p %d %d]\n",
357 pipe->bufs[idx].ops,
358 pipe->bufs[idx].page,
359 pipe->bufs[idx].offset,
360 pipe->bufs[idx].len);
361 WARN_ON(1);
362 return false;
363 }
364 #else
365 #define sanity(i) true
366 #endif
367
368 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
369 struct iov_iter *i)
370 {
371 struct pipe_inode_info *pipe = i->pipe;
372 struct pipe_buffer *buf;
373 unsigned int p_tail = pipe->tail;
374 unsigned int p_mask = pipe->ring_size - 1;
375 unsigned int i_head = i->head;
376 size_t off;
377
378 if (unlikely(bytes > i->count))
379 bytes = i->count;
380
381 if (unlikely(!bytes))
382 return 0;
383
384 if (!sanity(i))
385 return 0;
386
387 off = i->iov_offset;
388 buf = &pipe->bufs[i_head & p_mask];
389 if (off) {
390 if (offset == off && buf->page == page) {
391 /* merge with the last one */
392 buf->len += bytes;
393 i->iov_offset += bytes;
394 goto out;
395 }
396 i_head++;
397 buf = &pipe->bufs[i_head & p_mask];
398 }
399 if (pipe_full(i_head, p_tail, pipe->max_usage))
400 return 0;
401
402 buf->ops = &page_cache_pipe_buf_ops;
403 get_page(page);
404 buf->page = page;
405 buf->offset = offset;
406 buf->len = bytes;
407
408 pipe->head = i_head + 1;
409 i->iov_offset = offset + bytes;
410 i->head = i_head;
411 out:
412 i->count -= bytes;
413 return bytes;
414 }
415
416 /*
417 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
418 * bytes. For each iovec, fault in each page that constitutes the iovec.
419 *
420 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
421 * because it is an invalid address).
422 */
423 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
424 {
425 size_t skip = i->iov_offset;
426 const struct iovec *iov;
427 int err;
428 struct iovec v;
429
430 if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
431 iterate_iovec(i, bytes, v, iov, skip, ({
432 err = fault_in_pages_readable(v.iov_base, v.iov_len);
433 if (unlikely(err))
434 return err;
435 0;}))
436 }
437 return 0;
438 }
439 EXPORT_SYMBOL(iov_iter_fault_in_readable);
440
441 void iov_iter_init(struct iov_iter *i, unsigned int direction,
442 const struct iovec *iov, unsigned long nr_segs,
443 size_t count)
444 {
445 WARN_ON(direction & ~(READ | WRITE));
446 direction &= READ | WRITE;
447
448 /* It will get better. Eventually... */
449 if (uaccess_kernel()) {
450 i->type = ITER_KVEC | direction;
451 i->kvec = (struct kvec *)iov;
452 } else {
453 i->type = ITER_IOVEC | direction;
454 i->iov = iov;
455 }
456 i->nr_segs = nr_segs;
457 i->iov_offset = 0;
458 i->count = count;
459 }
460 EXPORT_SYMBOL(iov_iter_init);
461
462 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
463 {
464 char *from = kmap_atomic(page);
465 memcpy(to, from + offset, len);
466 kunmap_atomic(from);
467 }
468
469 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
470 {
471 char *to = kmap_atomic(page);
472 memcpy(to + offset, from, len);
473 kunmap_atomic(to);
474 }
475
476 static void memzero_page(struct page *page, size_t offset, size_t len)
477 {
478 char *addr = kmap_atomic(page);
479 memset(addr + offset, 0, len);
480 kunmap_atomic(addr);
481 }
482
483 static inline bool allocated(struct pipe_buffer *buf)
484 {
485 return buf->ops == &default_pipe_buf_ops;
486 }
487
488 static inline void data_start(const struct iov_iter *i,
489 unsigned int *iter_headp, size_t *offp)
490 {
491 unsigned int p_mask = i->pipe->ring_size - 1;
492 unsigned int iter_head = i->head;
493 size_t off = i->iov_offset;
494
495 if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
496 off == PAGE_SIZE)) {
497 iter_head++;
498 off = 0;
499 }
500 *iter_headp = iter_head;
501 *offp = off;
502 }
503
504 static size_t push_pipe(struct iov_iter *i, size_t size,
505 int *iter_headp, size_t *offp)
506 {
507 struct pipe_inode_info *pipe = i->pipe;
508 unsigned int p_tail = pipe->tail;
509 unsigned int p_mask = pipe->ring_size - 1;
510 unsigned int iter_head;
511 size_t off;
512 ssize_t left;
513
514 if (unlikely(size > i->count))
515 size = i->count;
516 if (unlikely(!size))
517 return 0;
518
519 left = size;
520 data_start(i, &iter_head, &off);
521 *iter_headp = iter_head;
522 *offp = off;
523 if (off) {
524 left -= PAGE_SIZE - off;
525 if (left <= 0) {
526 pipe->bufs[iter_head & p_mask].len += size;
527 return size;
528 }
529 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
530 iter_head++;
531 }
532 while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
533 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
534 struct page *page = alloc_page(GFP_USER);
535 if (!page)
536 break;
537
538 buf->ops = &default_pipe_buf_ops;
539 buf->page = page;
540 buf->offset = 0;
541 buf->len = min_t(ssize_t, left, PAGE_SIZE);
542 left -= buf->len;
543 iter_head++;
544 pipe->head = iter_head;
545
546 if (left == 0)
