]> git.proxmox.com Git - mirror_frr.git/blob - lib/link_state.h
Merge pull request #9224 from SaiGomathiN/saig
[mirror_frr.git] / lib / link_state.h
1 /*
2 * Link State Database definition - ted.h
3 *
4 * Author: Olivier Dugeon <olivier.dugeon@orange.com>
5 *
6 * Copyright (C) 2020 Orange http://www.orange.com
7 *
8 * This file is part of Free Range Routing (FRR).
9 *
10 * FRR is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2, or (at your option) any
13 * later version.
14 *
15 * FRR is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; see the file COPYING; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 #ifndef _FRR_LINK_STATE_H_
26 #define _FRR_LINK_STATE_H_
27
28 #include "typesafe.h"
29
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33
34 /**
35 * This file defines the model used to implement a Link State Database
36 * suitable to be used by various protocol like RSVP-TE, BGP-LS, PCEP ...
37 * This database is normally fulfill by the link state routing protocol,
38 * commonly OSPF or ISIS, carrying Traffic Engineering information within
39 * Link State Attributes. See, RFC3630.(OSPF-TE) and RFC5305 (ISIS-TE).
40 *
41 * At least, 3 types of Link State structure are defined:
42 * - Link State Node that groups all information related to a node
43 * - Link State Attributes that groups all information related to a link
44 * - Link State Prefix that groups all information related to a prefix
45 *
46 * These 3 types of structures are those handled by BGP-LS (see RFC7752).
47 *
48 * Each structure, in addition to the specific parameters, embed the node
49 * identifier which advertises the Link State and a bit mask as flags to
50 * indicates which parameters are valid i.e. for which the value corresponds
51 * to a Link State information convey by the routing protocol.
52 * Node identifier is composed of the route id as IPv4 address plus the area
53 * id for OSPF and the ISO System id plus the IS-IS level for IS-IS.
54 */
55
56 /* external reference */
57 struct zapi_opaque_reg_info;
58 struct zclient;
59
60 /* Link State Common definitions */
61 #define MAX_NAME_LENGTH 256
62 #define ISO_SYS_ID_LEN 6
63
64 /* Type of Node */
65 enum ls_node_type {
66 NONE = 0, /* Unknown */
67 STANDARD, /* a P or PE node */
68 ABR, /* an Array Border Node */
69 ASBR, /* an Autonomous System Border Node */
70 RMT_ASBR, /* Remote ASBR */
71 PSEUDO /* a Pseudo Node */
72 };
73
74 /* Origin of the Link State information */
75 enum ls_origin { UNKNOWN = 0, ISIS_L1, ISIS_L2, OSPFv2, DIRECT, STATIC };
76
77 /**
78 * Link State Node Identifier as:
79 * - IPv4 address + Area ID for OSPF
80 * - ISO System ID + ISIS Level for ISIS
81 */
82 struct ls_node_id {
83 enum ls_origin origin; /* Origin of the LS information */
84 union {
85 struct {
86 struct in_addr addr; /* OSPF Router IS */
87 struct in_addr area_id; /* OSPF Area ID */
88 } ip;
89 struct {
90 uint8_t sys_id[ISO_SYS_ID_LEN]; /* ISIS System ID */
91 uint8_t level; /* ISIS Level */
92 uint8_t padding;
93 } iso;
94 } id __attribute__((aligned(8)));
95 };
96
97 /**
98 * Check if two Link State Node IDs are equal. Note that this routine has the
99 * same return value sense as '==' (which is different from a comparison).
100 *
101 * @param i1 First Link State Node Identifier
102 * @param i2 Second Link State Node Identifier
103 * @return 1 if equal, 0 otherwise
104 */
105 extern int ls_node_id_same(struct ls_node_id i1, struct ls_node_id i2);
106
107 /* Link State flags to indicate which Node parameters are valid */
108 #define LS_NODE_UNSET 0x0000
109 #define LS_NODE_NAME 0x0001
110 #define LS_NODE_ROUTER_ID 0x0002
111 #define LS_NODE_ROUTER_ID6 0x0004
112 #define LS_NODE_FLAG 0x0008
113 #define LS_NODE_TYPE 0x0010
114 #define LS_NODE_AS_NUMBER 0x0020
115 #define LS_NODE_SR 0x0040
116 #define LS_NODE_SRLB 0x0080
117 #define LS_NODE_MSD 0x0100
118
119 /* Link State Node structure */
120 struct ls_node {
121 uint16_t flags; /* Flag for parameters validity */
122 struct ls_node_id adv; /* Adv. Router of this Link State */
123 char name[MAX_NAME_LENGTH]; /* Name of the Node (IS-IS only) */
124 struct in_addr router_id; /* IPv4 Router ID */
125 struct in6_addr router_id6; /* IPv6 Router ID */
126 uint8_t node_flag; /* IS-IS or OSPF Node flag */
127 enum ls_node_type type; /* Type of Node */
128 uint32_t as_number; /* Local or neighbor AS number */
129 struct ls_srgb { /* Segment Routing Global Block */
130 uint32_t lower_bound; /* MPLS label lower bound */
131 uint32_t range_size; /* MPLS label range size */
132 uint8_t flag; /* IS-IS SRGB flags */
133 } srgb;
134 struct ls_srlb { /* Segment Routing Local Block */
