]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - lib/maple_tree.c
Merge tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fsverity/linux
[mirror_ubuntu-kernels.git] / lib / maple_tree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9 /*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64
65 #define MA_ROOT_PARENT 1
66
67 /*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
76
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91
92 static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100 static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108 static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119 struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131 };
132
133 /*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138 struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147 };
148
149 #ifdef CONFIG_KASAN_STACK
150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151 #define noinline_for_kasan noinline_for_stack
152 #else
153 #define noinline_for_kasan inline
154 #endif
155
156 /* Functions */
157 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158 {
159 return kmem_cache_alloc(maple_node_cache, gfp);
160 }
161
162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163 {
164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
165 }
166
167 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168 {
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170 }
171
172 static void mt_free_rcu(struct rcu_head *head)
173 {
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177 }
178
179 /*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186 static void ma_free_rcu(struct maple_node *node)
187 {
188 WARN_ON(node->parent != ma_parent_ptr(node));
189 call_rcu(&node->rcu, mt_free_rcu);
190 }
191
192 static void mas_set_height(struct ma_state *mas)
193 {
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200 }
201
202 static unsigned int mas_mt_height(struct ma_state *mas)
203 {
204 return mt_height(mas->tree);
205 }
206
207 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208 {
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211 }
212
213 static inline bool ma_is_dense(const enum maple_type type)
214 {
215 return type < maple_leaf_64;
216 }
217
218 static inline bool ma_is_leaf(const enum maple_type type)
219 {
220 return type < maple_range_64;
221 }
222
223 static inline bool mte_is_leaf(const struct maple_enode *entry)
224 {
225 return ma_is_leaf(mte_node_type(entry));
226 }
227
228 /*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232 static inline bool mt_is_reserved(const void *entry)
233 {
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236 }
237
238 static inline void mas_set_err(struct ma_state *mas, long err)
239 {
240 mas->node = MA_ERROR(err);
241 }
242
243 static inline bool mas_is_ptr(struct ma_state *mas)
244 {
245 return mas->node == MAS_ROOT;
246 }
247
248 static inline bool mas_is_start(struct ma_state *mas)
249 {
250 return mas->node == MAS_START;
251 }
252
253 bool mas_is_err(struct ma_state *mas)
254 {
255 return xa_is_err(mas->node);
256 }
257
258 static inline bool mas_searchable(struct ma_state *mas)
259 {
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267 }
268
269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270 {
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272 }
273
274 /*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281 {
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284 }
285
286 /*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292 static inline struct maple_node *mas_mn(const struct ma_state *mas)
293 {
294 return mte_to_node(mas->node);
295 }
296
297 /*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301 static inline void mte_set_node_dead(struct maple_enode *mn)
302 {
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305 }
306
307 /* Bit 1 indicates the root is a node */
308 #define MAPLE_ROOT_NODE 0x02
309 /* maple_type stored bit 3-6 */
310 #define MAPLE_ENODE_TYPE_SHIFT 0x03
311 /* Bit 2 means a NULL somewhere below */
312 #define MAPLE_ENODE_NULL 0x04
313
314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316 {
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319 }
320
321 static inline void *mte_mk_root(const struct maple_enode *node)
322 {
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324 }
325
326 static inline void *mte_safe_root(const struct maple_enode *node)
327 {
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329 }
330
331 static inline void *mte_set_full(const struct maple_enode *node)
332 {
333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
334 }
335
336 static inline void *mte_clear_full(const struct maple_enode *node)
337 {
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339 }
340
341 static inline bool mte_has_null(const struct maple_enode *node)
342 {
343 return (unsigned long)node & MAPLE_ENODE_NULL;
344 }
345
346 static inline bool ma_is_root(struct maple_node *node)
347 {
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349 }
350
351 static inline bool mte_is_root(const struct maple_enode *node)
352 {
353 return ma_is_root(mte_to_node(node));
354 }
355
356 static inline bool mas_is_root_limits(const struct ma_state *mas)
357 {
358 return !mas->min && mas->max == ULONG_MAX;
359 }
360
361 static inline bool mt_is_alloc(struct maple_tree *mt)
362 {
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364 }
365
366 /*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387 #define MAPLE_PARENT_ROOT 0x01
388
389 #define MAPLE_PARENT_SLOT_SHIFT 0x03
390 #define MAPLE_PARENT_SLOT_MASK 0xF8
391
392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395 #define MAPLE_PARENT_RANGE64 0x06
396 #define MAPLE_PARENT_RANGE32 0x04
397 #define MAPLE_PARENT_NOT_RANGE16 0x02
398
399 /*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404 static inline unsigned long mte_parent_shift(unsigned long parent)
405 {
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411 }
412
413 /*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419 {
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425 }
426
427 /*
428 * mas_parent_enum() - Return the maple_type of the parent from the stored
429 * parent type.