547 return size;
548 }
549 return size - left;
550 }
551
552 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
553 struct iov_iter *i)
554 {
555 struct pipe_inode_info *pipe = i->pipe;
556 unsigned int p_mask = pipe->ring_size - 1;
557 unsigned int i_head;
558 size_t n, off;
559
560 if (!sanity(i))
561 return 0;
562
563 bytes = n = push_pipe(i, bytes, &i_head, &off);
564 if (unlikely(!n))
565 return 0;
566 do {
567 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
568 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
569 i->head = i_head;
570 i->iov_offset = off + chunk;
571 n -= chunk;
572 addr += chunk;
573 off = 0;
574 i_head++;
575 } while (n);
576 i->count -= bytes;
577 return bytes;
578 }
579
580 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
581 __wsum sum, size_t off)
582 {
583 __wsum next = csum_partial_copy_nocheck(from, to, len, 0);
584 return csum_block_add(sum, next, off);
585 }
586
587 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
588 __wsum *csum, struct iov_iter *i)
589 {
590 struct pipe_inode_info *pipe = i->pipe;
591 unsigned int p_mask = pipe->ring_size - 1;
592 unsigned int i_head;
593 size_t n, r;
594 size_t off = 0;
595 __wsum sum = *csum;
596
597 if (!sanity(i))
598 return 0;
599
600 bytes = n = push_pipe(i, bytes, &i_head, &r);
601 if (unlikely(!n))
602 return 0;
603 do {
604 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
605 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
606 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
607 kunmap_atomic(p);
608 i->head = i_head;
609 i->iov_offset = r + chunk;
610 n -= chunk;
611 off += chunk;
612 addr += chunk;
613 r = 0;
614 i_head++;
615 } while (n);
616 i->count -= bytes;
617 *csum = sum;
618 return bytes;
619 }
620
621 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
622 {
623 const char *from = addr;
624 if (unlikely(iov_iter_is_pipe(i)))
625 return copy_pipe_to_iter(addr, bytes, i);
626 if (iter_is_iovec(i))
627 might_fault();
628 iterate_and_advance(i, bytes, v,
629 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
630 memcpy_to_page(v.bv_page, v.bv_offset,
631 (from += v.bv_len) - v.bv_len, v.bv_len),
632 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
633 )
634
635 return bytes;
636 }
637 EXPORT_SYMBOL(_copy_to_iter);
638
639 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
640 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
641 {
642 if (access_ok(to, n)) {
643 instrument_copy_to_user(to, from, n);
644 n = copy_to_user_mcsafe((__force void *) to, from, n);
645 }
646 return n;
647 }
648
649 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
650 const char *from, size_t len)
651 {
652 unsigned long ret;
653 char *to;
654
655 to = kmap_atomic(page);
656 ret = memcpy_mcsafe(to + offset, from, len);
657 kunmap_atomic(to);
658
659 return ret;
660 }
661
662 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
663 struct iov_iter *i)
664 {
665 struct pipe_inode_info *pipe = i->pipe;
666 unsigned int p_mask = pipe->ring_size - 1;
667 unsigned int i_head;
668 size_t n, off, xfer = 0;
669
670 if (!sanity(i))
671 return 0;
672
673 bytes = n = push_pipe(i, bytes, &i_head, &off);
674 if (unlikely(!n))
675 return 0;
676 do {
677 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
678 unsigned long rem;
679
680 rem = memcpy_mcsafe_to_page(pipe->bufs[i_head & p_mask].page,
681 off, addr, chunk);
682 i->head = i_head;
683 i->iov_offset = off + chunk - rem;
684 xfer += chunk - rem;
685 if (rem)
686 break;
687 n -= chunk;
688 addr += chunk;
689 off = 0;
690 i_head++;
691 } while (n);
692 i->count -= xfer;
693 return xfer;
694 }
695
696 /**
697 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
698 * @addr: source kernel address
699 * @bytes: total transfer length
700 * @iter: destination iterator
701 *
702 * The pmem driver arranges for filesystem-dax to use this facility via
703 * dax_copy_to_iter() for protecting read/write to persistent memory.
704 * Unless / until an architecture can guarantee identical performance
705 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
706 * performance regression to switch more users to the mcsafe version.
707 *
708 * Otherwise, the main differences between this and typical _copy_to_iter().
709 *
710 * * Typical tail/residue handling after a fault retries the copy
711 * byte-by-byte until the fault happens again. Re-triggering machine
712 * checks is potentially fatal so the implementation uses source
713 * alignment and poison alignment assumptions to avoid re-triggering
714 * hardware exceptions.
715 *
716 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
717 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
718 * a short copy.
719 *
720 * See MCSAFE_TEST for self-test.