135 uint32_t lower_bound; /* MPLS label lower bound */
136 uint32_t range_size; /* MPLS label range size */
137 } srlb;
138 uint8_t algo[2]; /* Segment Routing Algorithms */
139 uint8_t msd; /* Maximum Stack Depth */
140 };
141
142 /* Link State flags to indicate which Attribute parameters are valid */
143 #define LS_ATTR_UNSET 0x00000000
144 #define LS_ATTR_NAME 0x00000001
145 #define LS_ATTR_METRIC 0x00000002
146 #define LS_ATTR_TE_METRIC 0x00000004
147 #define LS_ATTR_ADM_GRP 0x00000008
148 #define LS_ATTR_LOCAL_ADDR 0x00000010
149 #define LS_ATTR_NEIGH_ADDR 0x00000020
150 #define LS_ATTR_LOCAL_ADDR6 0x00000040
151 #define LS_ATTR_NEIGH_ADDR6 0x00000080
152 #define LS_ATTR_LOCAL_ID 0x00000100
153 #define LS_ATTR_NEIGH_ID 0x00000200
154 #define LS_ATTR_MAX_BW 0x00000400
155 #define LS_ATTR_MAX_RSV_BW 0x00000800
156 #define LS_ATTR_UNRSV_BW 0x00001000
157 #define LS_ATTR_REMOTE_AS 0x00002000
158 #define LS_ATTR_REMOTE_ADDR 0x00004000
159 #define LS_ATTR_REMOTE_ADDR6 0x00008000
160 #define LS_ATTR_DELAY 0x00010000
161 #define LS_ATTR_MIN_MAX_DELAY 0x00020000
162 #define LS_ATTR_JITTER 0x00040000
163 #define LS_ATTR_PACKET_LOSS 0x00080000
164 #define LS_ATTR_AVA_BW 0x00100000
165 #define LS_ATTR_RSV_BW 0x00200000
166 #define LS_ATTR_USE_BW 0x00400000
167 #define LS_ATTR_ADJ_SID 0x01000000
168 #define LS_ATTR_BCK_ADJ_SID 0x02000000
169 #define LS_ATTR_ADJ_SID6 0x04000000
170 #define LS_ATTR_BCK_ADJ_SID6 0x08000000
171 #define LS_ATTR_SRLG 0x10000000
172
173 /* Link State Attributes */
174 struct ls_attributes {
175 uint32_t flags; /* Flag for parameters validity */
176 struct ls_node_id adv; /* Adv. Router of this Link State */
177 char name[MAX_NAME_LENGTH]; /* Name of the Edge. Could be null */
178 uint32_t metric; /* IGP standard metric */
179 struct ls_standard { /* Standard TE metrics */
180 uint32_t te_metric; /* Traffic Engineering metric */
181 uint32_t admin_group; /* Administrative Group */
182 struct in_addr local; /* Local IPv4 address */
183 struct in_addr remote; /* Remote IPv4 address */
184 struct in6_addr local6; /* Local IPv6 address */
185 struct in6_addr remote6; /* Remote IPv6 address */
186 uint32_t local_id; /* Local Identifier */
187 uint32_t remote_id; /* Remote Identifier */
188 float max_bw; /* Maximum Link Bandwidth */
189 float max_rsv_bw; /* Maximum Reservable BW */
190 float unrsv_bw[8]; /* Unreserved BW per CT (8) */
191 uint32_t remote_as; /* Remote AS number */
192 struct in_addr remote_addr; /* Remote IPv4 address */
193 struct in6_addr remote_addr6; /* Remote IPv6 address */
194 } standard;
195 struct ls_extended { /* Extended TE Metrics */
196 uint32_t delay; /* Unidirectional average delay */
197 uint32_t min_delay; /* Unidirectional minimum delay */
198 uint32_t max_delay; /* Unidirectional maximum delay */
199 uint32_t jitter; /* Unidirectional delay variation */
200 uint32_t pkt_loss; /* Unidirectional packet loss */
201 float ava_bw; /* Available Bandwidth */
202 float rsv_bw; /* Reserved Bandwidth */
203 float used_bw; /* Utilized Bandwidth */
204 } extended;
205 #define ADJ_PRI_IPV4 0
206 #define ADJ_BCK_IPV4 1
207 #define ADJ_PRI_IPV6 2
208 #define ADJ_BCK_IPV6 3
209 #define LS_ADJ_MAX 4
210 struct ls_adjacency { /* (LAN)-Adjacency SID for OSPF */
211 uint32_t sid; /* SID as MPLS label or index */
212 uint8_t flags; /* Flags */
213 uint8_t weight; /* Administrative weight */
214 union {
215 struct in_addr addr; /* Neighbor @IP for OSPF */
216 uint8_t sysid[ISO_SYS_ID_LEN]; /* or Sys-ID for ISIS */
217 } neighbor;
218 } adj_sid[4]; /* IPv4/IPv6 & Primary/Backup (LAN)-Adj. SID */
219 uint32_t *srlgs; /* List of Shared Risk Link Group */
220 uint8_t srlg_len; /* number of SRLG in the list */
221 };
222
223 /* Link State flags to indicate which Prefix parameters are valid */
224 #define LS_PREF_UNSET 0x00
225 #define LS_PREF_IGP_FLAG 0x01
226 #define LS_PREF_ROUTE_TAG 0x02
227 #define LS_PREF_EXTENDED_TAG 0x04
228 #define LS_PREF_METRIC 0x08
229 #define LS_PREF_SR 0x10
230
231 /* Link State Prefix */
232 struct ls_prefix {
233 uint8_t flags; /* Flag for parameters validity */
234 struct ls_node_id adv; /* Adv. Router of this Link State */
235 struct prefix pref; /* IPv4 or IPv6 prefix */
236 uint8_t igp_flag; /* IGP Flags associated to the prefix */
237 uint32_t route_tag; /* IGP Route Tag */
238 uint64_t extended_tag; /* IGP Extended Route Tag */
239 uint32_t metric; /* Route metric for this prefix */
240 struct ls_sid {
241 uint32_t sid; /* Segment Routing ID */
242 uint8_t sid_flag; /* Segment Routing Flags */
243 uint8_t algo; /* Algorithm for Segment Routing */
244 } sr;
245 };
246
247 /**
248 * Create a new Link State Node. Structure is dynamically allocated.