430 * @mas: The maple state
431 * @node: The maple_enode to extract the parent's enum
432 * Return: The node->parent maple_type
433 */
434 static inline
435 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 struct maple_tree *mt)
437 {
438 unsigned long p_type;
439
440 p_type = (unsigned long)p_enode;
441 if (p_type & MAPLE_PARENT_ROOT)
442 return 0; /* Validated in the caller. */
443
444 p_type &= MAPLE_NODE_MASK;
445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
446
447 switch (p_type) {
448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
449 if (mt_is_alloc(mt))
450 return maple_arange_64;
451 return maple_range_64;
452 }
453
454 return 0;
455 }
456
457 static inline
458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
459 {
460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
461 }
462
463 /*
464 * mte_set_parent() - Set the parent node and encode the slot
465 * @enode: The encoded maple node.
466 * @parent: The encoded maple node that is the parent of @enode.
467 * @slot: The slot that @enode resides in @parent.
468 *
469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
470 * parent type.
471 */
472 static inline
473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
474 unsigned char slot)
475 {
476 unsigned long val = (unsigned long)parent;
477 unsigned long shift;
478 unsigned long type;
479 enum maple_type p_type = mte_node_type(parent);
480
481 BUG_ON(p_type == maple_dense);
482 BUG_ON(p_type == maple_leaf_64);
483
484 switch (p_type) {
485 case maple_range_64:
486 case maple_arange_64:
487 shift = MAPLE_PARENT_SLOT_SHIFT;
488 type = MAPLE_PARENT_RANGE64;
489 break;
490 default:
491 case maple_dense:
492 case maple_leaf_64:
493 shift = type = 0;
494 break;
495 }
496
497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 val |= (slot << shift) | type;
499 mte_to_node(enode)->parent = ma_parent_ptr(val);
500 }
501
502 /*
503 * mte_parent_slot() - get the parent slot of @enode.
504 * @enode: The encoded maple node.
505 *
506 * Return: The slot in the parent node where @enode resides.
507 */
508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
509 {
510 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
511
512 if (val & MA_ROOT_PARENT)
513 return 0;
514
515 /*
516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
518 */
519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
520 }
521
522 /*
523 * mte_parent() - Get the parent of @node.
524 * @node: The encoded maple node.
525 *
526 * Return: The parent maple node.
527 */
528 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
529 {
530 return (void *)((unsigned long)
531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
532 }
533
534 /*
535 * ma_dead_node() - check if the @enode is dead.
536 * @enode: The encoded maple node
537 *
538 * Return: true if dead, false otherwise.
539 */
540 static inline bool ma_dead_node(const struct maple_node *node)
541 {
542 struct maple_node *parent;
543
544 /* Do not reorder reads from the node prior to the parent check */
545 smp_rmb();
546 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
547 return (parent == node);
548 }
549
550 /*
551 * mte_dead_node() - check if the @enode is dead.