721 */
722 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
723 {
724 const char *from = addr;
725 unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
726
727 if (unlikely(iov_iter_is_pipe(i)))
728 return copy_pipe_to_iter_mcsafe(addr, bytes, i);
729 if (iter_is_iovec(i))
730 might_fault();
731 iterate_and_advance(i, bytes, v,
732 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
733 ({
734 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
735 (from += v.bv_len) - v.bv_len, v.bv_len);
736 if (rem) {
737 curr_addr = (unsigned long) from;
738 bytes = curr_addr - s_addr - rem;
739 return bytes;
740 }
741 }),
742 ({
743 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
744 v.iov_len);
745 if (rem) {
746 curr_addr = (unsigned long) from;
747 bytes = curr_addr - s_addr - rem;
748 return bytes;
749 }
750 })
751 )
752
753 return bytes;
754 }
755 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
756 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
757
758 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
759 {
760 char *to = addr;
761 if (unlikely(iov_iter_is_pipe(i))) {
762 WARN_ON(1);
763 return 0;
764 }
765 if (iter_is_iovec(i))
766 might_fault();
767 iterate_and_advance(i, bytes, v,
768 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
769 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
770 v.bv_offset, v.bv_len),
771 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
772 )
773
774 return bytes;
775 }
776 EXPORT_SYMBOL(_copy_from_iter);
777
778 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
779 {
780 char *to = addr;
781 if (unlikely(iov_iter_is_pipe(i))) {
782 WARN_ON(1);
783 return false;
784 }
785 if (unlikely(i->count < bytes))
786 return false;
787
788 if (iter_is_iovec(i))
789 might_fault();
790 iterate_all_kinds(i, bytes, v, ({
791 if (copyin((to += v.iov_len) - v.iov_len,
792 v.iov_base, v.iov_len))
793 return false;
794 0;}),
795 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
796 v.bv_offset, v.bv_len),
797 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
798 )
799
800 iov_iter_advance(i, bytes);
801 return true;
802 }
803 EXPORT_SYMBOL(_copy_from_iter_full);
804
805 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
806 {
807 char *to = addr;
808 if (unlikely(iov_iter_is_pipe(i))) {
809 WARN_ON(1);
810 return 0;
811 }
812 iterate_and_advance(i, bytes, v,
813 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
814 v.iov_base, v.iov_len),
815 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
816 v.bv_offset, v.bv_len),
817 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
818 )
819
820 return bytes;
821 }
822 EXPORT_SYMBOL(_copy_from_iter_nocache);
823
824 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
825 /**
826 * _copy_from_iter_flushcache - write destination through cpu cache
827 * @addr: destination kernel address
828 * @bytes: total transfer length
829 * @iter: source iterator
830 *
831 * The pmem driver arranges for filesystem-dax to use this facility via
832 * dax_copy_from_iter() for ensuring that writes to persistent memory
833 * are flushed through the CPU cache. It is differentiated from
834 * _copy_from_iter_nocache() in that guarantees all data is flushed for
835 * all iterator types. The _copy_from_iter_nocache() only attempts to
836 * bypass the cache for the ITER_IOVEC case, and on some archs may use
837 * instructions that strand dirty-data in the cache.
838 */
839 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
840 {
841 char *to = addr;
842 if (unlikely(iov_iter_is_pipe(i))) {
843 WARN_ON(1);
844 return 0;
845 }
846 iterate_and_advance(i, bytes, v,
847 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
848 v.iov_base, v.iov_len),
849 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
850 v.bv_offset, v.bv_len),
851 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
852 v.iov_len)
853 )
854
855 return bytes;
856 }
857 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
858 #endif
859
860 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
861 {
862 char *to = addr;
863 if (unlikely(iov_iter_is_pipe(i))) {
864 WARN_ON(1);
865 return false;
866 }
867 if (unlikely(i->count < bytes))
868 return false;
869 iterate_all_kinds(i, bytes, v, ({
870 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
871 v.iov_base, v.iov_len))
872 return false;
873 0;}),
874 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
875 v.bv_offset, v.bv_len),
876 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
877 )
878
879 iov_iter_advance(i, bytes);
880 return true;
881 }
882 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
883
884 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
885 {
886 struct page *head;
887 size_t v = n + offset;
888
889 /*
890 * The general case needs to access the page order in order
891 * to compute the page size.
892 * However, we mostly deal with order-0 pages and thus can
893 * avoid a possible cache line miss for requests that fit all
894 * page orders.