249 *
250 * @param adv Mandatory Link State Node ID i.e. advertise router information
251 * @param rid Router ID as IPv4 address
252 * @param rid6 Router ID as IPv6 address
253 *
254 * @return New Link State Node
255 */
256 extern struct ls_node *ls_node_new(struct ls_node_id adv, struct in_addr rid,
257 struct in6_addr rid6);
258
259 /**
260 * Remove Link State Node. Data structure is freed.
261 *
262 * @param node Pointer to a valid Link State Node structure
263 */
264 extern void ls_node_del(struct ls_node *node);
265
266 /**
267 * Check if two Link State Nodes are equal. Note that this routine has the same
268 * return value sense as '==' (which is different from a comparison).
269 *
270 * @param n1 First Link State Node to be compare
271 * @param n2 Second Link State Node to be compare
272 *
273 * @return 1 if equal, 0 otherwise
274 */
275 extern int ls_node_same(struct ls_node *n1, struct ls_node *n2);
276
277 /**
278 * Create a new Link State Attributes. Structure is dynamically allocated.
279 * At least one of parameters MUST be valid and not equal to 0.
280 *
281 * @param adv Mandatory Link State Node ID i.e. advertise router ID
282 * @param local Local IPv4 address
283 * @param local6 Local Ipv6 address
284 * @param local_id Local Identifier
285 *
286 * @return New Link State Attributes
287 */
288 extern struct ls_attributes *ls_attributes_new(struct ls_node_id adv,
289 struct in_addr local,
290 struct in6_addr local6,
291 uint32_t local_id);
292
293 /**
294 * Remove SRLGs from Link State Attributes if defined.
295 *
296 * @param attr Pointer to a valid Link State Attribute structure
297 */
298 extern void ls_attributes_srlg_del(struct ls_attributes *attr);
299
300 /**
301 * Remove Link State Attributes. Data structure is freed.
302 *
303 * @param attr Pointer to a valid Link State Attribute structure
304 */
305 extern void ls_attributes_del(struct ls_attributes *attr);
306
307 /**
308 * Check if two Link State Attributes are equal. Note that this routine has the
309 * same return value sense as '==' (which is different from a comparison).
310 *
311 * @param a1 First Link State Attributes to be compare
312 * @param a2 Second Link State Attributes to be compare
313 *
314 * @return 1 if equal, 0 otherwise
315 */
316 extern int ls_attributes_same(struct ls_attributes *a1,
317 struct ls_attributes *a2);
318
319 /**
320 * Create a new Link State Prefix. Structure is dynamically allocated.
321 *
322 * @param adv Mandatory Link State Node ID i.e. advertise router ID
323 * @param p Mandatory Prefix
324 *
325 * @return New Link State Prefix
326 */
327 extern struct ls_prefix *ls_prefix_new(struct ls_node_id adv, struct prefix p);
328
329 /**
330 * Remove Link State Prefix. Data Structure is freed.
331 *
332 * @param pref Pointer to a valid Link State Attribute Prefix.
333 */
334 extern void ls_prefix_del(struct ls_prefix *pref);
335
336 /**
337 * Check if two Link State Prefix are equal. Note that this routine has the
338 * same return value sense as '==' (which is different from a comparison).
339 *
340 * @param p1 First Link State Prefix to be compare
341 * @param p2 Second Link State Prefix to be compare
342 *
343 * @return 1 if equal, 0 otherwise
344 */
345 extern int ls_prefix_same(struct ls_prefix *p1, struct ls_prefix *p2);
346
347 /**
348 * In addition a Graph model is defined as an overlay on top of link state
349 * database in order to ease Path Computation algorithm implementation.
350 * Denoted G(V, E), a graph is composed by a list of Vertices (V) which
351 * represents the network Node and a list of Edges (E) which represents node
352 * Link. An additional list of prefixes (P) is also added.
353 * A prefix (P) is also attached to the Vertex (V) which advertise it.
354 *
355 * Vertex (V) contains the list of outgoing Edges (E) that connect this Vertex
356 * with its direct neighbors and the list of incoming Edges (E) that connect
357 * the direct neighbors to this Vertex. Indeed, the Edge (E) is unidirectional,
358 * thus, it is necessary to add 2 Edges to model a bidirectional relation
359 * between 2 Vertices.
360 *
361 * Edge (E) contains the source and destination Vertex that this Edge
362 * is connecting.
363 *
364 * A unique Key is used to identify both Vertices and Edges within the Graph.
365 * An easy way to build this key is to used the IP address: i.e. loopback
366 * address for Vertices and link IP address for Edges.