552 * @enode: The encoded maple node
553 *
554 * Return: true if dead, false otherwise.
555 */
556 static inline bool mte_dead_node(const struct maple_enode *enode)
557 {
558 struct maple_node *parent, *node;
559
560 node = mte_to_node(enode);
561 /* Do not reorder reads from the node prior to the parent check */
562 smp_rmb();
563 parent = mte_parent(enode);
564 return (parent == node);
565 }
566
567 /*
568 * mas_allocated() - Get the number of nodes allocated in a maple state.
569 * @mas: The maple state
570 *
571 * The ma_state alloc member is overloaded to hold a pointer to the first
572 * allocated node or to the number of requested nodes to allocate. If bit 0 is
573 * set, then the alloc contains the number of requested nodes. If there is an
574 * allocated node, then the total allocated nodes is in that node.
575 *
576 * Return: The total number of nodes allocated
577 */
578 static inline unsigned long mas_allocated(const struct ma_state *mas)
579 {
580 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
581 return 0;
582
583 return mas->alloc->total;
584 }
585
586 /*
587 * mas_set_alloc_req() - Set the requested number of allocations.
588 * @mas: the maple state
589 * @count: the number of allocations.
590 *
591 * The requested number of allocations is either in the first allocated node,
592 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
593 * no allocated node. Set the request either in the node or do the necessary
594 * encoding to store in @mas->alloc directly.
595 */
596 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
597 {
598 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
599 if (!count)
600 mas->alloc = NULL;
601 else
602 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
603 return;
604 }
605
606 mas->alloc->request_count = count;
607 }
608
609 /*
610 * mas_alloc_req() - get the requested number of allocations.
611 * @mas: The maple state
612 *
613 * The alloc count is either stored directly in @mas, or in
614 * @mas->alloc->request_count if there is at least one node allocated. Decode
615 * the request count if it's stored directly in @mas->alloc.
616 *
617 * Return: The allocation request count.
618 */
619 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
620 {
621 if ((unsigned long)mas->alloc & 0x1)
622 return (unsigned long)(mas->alloc) >> 1;
623 else if (mas->alloc)
624 return mas->alloc->request_count;
625 return 0;
626 }
627
628 /*
629 * ma_pivots() - Get a pointer to the maple node pivots.
630 * @node - the maple node
631 * @type - the node type
632 *
633 * In the event of a dead node, this array may be %NULL
634 *
635 * Return: A pointer to the maple node pivots
636 */
637 static inline unsigned long *ma_pivots(struct maple_node *node,
638 enum maple_type type)
639 {
640 switch (type) {
641 case maple_arange_64:
642 return node->ma64.pivot;
643 case maple_range_64:
644 case maple_leaf_64:
645 return node->mr64.pivot;
646 case maple_dense:
647 return NULL;
648 }
649 return NULL;
650 }
651
652 /*
653 * ma_gaps() - Get a pointer to the maple node gaps.
654 * @node - the maple node
655 * @type - the node type
656 *
657 * Return: A pointer to the maple node gaps
658 */
659 static inline unsigned long *ma_gaps(struct maple_node *node,
660 enum maple_type type)
661 {
662 switch (type) {
663 case maple_arange_64:
664 return node->ma64.gap;
665 case maple_range_64:
666 case maple_leaf_64:
667 case maple_dense:
668 return NULL;
669 }
670 return NULL;
671 }
672
673 /*
674 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
675 * @mn: The maple encoded node.
676 * @piv: The pivot.
677 *
678 * Return: the pivot at @piv of @mn.
679 */
680 static inline unsigned long mte_pivot(const struct maple_enode *mn,
681 unsigned char piv)
682 {
683 struct maple_node *node = mte_to_node(mn);
684 enum maple_type type = mte_node_type(mn);
685
686 if (piv >= mt_pivots[type]) {
687 WARN_ON(1);
688 return 0;
689 }
690 switch (type) {
691 case maple_arange_64:
692 return node->ma64.pivot[piv];
693 case maple_range_64:
694 case maple_leaf_64:
695 return node->mr64.pivot[piv];
696 case maple_dense:
697 return 0;
698 }
699 return 0;
700 }
701
702 /*
703 * mas_safe_pivot() - get the pivot at @piv or mas->max.