895 */
896 if (n <= v && v <= PAGE_SIZE)
897 return true;
898
899 head = compound_head(page);
900 v += (page - head) << PAGE_SHIFT;
901
902 if (likely(n <= v && v <= (page_size(head))))
903 return true;
904 WARN_ON(1);
905 return false;
906 }
907
908 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
909 struct iov_iter *i)
910 {
911 if (unlikely(!page_copy_sane(page, offset, bytes)))
912 return 0;
913 if (i->type & (ITER_BVEC|ITER_KVEC)) {
914 void *kaddr = kmap_atomic(page);
915 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
916 kunmap_atomic(kaddr);
917 return wanted;
918 } else if (unlikely(iov_iter_is_discard(i)))
919 return bytes;
920 else if (likely(!iov_iter_is_pipe(i)))
921 return copy_page_to_iter_iovec(page, offset, bytes, i);
922 else
923 return copy_page_to_iter_pipe(page, offset, bytes, i);
924 }
925 EXPORT_SYMBOL(copy_page_to_iter);
926
927 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
928 struct iov_iter *i)
929 {
930 if (unlikely(!page_copy_sane(page, offset, bytes)))
931 return 0;
932 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
933 WARN_ON(1);
934 return 0;
935 }
936 if (i->type & (ITER_BVEC|ITER_KVEC)) {
937 void *kaddr = kmap_atomic(page);
938 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
939 kunmap_atomic(kaddr);
940 return wanted;
941 } else
942 return copy_page_from_iter_iovec(page, offset, bytes, i);
943 }
944 EXPORT_SYMBOL(copy_page_from_iter);
945
946 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
947 {
948 struct pipe_inode_info *pipe = i->pipe;
949 unsigned int p_mask = pipe->ring_size - 1;
950 unsigned int i_head;
951 size_t n, off;
952
953 if (!sanity(i))
954 return 0;
955
956 bytes = n = push_pipe(i, bytes, &i_head, &off);
957 if (unlikely(!n))
958 return 0;
959
960 do {
961 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
962 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
963 i->head = i_head;
964 i->iov_offset = off + chunk;
965 n -= chunk;
966 off = 0;
967 i_head++;
968 } while (n);
969 i->count -= bytes;
970 return bytes;
971 }
972
973 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
974 {
975 if (unlikely(iov_iter_is_pipe(i)))
976 return pipe_zero(bytes, i);
977 iterate_and_advance(i, bytes, v,
978 clear_user(v.iov_base, v.iov_len),
979 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
980 memset(v.iov_base, 0, v.iov_len)
981 )
982
983 return bytes;
984 }
985 EXPORT_SYMBOL(iov_iter_zero);
986
987 size_t iov_iter_copy_from_user_atomic(struct page *page,
988 struct iov_iter *i, unsigned long offset, size_t bytes)
989 {
990 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
991 if (unlikely(!page_copy_sane(page, offset, bytes))) {
992 kunmap_atomic(kaddr);
993 return 0;
994 }
995 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
996 kunmap_atomic(kaddr);
997 WARN_ON(1);
998 return 0;
999 }
1000 iterate_all_kinds(i, bytes, v,
1001 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1002 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1003 v.bv_offset, v.bv_len),
1004 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1005 )
1006 kunmap_atomic(kaddr);
1007 return bytes;
1008 }
1009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1010
1011 static inline void pipe_truncate(struct iov_iter *i)
1012 {
1013 struct pipe_inode_info *pipe = i->pipe;
1014 unsigned int p_tail = pipe->tail;
1015 unsigned int p_head = pipe->head;
1016 unsigned int p_mask = pipe->ring_size - 1;
1017
1018 if (!pipe_empty(p_head, p_tail)) {
1019 struct pipe_buffer *buf;
1020 unsigned int i_head = i->head;
1021 size_t off = i->iov_offset;
1022
1023 if (off) {
1024 buf = &pipe->bufs[i_head & p_mask];
1025 buf->len = off - buf->offset;
1026 i_head++;
1027 }
1028 while (p_head != i_head) {
1029 p_head--;
1030 pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1031 }
1032
1033 pipe->head = p_head;
1034 }
1035 }
1036
1037 static void pipe_advance(struct iov_iter *i, size_t size)
1038 {
1039 struct pipe_inode_info *pipe = i->pipe;
1040 if (unlikely(i->count < size))
1041 size = i->count;
1042 if (size) {
1043 struct pipe_buffer *buf;
1044 unsigned int p_mask = pipe->ring_size - 1;
1045 unsigned int i_head = i->head;
1046 size_t off = i->iov_offset, left = size;
1047
1048 if (off) /* make it relative to the beginning of buffer */
1049 left += off - pipe->bufs[i_head & p_mask].offset;
1050 while (1) {