367 *
368 * -------------- --------------------------- --------------
369 * | Connected |---->| Connected Edge Va to Vb |--->| Connected |
370 * --->| Vertex | --------------------------- | Vertex |---->
371 * | | | |
372 * | - Key (Va) | | - Key (Vb) |
373 * <---| - Vertex | --------------------------- | - Vertex |<----
374 * | |<----| Connected Edge Vb to Va |<---| |
375 * -------------- --------------------------- --------------
376 *
377 */
378
379 enum ls_status { UNSET = 0, NEW, UPDATE, DELETE, SYNC, ORPHAN };
380 enum ls_type { GENERIC = 0, VERTEX, EDGE, SUBNET };
381
382 /* Link State Vertex structure */
383 PREDECL_RBTREE_UNIQ(vertices);
384 struct ls_vertex {
385 enum ls_type type; /* Link State Type */
386 enum ls_status status; /* Status of the Vertex in the TED */
387 struct vertices_item entry; /* Entry in RB Tree */
388 uint64_t key; /* Unique Key identifier */
389 struct ls_node *node; /* Link State Node */
390 struct list *incoming_edges; /* List of incoming Link State links */
391 struct list *outgoing_edges; /* List of outgoing Link State links */
392 struct list *prefixes; /* List of advertised prefix */
393 };
394
395 /* Link State Edge structure */
396 PREDECL_RBTREE_UNIQ(edges);
397 struct ls_edge {
398 enum ls_type type; /* Link State Type */
399 enum ls_status status; /* Status of the Edge in the TED */
400 struct edges_item entry; /* Entry in RB tree */
401 uint64_t key; /* Unique Key identifier */
402 struct ls_attributes *attributes; /* Link State attributes */
403 struct ls_vertex *source; /* Pointer to the source Vertex */
404 struct ls_vertex *destination; /* Pointer to the destination Vertex */
405 };
406
407 /* Link State Subnet structure */
408 PREDECL_RBTREE_UNIQ(subnets);
409 struct ls_subnet {
410 enum ls_type type; /* Link State Type */
411 enum ls_status status; /* Status of the Subnet in the TED */
412 struct subnets_item entry; /* Entry in RB tree */
413 struct prefix key; /* Unique Key identifier */
414 struct ls_prefix *ls_pref; /* Link State Prefix */
415 struct ls_vertex *vertex; /* Back pointer to the Vertex owner */
416 };
417
418 /* Declaration of Vertices, Edges and Prefixes RB Trees */
419 macro_inline int vertex_cmp(const struct ls_vertex *node1,
420 const struct ls_vertex *node2)
421 {
422 return numcmp(node1->key, node2->key);
423 }
424 DECLARE_RBTREE_UNIQ(vertices, struct ls_vertex, entry, vertex_cmp);
425
426 macro_inline int edge_cmp(const struct ls_edge *edge1,
427 const struct ls_edge *edge2)
428 {
429 return numcmp(edge1->key, edge2->key);
430 }
431 DECLARE_RBTREE_UNIQ(edges, struct ls_edge, entry, edge_cmp);
432
433 /*
434 * Prefix comparison are done to the host part so, 10.0.0.1/24
435 * and 10.0.0.2/24 are considered come different
436 */
437 macro_inline int subnet_cmp(const struct ls_subnet *a,
438 const struct ls_subnet *b)
439 {
440 if (a->key.family != b->key.family)
441 return numcmp(a->key.family, b->key.family);
442
443 if (a->key.prefixlen != b->key.prefixlen)
444 return numcmp(a->key.prefixlen, b->key.prefixlen);
445
446 if (a->key.family == AF_INET)
447 return memcmp(&a->key.u.val, &b->key.u.val, 4);
448
449 return memcmp(&a->key.u.val, &b->key.u.val, 16);
450 }
451 DECLARE_RBTREE_UNIQ(subnets, struct ls_subnet, entry, subnet_cmp);
452
453 /* Link State TED Structure */
454 struct ls_ted {
455 uint32_t key; /* Unique identifier */
456 char name[MAX_NAME_LENGTH]; /* Name of this graph. Could be null */
457 uint32_t as_number; /* AS number of the modeled network */
458 struct ls_vertex *self; /* Vertex of the FRR instance */
459 struct vertices_head vertices; /* List of Vertices */
460 struct edges_head edges; /* List of Edges */
461 struct subnets_head subnets; /* List of Subnets */
462 };
463
464 /* Generic Link State Element */
465 struct ls_element {
466 enum ls_type type; /* Link State Element Type */
467 enum ls_status status; /* Link State Status in the TED */
468 void *data; /* Link State payload */
469 };
470
471 /**
472 * Add new vertex to the Link State DB. Vertex is created from the Link State
473 * Node. Vertex data structure is dynamically allocated.
474 *
475 * @param ted Traffic Engineering Database structure
476 * @param node Link State Node
477 *
478 * @return New Vertex or NULL in case of error
479 */
480 extern struct ls_vertex *ls_vertex_add(struct ls_ted *ted,
481 struct ls_node *node);
482
483 /**
484 * Delete Link State Vertex. This function clean internal Vertex lists (incoming
485 * and outgoing Link State Edge and Link State Subnet). Vertex Data structure
486 * is freed but not the Link State Node. Link State DB is not modified if Vertex
487 * is NULL or not found in the Data Base. Note that referenced to Link State
488 * Edges & SubNets are not removed as they could be connected to other Vertices.
489 *
490 * @param ted Traffic Engineering Database structure
491 * @param vertex Link State Vertex to be removed
492 */
493 extern void ls_vertex_del(struct ls_ted *ted, struct ls_vertex *vertex);
494
495 /**
496 * Delete Link State Vertex as ls_vertex_del() but also removed associated
497 * Link State Node.
498 *
499 * @param ted Traffic Engineering Database structure
500 * @param vertex Link State Vertex to be removed
501 */
502 extern void ls_vertex_del_all(struct ls_ted *ted, struct ls_vertex *vertex);
503
504 /**
505 * Update Vertex with the Link State Node. A new vertex is created if no one
506 * corresponds to the Link State Node.
507 *
508 * @param ted Link State Data Base
509 * @param node Link State Node to be updated
510 *
511 * @return Updated Link State Vertex or Null in case of error
512 */
513 extern struct ls_vertex *ls_vertex_update(struct ls_ted *ted,
514 struct ls_node *node);
515
516 /**
517 * Clean Vertex structure by removing all Edges and Subnets marked as ORPHAN
518 * from this vertex. Link State Update message is sent if zclient is not NULL.
