]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzpool/taskq.c
36c0ec7dfc78e8401659a984bde5fb77e2dfe1b7
[mirror_zfs-debian.git] / lib / libzpool / taskq.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27
28 int taskq_now;
29 taskq_t *system_taskq;
30
31 typedef struct task {
32 struct task *task_next;
33 struct task *task_prev;
34 task_func_t *task_func;
35 void *task_arg;
36 } task_t;
37
38 #define TASKQ_ACTIVE 0x00010000
39
40 struct taskq {
41 kmutex_t tq_lock;
42 krwlock_t tq_threadlock;
43 kcondvar_t tq_dispatch_cv;
44 kcondvar_t tq_wait_cv;
45 kthread_t **tq_threadlist;
46 int tq_flags;
47 int tq_active;
48 int tq_nthreads;
49 int tq_nalloc;
50 int tq_minalloc;
51 int tq_maxalloc;
52 kcondvar_t tq_maxalloc_cv;
53 int tq_maxalloc_wait;
54 task_t *tq_freelist;
55 task_t tq_task;
56 };
57
58 static task_t *
59 task_alloc(taskq_t *tq, int tqflags)
60 {
61 task_t *t;
62 int rv;
63
64 again: if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
65 tq->tq_freelist = t->task_next;
66 } else {
67 if (tq->tq_nalloc >= tq->tq_maxalloc) {
68 if (!(tqflags & KM_SLEEP))
69 return (NULL);
70
71 /*
72 * We don't want to exceed tq_maxalloc, but we can't
73 * wait for other tasks to complete (and thus free up
74 * task structures) without risking deadlock with
75 * the caller. So, we just delay for one second
76 * to throttle the allocation rate. If we have tasks
77 * complete before one second timeout expires then
78 * taskq_ent_free will signal us and we will
79 * immediately retry the allocation.
80 */
81 tq->tq_maxalloc_wait++;
82 rv = cv_timedwait(&tq->tq_maxalloc_cv,
83 &tq->tq_lock, ddi_get_lbolt() + hz);
84 tq->tq_maxalloc_wait--;
85 if (rv > 0)
86 goto again; /* signaled */
87 }
88 mutex_exit(&tq->tq_lock);
89
90 t = kmem_alloc(sizeof (task_t), tqflags);
91
92 mutex_enter(&tq->tq_lock);
93 if (t != NULL)
94 tq->tq_nalloc++;
95 }
96 return (t);
97 }
98
99 static void
100 task_free(taskq_t *tq, task_t *t)
101 {
102 if (tq->tq_nalloc <= tq->tq_minalloc) {
103 t->task_next = tq->tq_freelist;
104 tq->tq_freelist = t;
105 } else {
106 tq->tq_nalloc--;
107 mutex_exit(&tq->tq_lock);
108 kmem_free(t, sizeof (task_t));
109 mutex_enter(&tq->tq_lock);
110 }
111
112 if (tq->tq_maxalloc_wait)
113 cv_signal(&tq->tq_maxalloc_cv);
114 }
115
116 taskqid_t
117 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
118 {
119 task_t *t;
120
121 if (taskq_now) {
122 func(arg);
123 return (1);
124 }
125
126 mutex_enter(&tq->tq_lock);
127 ASSERT(tq->tq_flags & TASKQ_ACTIVE);
128 if ((t = task_alloc(tq, tqflags)) == NULL) {
129 mutex_exit(&tq->tq_lock);
130 return (0);
131 }
132 if (tqflags & TQ_FRONT) {
133 t->task_next = tq->tq_task.task_next;
134 t->task_prev = &tq->tq_task;
135 } else {
136 t->task_next = &tq->tq_task;
137 t->task_prev = tq->tq_task.task_prev;
138 }
139 t->task_next->task_prev = t;
140 t->task_prev->task_next = t;
141 t->task_func = func;
142 t->task_arg = arg;
143 cv_signal(&tq->tq_dispatch_cv);
144 mutex_exit(&tq->tq_lock);
145 return (1);
146 }
147
148 void
149 taskq_wait(taskq_t *tq)
150 {
151 mutex_enter(&tq->tq_lock);
152 while (tq->tq_task.task_next != &tq->tq_task || tq->tq_active != 0)
153 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
154 mutex_exit(&tq->tq_lock);
155 }
156
157 static void
158 taskq_thread(void *arg)
159 {
160 taskq_t *tq = arg;
161 task_t *t;
162
163 mutex_enter(&tq->tq_lock);
164 while (tq->tq_flags & TASKQ_ACTIVE) {
165 if ((t = tq->tq_task.task_next) == &tq->tq_task) {