1051 buf = &pipe->bufs[i_head & p_mask];
1052 if (left <= buf->len)
1053 break;
1054 left -= buf->len;
1055 i_head++;
1056 }
1057 i->head = i_head;
1058 i->iov_offset = buf->offset + left;
1059 }
1060 i->count -= size;
1061 /* ... and discard everything past that point */
1062 pipe_truncate(i);
1063 }
1064
1065 void iov_iter_advance(struct iov_iter *i, size_t size)
1066 {
1067 if (unlikely(iov_iter_is_pipe(i))) {
1068 pipe_advance(i, size);
1069 return;
1070 }
1071 if (unlikely(iov_iter_is_discard(i))) {
1072 i->count -= size;
1073 return;
1074 }
1075 iterate_and_advance(i, size, v, 0, 0, 0)
1076 }
1077 EXPORT_SYMBOL(iov_iter_advance);
1078
1079 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1080 {
1081 if (!unroll)
1082 return;
1083 if (WARN_ON(unroll > MAX_RW_COUNT))
1084 return;
1085 i->count += unroll;
1086 if (unlikely(iov_iter_is_pipe(i))) {
1087 struct pipe_inode_info *pipe = i->pipe;
1088 unsigned int p_mask = pipe->ring_size - 1;
1089 unsigned int i_head = i->head;
1090 size_t off = i->iov_offset;
1091 while (1) {
1092 struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1093 size_t n = off - b->offset;
1094 if (unroll < n) {
1095 off -= unroll;
1096 break;
1097 }
1098 unroll -= n;
1099 if (!unroll && i_head == i->start_head) {
1100 off = 0;
1101 break;
1102 }
1103 i_head--;
1104 b = &pipe->bufs[i_head & p_mask];
1105 off = b->offset + b->len;
1106 }
1107 i->iov_offset = off;
1108 i->head = i_head;
1109 pipe_truncate(i);
1110 return;
1111 }
1112 if (unlikely(iov_iter_is_discard(i)))
1113 return;
1114 if (unroll <= i->iov_offset) {
1115 i->iov_offset -= unroll;
1116 return;
1117 }
1118 unroll -= i->iov_offset;
1119 if (iov_iter_is_bvec(i)) {
1120 const struct bio_vec *bvec = i->bvec;
1121 while (1) {
1122 size_t n = (--bvec)->bv_len;
1123 i->nr_segs++;
1124 if (unroll <= n) {
1125 i->bvec = bvec;
1126 i->iov_offset = n - unroll;
1127 return;
1128 }
1129 unroll -= n;
1130 }
1131 } else { /* same logics for iovec and kvec */
1132 const struct iovec *iov = i->iov;
1133 while (1) {
1134 size_t n = (--iov)->iov_len;
1135 i->nr_segs++;
1136 if (unroll <= n) {
1137 i->iov = iov;
1138 i->iov_offset = n - unroll;
1139 return;
1140 }
1141 unroll -= n;
1142 }
1143 }
1144 }
1145 EXPORT_SYMBOL(iov_iter_revert);
1146
1147 /*
1148 * Return the count of just the current iov_iter segment.
1149 */
1150 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1151 {
1152 if (unlikely(iov_iter_is_pipe(i)))
1153 return i->count; // it is a silly place, anyway
1154 if (i->nr_segs == 1)
1155 return i->count;
1156 if (unlikely(iov_iter_is_discard(i)))
1157 return i->count;
1158 else if (iov_iter_is_bvec(i))
1159 return min(i->count, i->bvec->bv_len - i->iov_offset);
1160 else
1161 return min(i->count, i->iov->iov_len - i->iov_offset);
1162 }
1163 EXPORT_SYMBOL(iov_iter_single_seg_count);
1164
1165 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1166 const struct kvec *kvec, unsigned long nr_segs,
1167 size_t count)
1168 {
1169 WARN_ON(direction & ~(READ | WRITE));
1170 i->type = ITER_KVEC | (direction & (READ | WRITE));
1171 i->kvec = kvec;
1172 i->nr_segs = nr_segs;
1173 i->iov_offset = 0;
1174 i->count = count;
1175 }
1176 EXPORT_SYMBOL(iov_iter_kvec);
1177
1178 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1179 const struct bio_vec *bvec, unsigned long nr_segs,
1180 size_t count)
1181 {
1182 WARN_ON(direction & ~(READ | WRITE));
1183 i->type = ITER_BVEC | (direction & (READ | WRITE));
1184 i->bvec = bvec;
1185 i->nr_segs = nr_segs;
1186 i->iov_offset = 0;
1187 i->count = count;
1188 }
1189 EXPORT_SYMBOL(iov_iter_bvec);
1190
1191 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1192 struct pipe_inode_info *pipe,
1193 size_t count)
1194 {
1195 BUG_ON(direction != READ);
1196 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1197 i->type = ITER_PIPE | READ;
1198 i->pipe = pipe;
1199 i->head = pipe->head;
1200 i->iov_offset = 0;
1201 i->count = count;
1202 i->start_head = i->head;
1203 }
1204 EXPORT_SYMBOL(iov_iter_pipe);
1205
1206 /**
1207 * iov_iter_discard - Initialise an I/O iterator that discards data
1208 * @i: The iterator to initialise.
1209 * @direction: The direction of the transfer.
1210 * @count: The size of the I/O buffer in bytes.
1211 *
1212 * Set up an I/O iterator that just discards everything that's written to it.
1213 * It's only available as a READ iterator.