519 *
520 * @param ted Link State Data Base
521 * @param vertex Link State Vertex to be cleaned
522 * @param zclient Reference to Zebra Client
523 */
524 extern void ls_vertex_clean(struct ls_ted *ted, struct ls_vertex *vertex,
525 struct zclient *zclient);
526
527 /**
528 * This function convert the ISIS ISO system ID into a 64 bits unsigned integer
529 * following the architecture dependent byte order.
530 *
531 * @param sysid The ISO system ID
532 * @return Key as 64 bits unsigned integer
533 */
534 extern uint64_t sysid_to_key(const uint8_t sysid[ISO_SYS_ID_LEN]);
535
536 /**
537 * Find Vertex in the Link State DB by its unique key.
538 *
539 * @param ted Link State Data Base
540 * @param key Vertex Key different from 0
541 *
542 * @return Vertex if found, NULL otherwise
543 */
544 extern struct ls_vertex *ls_find_vertex_by_key(struct ls_ted *ted,
545 const uint64_t key);
546
547 /**
548 * Find Vertex in the Link State DB by its Link State Node.
549 *
550 * @param ted Link State Data Base
551 * @param nid Link State Node ID
552 *
553 * @return Vertex if found, NULL otherwise
554 */
555 extern struct ls_vertex *ls_find_vertex_by_id(struct ls_ted *ted,
556 struct ls_node_id nid);
557
558 /**
559 * Check if two Vertices are equal. Note that this routine has the same return
560 * value sense as '==' (which is different from a comparison).
561 *
562 * @param v1 First vertex to compare
563 * @param v2 Second vertex to compare
564 *
565 * @return 1 if equal, 0 otherwise
566 */
567 extern int ls_vertex_same(struct ls_vertex *v1, struct ls_vertex *v2);
568
569 /**
570 * Add new Edge to the Link State DB. Edge is created from the Link State
571 * Attributes. Edge data structure is dynamically allocated.
572 *
573 * @param ted Link State Data Base
574 * @param attributes Link State attributes
575 *
576 * @return New Edge or NULL in case of error
577 */
578 extern struct ls_edge *ls_edge_add(struct ls_ted *ted,
579 struct ls_attributes *attributes);
580
581 /**
582 * Update the Link State Attributes information of an existing Edge. If there is
583 * no corresponding Edge in the Link State Data Base, a new Edge is created.
584 *
585 * @param ted Link State Data Base
586 * @param attributes Link State Attributes
587 *
588 * @return Updated Link State Edge, or NULL in case of error
589 */
590 extern struct ls_edge *ls_edge_update(struct ls_ted *ted,
591 struct ls_attributes *attributes);
592
593 /**
594 * Check if two Edges are equal. Note that this routine has the same return
595 * value sense as '==' (which is different from a comparison).
596 *
597 * @param e1 First edge to compare
598 * @param e2 Second edge to compare
599 *
600 * @return 1 if equal, 0 otherwise
601 */
602 extern int ls_edge_same(struct ls_edge *e1, struct ls_edge *e2);
603
604 /**
605 * Remove Edge from the Link State DB. Edge data structure is freed but not the
606 * Link State Attributes data structure. Link State DB is not modified if Edge
607 * is NULL or not found in the Data Base.
608 *
609 * @param ted Link State Data Base
610 * @param edge Edge to be removed
611 */
612 extern void ls_edge_del(struct ls_ted *ted, struct ls_edge *edge);
613
614 /**
615 * Remove Edge and associated Link State Attributes from the Link State DB.
616 * Link State DB is not modified if Edge is NULL or not found.
617 *
618 * @param ted Link State Data Base
619 * @param edge Edge to be removed
620 */
621 extern void ls_edge_del_all(struct ls_ted *ted, struct ls_edge *edge);
622
623 /**
624 * Find Edge in the Link State Data Base by Edge key.
625 *
626 * @param ted Link State Data Base
627 * @param key Edge key
628 *
629 * @return Edge if found, NULL otherwise
630 */
631 extern struct ls_edge *ls_find_edge_by_key(struct ls_ted *ted,
632 const uint64_t key);
633
634 /**
635 * Find Edge in the Link State Data Base by the source (local IPv4 or IPv6
636 * address or local ID) informations of the Link State Attributes
637 *
638 * @param ted Link State Data Base
639 * @param attributes Link State Attributes
640 *
641 * @return Edge if found, NULL otherwise
642 */
643 extern struct ls_edge *
644 ls_find_edge_by_source(struct ls_ted *ted, struct ls_attributes *attributes);
645
646 /**
647 * Find Edge in the Link State Data Base by the destination (remote IPv4 or IPv6
648 * address of remote ID) information of the Link State Attributes
649 *
650 * @param ted Link State Data Base
651 * @param attributes Link State Attributes
652 *
653 * @return Edge if found, NULL otherwise
654 */
655 extern struct ls_edge *
656 ls_find_edge_by_destination(struct ls_ted *ted,
657 struct ls_attributes *attributes);
658
659 /**
660 * Add new Subnet to the Link State DB. Subnet is created from the Link State
661 * prefix. Subnet data structure is dynamically allocated.
662 *
663 * @param ted Link State Data Base
664 * @param pref Link State Prefix
665 *
666 * @return New Subnet
667 */
668 extern struct ls_subnet *ls_subnet_add(struct ls_ted *ted,
669 struct ls_prefix *pref);
670
671 /**
672 * Update the Link State Prefix information of an existing Subnet. If there is
673 * no corresponding Subnet in the Link State Data Base, a new Subnet is created.
674 *
675 * @param ted Link State Data Base
676 * @param pref Link State Prefix
677 *
678 * @return Updated Link State Subnet, or NULL in case of error
679 */
680 extern struct ls_subnet *ls_subnet_update(struct ls_ted *ted,
681 struct ls_prefix *pref);
682
683 /**
684 * Check if two Subnets are equal. Note that this routine has the same return
685 * value sense as '==' (which is different from a comparison).