704 * @mas: The maple state
705 * @pivots: The pointer to the maple node pivots
706 * @piv: The pivot to fetch
707 * @type: The maple node type
708 *
709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710 * otherwise.
711 */
712 static inline unsigned long
713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 unsigned char piv, enum maple_type type)
715 {
716 if (piv >= mt_pivots[type])
717 return mas->max;
718
719 return pivots[piv];
720 }
721
722 /*
723 * mas_safe_min() - Return the minimum for a given offset.
724 * @mas: The maple state
725 * @pivots: The pointer to the maple node pivots
726 * @offset: The offset into the pivot array
727 *
728 * Return: The minimum range value that is contained in @offset.
729 */
730 static inline unsigned long
731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 if (likely(offset))
734 return pivots[offset - 1] + 1;
735
736 return mas->min;
737 }
738
739 /*
740 * mas_logical_pivot() - Get the logical pivot of a given offset.
741 * @mas: The maple state
742 * @pivots: The pointer to the maple node pivots
743 * @offset: The offset into the pivot array
744 * @type: The maple node type
745 *
746 * When there is no value at a pivot (beyond the end of the data), then the
747 * pivot is actually @mas->max.
748 *
749 * Return: the logical pivot of a given @offset.
750 */
751 static inline unsigned long
752 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
753 unsigned char offset, enum maple_type type)
754 {
755 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
756
757 if (likely(lpiv))
758 return lpiv;
759
760 if (likely(offset))
761 return mas->max;
762
763 return lpiv;
764 }
765
766 /*
767 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
768 * @mn: The encoded maple node
769 * @piv: The pivot offset
770 * @val: The value of the pivot
771 */
772 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
773 unsigned long val)
774 {
775 struct maple_node *node = mte_to_node(mn);
776 enum maple_type type = mte_node_type(mn);
777
778 BUG_ON(piv >= mt_pivots[type]);
779 switch (type) {
780 default:
781 case maple_range_64:
782 case maple_leaf_64:
783 node->mr64.pivot[piv] = val;
784 break;
785 case maple_arange_64:
786 node->ma64.pivot[piv] = val;
787 break;
788 case maple_dense:
789 break;
790 }
791
792 }
793
794 /*
795 * ma_slots() - Get a pointer to the maple node slots.
796 * @mn: The maple node
797 * @mt: The maple node type
798 *
799 * Return: A pointer to the maple node slots
800 */
801 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
802 {
803 switch (mt) {
804 default:
805 case maple_arange_64:
806 return mn->ma64.slot;
807 case maple_range_64:
808 case maple_leaf_64:
809 return mn->mr64.slot;
810 case maple_dense:
811 return mn->slot;
812 }
813 }
814
815 static inline bool mt_locked(const struct maple_tree *mt)
816 {
817 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
818 lockdep_is_held(&mt->ma_lock);
819 }
820
821 static inline void *mt_slot(const struct maple_tree *mt,
822 void __rcu **slots, unsigned char offset)
823 {
824 return rcu_dereference_check(slots[offset], mt_locked(mt));
825 }
826
827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
828 unsigned char offset)
829 {
830 return rcu_dereference_protected(slots[offset], mt_locked(mt));
831 }
832 /*
833 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
834 * @mas: The maple state
835 * @slots: The pointer to the slots
836 * @offset: The offset into the slots array to fetch
837 *
838 * Return: The entry stored in @slots at the @offset.
839 */
840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
841 unsigned char offset)
842 {
843 return mt_slot_locked(mas->tree, slots, offset);
844 }
845
846 /*
847 * mas_slot() - Get the slot value when not holding the maple tree lock.