166 if (--tq->tq_active == 0)
167 cv_broadcast(&tq->tq_wait_cv);
168 cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
169 tq->tq_active++;
170 continue;
171 }
172 t->task_prev->task_next = t->task_next;
173 t->task_next->task_prev = t->task_prev;
174 mutex_exit(&tq->tq_lock);
175
176 rw_enter(&tq->tq_threadlock, RW_READER);
177 t->task_func(t->task_arg);
178 rw_exit(&tq->tq_threadlock);
179
180 mutex_enter(&tq->tq_lock);
181 task_free(tq, t);
182 }
183 tq->tq_nthreads--;
184 cv_broadcast(&tq->tq_wait_cv);
185 mutex_exit(&tq->tq_lock);
186 thread_exit();
187 }
188
189 /*ARGSUSED*/
190 taskq_t *
191 taskq_create(const char *name, int nthreads, pri_t pri,
192 int minalloc, int maxalloc, uint_t flags)
193 {
194 taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
195 int t;
196
197 if (flags & TASKQ_THREADS_CPU_PCT) {
198 int pct;
199 ASSERT3S(nthreads, >=, 0);
200 ASSERT3S(nthreads, <=, 100);
201 pct = MIN(nthreads, 100);
202 pct = MAX(pct, 0);
203
204 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
205 nthreads = MAX(nthreads, 1); /* need at least 1 thread */
206 } else {
207 ASSERT3S(nthreads, >=, 1);
208 }
209
210 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
211 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
212 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
213 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
214 cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
215 tq->tq_flags = flags | TASKQ_ACTIVE;
216 tq->tq_active = nthreads;
217 tq->tq_nthreads = nthreads;
218 tq->tq_minalloc = minalloc;
219 tq->tq_maxalloc = maxalloc;
220 tq->tq_task.task_next = &tq->tq_task;
221 tq->tq_task.task_prev = &tq->tq_task;
222 tq->tq_threadlist = kmem_alloc(nthreads*sizeof(kthread_t *), KM_SLEEP);
223
224 if (flags & TASKQ_PREPOPULATE) {
225 mutex_enter(&tq->tq_lock);
226 while (minalloc-- > 0)
227 task_free(tq, task_alloc(tq, KM_SLEEP));
228 mutex_exit(&tq->tq_lock);
229 }
230
231 for (t = 0; t < nthreads; t++)
232 VERIFY((tq->tq_threadlist[t] = thread_create(NULL, 0,
233 taskq_thread, tq, TS_RUN, NULL, 0, 0)) != NULL);
234
235 return (tq);
236 }
237
238 void
239 taskq_destroy(taskq_t *tq)
240 {
241 int nthreads = tq->tq_nthreads;
242
243 taskq_wait(tq);
244
245 mutex_enter(&tq->tq_lock);
246
247 tq->tq_flags &= ~TASKQ_ACTIVE;
248 cv_broadcast(&tq->tq_dispatch_cv);
249
250 while (tq->tq_nthreads != 0)
251 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
252
253 tq->tq_minalloc = 0;
254 while (tq->tq_nalloc != 0) {
255 ASSERT(tq->tq_freelist != NULL);
256 task_free(tq, task_alloc(tq, KM_SLEEP));
257 }
258
259 mutex_exit(&tq->tq_lock);
260
261 kmem_free(tq->tq_threadlist, nthreads * sizeof (kthread_t *));
262
263 rw_destroy(&tq->tq_threadlock);
264 mutex_destroy(&tq->tq_lock);
265 cv_destroy(&tq->tq_dispatch_cv);
266 cv_destroy(&tq->tq_wait_cv);
267 cv_destroy(&tq->tq_maxalloc_cv);
268
269 kmem_free(tq, sizeof (taskq_t));
270 }
271
272 int
273 taskq_member(taskq_t *tq, kthread_t *t)
274 {
275 int i;
276
277 if (taskq_now)
278 return (1);
279
280 for (i = 0; i < tq->tq_nthreads; i++)
281 if (tq->tq_threadlist[i] == t)
282 return (1);
283
284 return (0);
285 }
286
287 void
288 system_taskq_init(void)
289 {
290 system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
291 TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
292 }
293
294 void
295 system_taskq_fini(void)
296 {
297 taskq_destroy(system_taskq);
298 system_taskq = NULL; /* defensive */
299 }