686 *
687 * @param s1 First subnet to compare
688 * @param s2 Second subnet to compare
689 *
690 * @return 1 if equal, 0 otherwise
691 */
692 extern int ls_subnet_same(struct ls_subnet *s1, struct ls_subnet *s2);
693
694 /**
695 * Remove Subnet from the Link State DB. Subnet data structure is freed but
696 * not the Link State prefix data structure. Link State DB is not modified
697 * if Subnet is NULL or not found in the Data Base.
698 *
699 * @param ted Link State Data Base
700 * @param subnet Subnet to be removed
701 */
702 extern void ls_subnet_del(struct ls_ted *ted, struct ls_subnet *subnet);
703
704 /**
705 * Remove Subnet and the associated Link State Prefix from the Link State DB.
706 * Link State DB is not modified if Subnet is NULL or not found.
707 *
708 * @param ted Link State Data Base
709 * @param subnet Subnet to be removed
710 */
711 extern void ls_subnet_del_all(struct ls_ted *ted, struct ls_subnet *subnet);
712
713 /**
714 * Find Subnet in the Link State Data Base by prefix.
715 *
716 * @param ted Link State Data Base
717 * @param prefix Link State Prefix
718 *
719 * @return Subnet if found, NULL otherwise
720 */
721 extern struct ls_subnet *ls_find_subnet(struct ls_ted *ted,
722 const struct prefix prefix);
723
724 /**
725 * Create a new Link State Data Base.
726 *
727 * @param key Unique key of the data base. Must be different from 0
728 * @param name Name of the data base (may be NULL)
729 * @param asn AS Number for this data base. 0 if unknown
730 *
731 * @return New Link State Database or NULL in case of error
732 */
733 extern struct ls_ted *ls_ted_new(const uint32_t key, const char *name,
734 uint32_t asn);
735
736 /**
737 * Delete existing Link State Data Base. Vertices, Edges, and Subnets are not
738 * removed.
739 *
740 * @param ted Link State Data Base
741 */
742 extern void ls_ted_del(struct ls_ted *ted);
743
744 /**
745 * Delete all Link State Vertices, Edges and SubNets and the Link State DB.
746 *
747 * @param ted Link State Data Base
748 */
749 extern void ls_ted_del_all(struct ls_ted *ted);
750
751 /**
752 * Clean Link State Data Base by removing all Vertices, Edges and SubNets marked
753 * as ORPHAN.
754 *
755 * @param ted Link State Data Base
756 */
757 extern void ls_ted_clean(struct ls_ted *ted);
758
759 /**
760 * Connect Source and Destination Vertices by given Edge. Only non NULL source
761 * and destination vertices are connected.
762 *
763 * @param src Link State Source Vertex
764 * @param dst Link State Destination Vertex
765 * @param edge Link State Edge. Must not be NULL
766 */
767 extern void ls_connect_vertices(struct ls_vertex *src, struct ls_vertex *dst,
768 struct ls_edge *edge);
769
770 /**
771 * Connect Link State Edge to the Link State Vertex which could be a Source or
772 * a Destination Vertex.
773 *
774 * @param vertex Link State Vertex to be connected. Must not be NULL
775 * @param edge Link State Edge connection. Must not be NULL
776 * @param source True for a Source, false for a Destination Vertex
777 */
778 extern void ls_connect(struct ls_vertex *vertex, struct ls_edge *edge,
779 bool source);
780
781 /**
782 * Disconnect Link State Edge from the Link State Vertex which could be a
783 * Source or a Destination Vertex.
784 *
785 * @param vertex Link State Vertex to be connected. Must not be NULL
786 * @param edge Link State Edge connection. Must not be NULL
787 * @param source True for a Source, false for a Destination Vertex
788 */
789 extern void ls_disconnect(struct ls_vertex *vertex, struct ls_edge *edge,
790 bool source);
791
792 /**
793 * Disconnect Link State Edge from both Source and Destination Vertex.
794 *
795 * @param edge Link State Edge to be disconnected
796 */
797 extern void ls_disconnect_edge(struct ls_edge *edge);
798
799
800 /**
801 * The Link State Message is defined to convey Link State parameters from
802 * the routing protocol (OSPF or IS-IS) to other daemons e.g. BGP.
803 *
804 * The structure is composed of:
805 * - Event of the message:
806 * - Sync: Send the whole LS DB following a request
807 * - Add: Send the a new Link State element
808 * - Update: Send an update of an existing Link State element
809 * - Delete: Indicate that the given Link State element is removed
810 * - Type of Link State element: Node, Attribute or Prefix
811 * - Remote node id when known
812 * - Data: Node, Attributes or Prefix
813 *
814 * A Link State Message can carry only one Link State Element (Node, Attributes
815 * of Prefix) at once, and only one Link State Message is sent through ZAPI
816 * Opaque Link State type at once.
817 */
818
819 /* ZAPI Opaque Link State Message Event */
820 #define LS_MSG_EVENT_UNDEF 0
821 #define LS_MSG_EVENT_SYNC 1
822 #define LS_MSG_EVENT_ADD 2
823 #define LS_MSG_EVENT_UPDATE 3
824 #define LS_MSG_EVENT_DELETE 4
825
826 /* ZAPI Opaque Link State Message sub-Type */
827 #define LS_MSG_TYPE_NODE 1
828 #define LS_MSG_TYPE_ATTRIBUTES 2
829 #define LS_MSG_TYPE_PREFIX 3
830
831 /* Link State Message */
832 struct ls_message {
833 uint8_t event; /* Message Event: Sync, Add, Update, Delete */
834 uint8_t type; /* Message Data Type: Node, Attribute, Prefix */
835 struct ls_node_id remote_id; /* Remote Link State Node ID */
836 union {
837 struct ls_node *node; /* Link State Node */
838 struct ls_attributes *attr; /* Link State Attributes */
839 struct ls_prefix *prefix; /* Link State Prefix */
840 } data;
841 };
842
843 /**
844 * Register Link State daemon as a server or client for Zebra OPAQUE API.