1214 */
1215 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1216 {
1217 BUG_ON(direction != READ);
1218 i->type = ITER_DISCARD | READ;
1219 i->count = count;
1220 i->iov_offset = 0;
1221 }
1222 EXPORT_SYMBOL(iov_iter_discard);
1223
1224 unsigned long iov_iter_alignment(const struct iov_iter *i)
1225 {
1226 unsigned long res = 0;
1227 size_t size = i->count;
1228
1229 if (unlikely(iov_iter_is_pipe(i))) {
1230 unsigned int p_mask = i->pipe->ring_size - 1;
1231
1232 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1233 return size | i->iov_offset;
1234 return size;
1235 }
1236 iterate_all_kinds(i, size, v,
1237 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1238 res |= v.bv_offset | v.bv_len,
1239 res |= (unsigned long)v.iov_base | v.iov_len
1240 )
1241 return res;
1242 }
1243 EXPORT_SYMBOL(iov_iter_alignment);
1244
1245 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1246 {
1247 unsigned long res = 0;
1248 size_t size = i->count;
1249
1250 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1251 WARN_ON(1);
1252 return ~0U;
1253 }
1254
1255 iterate_all_kinds(i, size, v,
1256 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1257 (size != v.iov_len ? size : 0), 0),
1258 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1259 (size != v.bv_len ? size : 0)),
1260 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1261 (size != v.iov_len ? size : 0))
1262 );
1263 return res;
1264 }
1265 EXPORT_SYMBOL(iov_iter_gap_alignment);
1266
1267 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1268 size_t maxsize,
1269 struct page **pages,
1270 int iter_head,
1271 size_t *start)
1272 {
1273 struct pipe_inode_info *pipe = i->pipe;
1274 unsigned int p_mask = pipe->ring_size - 1;
1275 ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1276 if (!n)
1277 return -EFAULT;
1278
1279 maxsize = n;
1280 n += *start;
1281 while (n > 0) {
1282 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1283 iter_head++;
1284 n -= PAGE_SIZE;
1285 }
1286
1287 return maxsize;
1288 }
1289
1290 static ssize_t pipe_get_pages(struct iov_iter *i,
1291 struct page **pages, size_t maxsize, unsigned maxpages,
1292 size_t *start)
1293 {
1294 unsigned int iter_head, npages;
1295 size_t capacity;
1296
1297 if (!maxsize)
1298 return 0;
1299
1300 if (!sanity(i))
1301 return -EFAULT;
1302
1303 data_start(i, &iter_head, start);
1304 /* Amount of free space: some of this one + all after this one */
1305 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1306 capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1307
1308 return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1309 }
1310
1311 ssize_t iov_iter_get_pages(struct iov_iter *i,
1312 struct page **pages, size_t maxsize, unsigned maxpages,
1313 size_t *start)
1314 {
1315 if (maxsize > i->count)
1316 maxsize = i->count;
1317
1318 if (unlikely(iov_iter_is_pipe(i)))
1319 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1320 if (unlikely(iov_iter_is_discard(i)))
1321 return -EFAULT;
1322
1323 iterate_all_kinds(i, maxsize, v, ({
1324 unsigned long addr = (unsigned long)v.iov_base;
1325 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1326 int n;
1327 int res;
1328
1329 if (len > maxpages * PAGE_SIZE)
1330 len = maxpages * PAGE_SIZE;
1331 addr &= ~(PAGE_SIZE - 1);
1332 n = DIV_ROUND_UP(len, PAGE_SIZE);
1333 res = get_user_pages_fast(addr, n,
1334 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
1335 pages);
1336 if (unlikely(res < 0))
1337 return res;
1338 return (res == n ? len : res * PAGE_SIZE) - *start;
1339 0;}),({
1340 /* can't be more than PAGE_SIZE */
1341 *start = v.bv_offset;
1342 get_page(*pages = v.bv_page);
1343 return v.bv_len;
1344 }),({
1345 return -EFAULT;
1346 })
1347 )
1348 return 0;
1349 }
1350 EXPORT_SYMBOL(iov_iter_get_pages);
1351
1352 static struct page **get_pages_array(size_t n)
1353 {
1354 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1355 }
1356
1357 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1358 struct page ***pages, size_t maxsize,
1359 size_t *start)
1360 {
1361 struct page **p;
1362 unsigned int iter_head, npages;
1363 ssize_t n;
1364
1365 if (!maxsize)
1366 return 0;
1367
1368 if (!sanity(i))
1369 return -EFAULT;
1370
1371 data_start(i, &iter_head, start);
1372 /* Amount of free space: some of this one + all after this one */
1373 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1374 n = npages * PAGE_SIZE - *start;
1375 if (maxsize > n)
1376 maxsize = n;
1377 else
1378 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1379 p = get_pages_array(npages);
1380 if (!p)
1381 return -ENOMEM;
1382 n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1383 if (n > 0)
1384 *pages = p;
1385 else
1386 kvfree(p);
1387 return n;
1388 }
1389
1390 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1391 struct page ***pages, size_t maxsize,
1392 size_t *start)
1393 {