845 *
846 * @param zclient Zebra client structure
847 * @param server Register daemon as a server (true) or as a client (false)
848 *
849 * @return 0 if success, -1 otherwise
850 */
851 extern int ls_register(struct zclient *zclient, bool server);
852
853 /**
854 * Unregister Link State daemon as a server or client for Zebra OPAQUE API.
855 *
856 * @param zclient Zebra client structure
857 * @param server Unregister daemon as a server (true) or as a client (false)
858 *
859 * @return 0 if success, -1 otherwise
860 */
861 extern int ls_unregister(struct zclient *zclient, bool server);
862
863 /**
864 * Send Link State SYNC message to request the complete Link State Database.
865 *
866 * @param zclient Zebra client
867 *
868 * @return 0 if success, -1 otherwise
869 */
870 extern int ls_request_sync(struct zclient *zclient);
871
872 /**
873 * Parse Link State Message from stream. Used this function once receiving a
874 * new ZAPI Opaque message of type Link State.
875 *
876 * @param s Stream buffer. Must not be NULL.
877 *
878 * @return New Link State Message or NULL in case of error
879 */
880 extern struct ls_message *ls_parse_msg(struct stream *s);
881
882 /**
883 * Delete existing message. Data structure is freed.
884 *
885 * @param msg Link state message to be deleted
886 */
887 extern void ls_delete_msg(struct ls_message *msg);
888
889 /**
890 * Send Link State Message as new ZAPI Opaque message of type Link State.
891 * If destination is not NULL, message is sent as Unicast otherwise it is
892 * broadcast to all registered daemon.
893 *
894 * @param zclient Zebra Client
895 * @param msg Link State Message to be sent
896 * @param dst Destination daemon for unicast message,
897 * NULL for broadcast message
898 *
899 * @return 0 on success, -1 otherwise
900 */
901 extern int ls_send_msg(struct zclient *zclient, struct ls_message *msg,
902 struct zapi_opaque_reg_info *dst);
903
904 /**
905 * Create a new Link State Message from a Link State Vertex. If Link State
906 * Message is NULL, a new data structure is dynamically allocated.
907 *
908 * @param msg Link State Message to be filled or NULL
909 * @param vertex Link State Vertex. Must not be NULL
910 *
911 * @return New Link State Message msg parameter is NULL or pointer
912 * to the provided Link State Message
913 */
914 extern struct ls_message *ls_vertex2msg(struct ls_message *msg,
915 struct ls_vertex *vertex);
916
917 /**
918 * Create a new Link State Message from a Link State Edge. If Link State
919 * Message is NULL, a new data structure is dynamically allocated.
920 *
921 * @param msg Link State Message to be filled or NULL
922 * @param edge Link State Edge. Must not be NULL
923 *
924 * @return New Link State Message msg parameter is NULL or pointer
925 * to the provided Link State Message
926 */
927 extern struct ls_message *ls_edge2msg(struct ls_message *msg,
928 struct ls_edge *edge);
929
930 /**
931 * Create a new Link State Message from a Link State Subnet. If Link State
932 * Message is NULL, a new data structure is dynamically allocated.
933 *
934 * @param msg Link State Message to be filled or NULL
935 * @param subnet Link State Subnet. Must not be NULL
936 *
937 * @return New Link State Message msg parameter is NULL or pointer
938 * to the provided Link State Message
939 */
940 extern struct ls_message *ls_subnet2msg(struct ls_message *msg,
941 struct ls_subnet *subnet);
942
943 /**
944 * Convert Link State Message into Vertex and update TED accordingly to
945 * the message event: SYNC, ADD, UPDATE or DELETE.
946 *
947 * @param ted Link State Database
948 * @param msg Link State Message
949 * @param delete True to delete the Link State Vertex from the Database,
950 * False otherwise. If true, return value is NULL in case
951 * of deletion.
952 *
953 * @return Vertex if success, NULL otherwise or if Vertex is removed
954 */
955 extern struct ls_vertex *ls_msg2vertex(struct ls_ted *ted,
956 struct ls_message *msg, bool delete);
957
958 /**
959 * Convert Link State Message into Edge and update TED accordingly to
960 * the message event: SYNC, ADD, UPDATE or DELETE.
961 *
962 * @param ted Link State Database
963 * @param msg Link State Message
964 * @param delete True to delete the Link State Edge from the Database,
965 * False otherwise. If true, return value is NULL in case
966 * of deletion.
967 *
968 * @return Edge if success, NULL otherwise or if Edge is removed
969 */
970 extern struct ls_edge *ls_msg2edge(struct ls_ted *ted, struct ls_message *msg,
971 bool delete);
972
973 /**
974 * Convert Link State Message into Subnet and update TED accordingly to
975 * the message event: SYNC, ADD, UPDATE or DELETE.
976 *
977 * @param ted Link State Database
978 * @param msg Link State Message
979 * @param delete True to delete the Link State Subnet from the Database,
980 * False otherwise. If true, return value is NULL in case
981 * of deletion.
982 *
983 * @return Subnet if success, NULL otherwise or if Subnet is removed
984 */
985 extern struct ls_subnet *ls_msg2subnet(struct ls_ted *ted,
986 struct ls_message *msg, bool delete);
987
988 /**
989 * Convert Link State Message into Link State element (Vertex, Edge or Subnet)
990 * and update TED accordingly to the message event: SYNC, ADD, UPDATE or DELETE.
991 *
992 * @param ted Link State Database
993 * @param msg Link State Message
994 * @param delete True to delete the Link State Element from the Database,
995 * False otherwise. If true, return value is NULL in case
996 * of deletion.
997 *
998 * @return Element if success, NULL otherwise or if Element is removed
999 */
1000 extern struct ls_element *ls_msg2ted(struct ls_ted *ted, struct ls_message *msg,
1001 bool delete);
1002
1003 /**
1004 * Convert stream buffer into Link State element (Vertex, Edge or Subnet) and
1005 * update TED accordingly to the message event: SYNC, ADD, UPDATE or DELETE.
1006 *
1007 * @param ted Link State Database
1008 * @param s Stream buffer
1009 * @param delete True to delete the Link State Element from the Database,
1010 * False otherwise. If true, return value is NULL in case
1011 * of deletion.
1012 *
1013 * @return Element if success, NULL otherwise or if Element is removed
1014 */
1015 extern struct ls_element *ls_stream2ted(struct ls_ted *ted, struct stream *s,
1016 bool delete);
1017
1018 /**
1019 * Send all the content of the Link State Data Base to the given destination.
1020 * Link State content is sent is this order: Vertices, Edges, Subnet.
1021 * This function must be used when a daemon request a Link State Data Base
1022 * Synchronization.
1023 *
1024 * @param ted Link State Data Base. Must not be NULL
1025 * @param zclient Zebra Client. Must not be NULL
1026 * @param dst Destination FRR daemon. Must not be NULL
1027 *
1028 * @return 0 on success, -1 otherwise
1029 */
1030 extern int ls_sync_ted(struct ls_ted *ted, struct zclient *zclient,
1031 struct zapi_opaque_reg_info *dst);
1032
1033 struct json_object;
1034 struct vty;
1035 /**
1036 * Show Link State Vertex information. If both vty and json are specified,
1037 * Json format output supersedes standard vty output.
1038 *
1039 * @param vertex Link State Vertex to show. Must not be NULL
1040 * @param vty Pointer to vty output, could be NULL
1041 * @param json Pointer to json output, could be NULL
1042 * @param verbose Set to true for more detail
1043 */
1044 extern void ls_show_vertex(struct ls_vertex *vertex, struct vty *vty,
1045 struct json_object *json, bool verbose);
1046
1047 /**
1048 * Show all Link State Vertices information. If both vty and json are specified,
1049 * Json format output supersedes standard vty output.
1050 *
1051 * @param ted Link State Data Base. Must not be NULL
1052 * @param vty Pointer to vty output, could be NULL
1053 * @param json Pointer to json output, could be NULL
1054 * @param verbose Set to true for more detail
1055 */
1056 extern void ls_show_vertices(struct ls_ted *ted, struct vty *vty,
1057 struct json_object *json, bool verbose);
1058
1059 /**
1060 * Show Link State Edge information. If both vty and json are specified,
1061 * Json format output supersedes standard vty output.
1062 *
1063 * @param edge Link State Edge to show. Must not be NULL
1064 * @param vty Pointer to vty output, could be NULL
1065 * @param json Pointer to json output, could be NULL
1066 * @param verbose Set to true for more detail
1067 */
1068 extern void ls_show_edge(struct ls_edge *edge, struct vty *vty,
1069 struct json_object *json, bool verbose);
1070
1071 /**
1072 * Show all Link State Edges information. If both vty and json are specified,
1073 * Json format output supersedes standard vty output.
1074 *
1075 * @param ted Link State Data Base. Must not be NULL
1076 * @param vty Pointer to vty output, could be NULL
1077 * @param json Pointer to json output, could be NULL
1078 * @param verbose Set to true for more detail
1079 */
1080 extern void ls_show_edges(struct ls_ted *ted, struct vty *vty,
1081 struct json_object *json, bool verbose);
1082
1083 /**
1084 * Show Link State Subnets information. If both vty and json are specified,
1085 * Json format output supersedes standard vty output.
1086 *
1087 * @param subnet Link State Subnet to show. Must not be NULL
1088 * @param vty Pointer to vty output, could be NULL
1089 * @param json Pointer to json output, could be NULL
1090 * @param verbose Set to true for more detail
1091 */
1092 extern void ls_show_subnet(struct ls_subnet *subnet, struct vty *vty,
1093 struct json_object *json, bool verbose);
1094
1095 /**
1096 * Show all Link State Subnet information. If both vty and json are specified,
1097 * Json format output supersedes standard vty output.
1098 *
1099 * @param ted Link State Data Base. Must not be NULL
1100 * @param vty Pointer to vty output, could be NULL
1101 * @param json Pointer to json output, could be NULL
1102 * @param verbose Set to true for more detail
1103 */
1104 extern void ls_show_subnets(struct ls_ted *ted, struct vty *vty,
1105 struct json_object *json, bool verbose);
1106
1107 /**
1108 * Show Link State Data Base information. If both vty and json are specified,
1109 * Json format output supersedes standard vty output.
1110 *
1111 * @param ted Link State Data Base to show. Must not be NULL
1112 * @param vty Pointer to vty output, could be NULL
1113 * @param json Pointer to json output, could be NULL
1114 * @param verbose Set to true for more detail
1115 */
1116 extern void ls_show_ted(struct ls_ted *ted, struct vty *vty,
1117 struct json_object *json, bool verbose);
1118
1119 /**
1120 * Dump all Link State Data Base elements for debugging purposes
1121 *
1122 * @param ted Link State Data Base. Must not be NULL
1123 *
1124 */
1125 extern void ls_dump_ted(struct ls_ted *ted);
1126
1127 #ifdef __cplusplus
1128 }
1129 #endif
1130
1131 #endif /* _FRR_LINK_STATE_H_ */