1394 struct page **p;
1395
1396 if (maxsize > i->count)
1397 maxsize = i->count;
1398
1399 if (unlikely(iov_iter_is_pipe(i)))
1400 return pipe_get_pages_alloc(i, pages, maxsize, start);
1401 if (unlikely(iov_iter_is_discard(i)))
1402 return -EFAULT;
1403
1404 iterate_all_kinds(i, maxsize, v, ({
1405 unsigned long addr = (unsigned long)v.iov_base;
1406 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1407 int n;
1408 int res;
1409
1410 addr &= ~(PAGE_SIZE - 1);
1411 n = DIV_ROUND_UP(len, PAGE_SIZE);
1412 p = get_pages_array(n);
1413 if (!p)
1414 return -ENOMEM;
1415 res = get_user_pages_fast(addr, n,
1416 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
1417 if (unlikely(res < 0)) {
1418 kvfree(p);
1419 return res;
1420 }
1421 *pages = p;
1422 return (res == n ? len : res * PAGE_SIZE) - *start;
1423 0;}),({
1424 /* can't be more than PAGE_SIZE */
1425 *start = v.bv_offset;
1426 *pages = p = get_pages_array(1);
1427 if (!p)
1428 return -ENOMEM;
1429 get_page(*p = v.bv_page);
1430 return v.bv_len;
1431 }),({
1432 return -EFAULT;
1433 })
1434 )
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1438
1439 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1440 struct iov_iter *i)
1441 {
1442 char *to = addr;
1443 __wsum sum, next;
1444 size_t off = 0;
1445 sum = *csum;
1446 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1447 WARN_ON(1);
1448 return 0;
1449 }
1450 iterate_and_advance(i, bytes, v, ({
1451 int err = 0;
1452 next = csum_and_copy_from_user(v.iov_base,
1453 (to += v.iov_len) - v.iov_len,
1454 v.iov_len, 0, &err);
1455 if (!err) {
1456 sum = csum_block_add(sum, next, off);
1457 off += v.iov_len;
1458 }
1459 err ? v.iov_len : 0;
1460 }), ({
1461 char *p = kmap_atomic(v.bv_page);
1462 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1463 p + v.bv_offset, v.bv_len,
1464 sum, off);
1465 kunmap_atomic(p);
1466 off += v.bv_len;
1467 }),({
1468 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1469 v.iov_base, v.iov_len,
1470 sum, off);
1471 off += v.iov_len;
1472 })
1473 )
1474 *csum = sum;
1475 return bytes;
1476 }
1477 EXPORT_SYMBOL(csum_and_copy_from_iter);
1478
1479 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1480 struct iov_iter *i)
1481 {
1482 char *to = addr;
1483 __wsum sum, next;
1484 size_t off = 0;
1485 sum = *csum;
1486 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1487 WARN_ON(1);
1488 return false;
1489 }
1490 if (unlikely(i->count < bytes))
1491 return false;
1492 iterate_all_kinds(i, bytes, v, ({
1493 int err = 0;
1494 next = csum_and_copy_from_user(v.iov_base,
1495 (to += v.iov_len) - v.iov_len,
1496 v.iov_len, 0, &err);
1497 if (err)
1498 return false;
1499 sum = csum_block_add(sum, next, off);
1500 off += v.iov_len;
1501 0;
1502 }), ({
1503 char *p = kmap_atomic(v.bv_page);
1504 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1505 p + v.bv_offset, v.bv_len,
1506 sum, off);
1507 kunmap_atomic(p);
1508 off += v.bv_len;
1509 }),({
1510 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1511 v.iov_base, v.iov_len,
1512 sum, off);
1513 off += v.iov_len;
1514 })
1515 )
1516 *csum = sum;
1517 iov_iter_advance(i, bytes);
1518 return true;
1519 }
1520 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1521
1522 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1523 struct iov_iter *i)
1524 {
1525 const char *from = addr;
1526 __wsum *csum = csump;
1527 __wsum sum, next;
1528 size_t off = 0;
1529
1530 if (unlikely(iov_iter_is_pipe(i)))
1531 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1532
1533 sum = *csum;
1534 if (unlikely(iov_iter_is_discard(i))) {
1535 WARN_ON(1); /* for now */
1536 return 0;
1537 }
1538 iterate_and_advance(i, bytes, v, ({
1539 int err = 0;
1540 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1541 v.iov_base,
1542 v.iov_len, 0, &err);
1543 if (!err) {
1544 sum = csum_block_add(sum, next, off);
1545 off += v.iov_len;
1546 }
1547 err ? v.iov_len : 0;
1548 }), ({
1549 char *p = kmap_atomic(v.bv_page);
1550 sum = csum_and_memcpy(p + v.bv_offset,
1551 (from += v.bv_len) - v.bv_len,
1552 v.bv_len, sum, off);
1553 kunmap_atomic(p);
1554 off += v.bv_len;
1555 }),({
1556 sum = csum_and_memcpy(v.iov_base,
1557 (from += v.iov_len) - v.iov_len,
1558 v.iov_len, sum, off);
1559 off += v.iov_len;
1560 })
1561 )
1562 *csum = sum;
1563 return bytes;
1564 }
1565 EXPORT_SYMBOL(csum_and_copy_to_iter);
1566
1567 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1568 struct iov_iter *i)
1569 {
1570 #ifdef CONFIG_CRYPTO
1571 struct ahash_request *hash = hashp;
1572 struct scatterlist sg;
1573 size_t copied;
1574
1575 copied = copy_to_iter(addr, bytes, i);
1576 sg_init_one(&sg, addr, copied);
1577 ahash_request_set_crypt(hash, &sg, NULL, copied);
1578 crypto_ahash_update(hash);
1579 return copied;
1580 #else
1581 return 0;
1582 #endif
1583 }
1584 EXPORT_SYMBOL(hash_and_copy_to_iter);
1585
1586 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1587 {
1588 size_t size = i->count;
1589 int npages = 0;
1590
1591 if (!size)
1592 return 0;
1593 if (unlikely(iov_iter_is_discard(i)))
1594 return 0;
1595
1596 if (unlikely(iov_iter_is_pipe(i))) {
1597 struct pipe_inode_info *pipe = i->pipe;
1598 unsigned int iter_head;
1599 size_t off;
1600
1601 if (!sanity(i))
1602 return 0;
1603
1604 data_start(i, &iter_head, &off);
1605 /* some of this one + all after this one */
1606 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1607 if (npages >= maxpages)
1608 return maxpages;
1609 } else iterate_all_kinds(i, size, v, ({
1610 unsigned long p = (unsigned long)v.iov_base;
1611 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1612 - p / PAGE_SIZE;
1613 if (npages >= maxpages)
1614 return maxpages;
1615 0;}),({
1616 npages++;
1617 if (npages >= maxpages)
1618 return maxpages;
1619 }),({
1620 unsigned long p = (unsigned long)v.iov_base;
1621 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1622 - p / PAGE_SIZE;
1623 if (npages >= maxpages)
1624 return maxpages;
1625 })
1626 )
1627 return npages;
1628 }
1629 EXPORT_SYMBOL(iov_iter_npages);
1630
1631 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1632 {
1633 *new = *old;
1634 if (unlikely(iov_iter_is_pipe(new))) {
1635 WARN_ON(1);
1636 return NULL;
1637 }
1638 if (unlikely(iov_iter_is_discard(new)))
1639 return NULL;
1640 if (iov_iter_is_bvec(new))
1641 return new->bvec = kmemdup(new->bvec,
1642 new->nr_segs * sizeof(struct bio_vec),
1643 flags);
1644 else
1645 /* iovec and kvec have identical layout */
1646 return new->iov = kmemdup(new->iov,
1647 new->nr_segs * sizeof(struct iovec),
1648 flags);
1649 }
1650 EXPORT_SYMBOL(dup_iter);
1651
1652 /**
1653 * import_iovec() - Copy an array of &struct iovec from userspace
1654 * into the kernel, check that it is valid, and initialize a new
1655 * &struct iov_iter iterator to access it.
1656 *
1657 * @type: One of %READ or %WRITE.
1658 * @uvector: Pointer to the userspace array.
1659 * @nr_segs: Number of elements in userspace array.
1660 * @fast_segs: Number of elements in @iov.
1661 * @iov: (input and output parameter) Pointer to pointer to (usually small
1662 * on-stack) kernel array.
1663 * @i: Pointer to iterator that will be initialized on success.
1664 *
1665 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1666 * then this function places %NULL in *@iov on return. Otherwise, a new
1667 * array will be allocated and the result placed in *@iov. This means that
1668 * the caller may call kfree() on *@iov regardless of whether the small
1669 * on-stack array was used or not (and regardless of whether this function
1670 * returns an error or not).
1671 *
1672 * Return: Negative error code on error, bytes imported on success
1673 */
1674 ssize_t import_iovec(int type, const struct iovec __user * uvector,
1675 unsigned nr_segs, unsigned fast_segs,
1676 struct iovec **iov, struct iov_iter *i)
1677 {
1678 ssize_t n;
1679 struct iovec *p;
1680 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1681 *iov, &p);
1682 if (n < 0) {
1683 if (p != *iov)
1684 kfree(p);
1685 *iov = NULL;
1686 return n;
1687 }
1688 iov_iter_init(i, type, p, nr_segs, n);
1689 *iov = p == *iov ? NULL : p;
1690 return n;
1691 }
1692 EXPORT_SYMBOL(import_iovec);
1693
1694 #ifdef CONFIG_COMPAT
1695 #include <linux/compat.h>
1696
1697 ssize_t compat_import_iovec(int type,
1698 const struct compat_iovec __user * uvector,
1699 unsigned nr_segs, unsigned fast_segs,
1700 struct iovec **iov, struct iov_iter *i)
1701 {
1702 ssize_t n;
1703 struct iovec *p;
1704 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1705 *iov, &p);
1706 if (n < 0) {
1707 if (p != *iov)
1708 kfree(p);
1709 *iov = NULL;
1710 return n;
1711 }
1712 iov_iter_init(i, type, p, nr_segs, n);
1713 *iov = p == *iov ? NULL : p;
1714 return n;
1715 }
1716 EXPORT_SYMBOL(compat_import_iovec);
1717 #endif
1718
1719 int import_single_range(int rw, void __user *buf, size_t len,
1720 struct iovec *iov, struct iov_iter *i)
1721 {
1722 if (len > MAX_RW_COUNT)
1723 len = MAX_RW_COUNT;
1724 if (unlikely(!access_ok(buf, len)))
1725 return -EFAULT;
1726
1727 iov->iov_base = buf;
1728 iov->iov_len = len;
1729 iov_iter_init(i, rw, iov, 1, len);
1730 return 0;
1731 }
1732 EXPORT_SYMBOL(import_single_range);
1733
1734 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1735 int (*f)(struct kvec *vec, void *context),
1736 void *context)
1737 {
1738 struct kvec w;
1739 int err = -EINVAL;
1740 if (!bytes)
1741 return 0;
1742
1743 iterate_all_kinds(i, bytes, v, -EINVAL, ({
1744 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1745 w.iov_len = v.bv_len;
1746 err = f(&w, context);
1747 kunmap(v.bv_page);
1748 err;}), ({
1749 w = v;
1750 err = f(&w, context);})
1751 )
1752 return err;
1753 }
1754 EXPORT_SYMBOL(iov_iter_for_each_range);