848 * @mas: The maple state
849 * @slots: The pointer to the slots
850 * @offset: The offset into the slots array to fetch
851 *
852 * Return: The entry stored in @slots at the @offset
853 */
854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
855 unsigned char offset)
856 {
857 return mt_slot(mas->tree, slots, offset);
858 }
859
860 /*
861 * mas_root() - Get the maple tree root.
862 * @mas: The maple state.
863 *
864 * Return: The pointer to the root of the tree
865 */
866 static inline void *mas_root(struct ma_state *mas)
867 {
868 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
869 }
870
871 static inline void *mt_root_locked(struct maple_tree *mt)
872 {
873 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
874 }
875
876 /*
877 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
878 * @mas: The maple state.
879 *
880 * Return: The pointer to the root of the tree
881 */
882 static inline void *mas_root_locked(struct ma_state *mas)
883 {
884 return mt_root_locked(mas->tree);
885 }
886
887 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
888 enum maple_type mt)
889 {
890 switch (mt) {
891 case maple_arange_64:
892 return &mn->ma64.meta;
893 default:
894 return &mn->mr64.meta;
895 }
896 }
897
898 /*
899 * ma_set_meta() - Set the metadata information of a node.
900 * @mn: The maple node
901 * @mt: The maple node type
902 * @offset: The offset of the highest sub-gap in this node.
903 * @end: The end of the data in this node.
904 */
905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
906 unsigned char offset, unsigned char end)
907 {
908 struct maple_metadata *meta = ma_meta(mn, mt);
909
910 meta->gap = offset;
911 meta->end = end;
912 }
913
914 /*
915 * mt_clear_meta() - clear the metadata information of a node, if it exists
916 * @mt: The maple tree
917 * @mn: The maple node
918 * @type: The maple node type
919 * @offset: The offset of the highest sub-gap in this node.
920 * @end: The end of the data in this node.
921 */
922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
923 enum maple_type type)
924 {
925 struct maple_metadata *meta;
926 unsigned long *pivots;
927 void __rcu **slots;
928 void *next;
929
930 switch (type) {
931 case maple_range_64:
932 pivots = mn->mr64.pivot;
933 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
934 slots = mn->mr64.slot;
935 next = mt_slot_locked(mt, slots,
936 MAPLE_RANGE64_SLOTS - 1);
937 if (unlikely((mte_to_node(next) &&
938 mte_node_type(next))))
939 return; /* no metadata, could be node */
940 }
941 fallthrough;
942 case maple_arange_64:
943 meta = ma_meta(mn, type);
944 break;
945 default:
946 return;
947 }
948
949 meta->gap = 0;
950 meta->end = 0;
951 }
952
953 /*
954 * ma_meta_end() - Get the data end of a node from the metadata
955 * @mn: The maple node
956 * @mt: The maple node type
957 */
958 static inline unsigned char ma_meta_end(struct maple_node *mn,
959 enum maple_type mt)
960 {
961 struct maple_metadata *meta = ma_meta(mn, mt);
962
963 return meta->end;
964 }
965
966 /*
967 * ma_meta_gap() - Get the largest gap location of a node from the metadata
968 * @mn: The maple node
969 * @mt: The maple node type
970 */
971 static inline unsigned char ma_meta_gap(struct maple_node *mn,
972 enum maple_type mt)
973 {
974 BUG_ON(mt != maple_arange_64);
975
976 return mn->ma64.meta.gap;
977 }
978
979 /*
980 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
981 * @mn: The maple node
982 * @mn: The maple node type
983 * @offset: The location of the largest gap.
984 */
985 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
986 unsigned char offset)
987 {
988
989 struct maple_metadata *meta = ma_meta(mn, mt);
990
991 meta->gap = offset;
992 }
993
994 /*
995 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
996 * @mat - the ma_topiary, a linked list of dead nodes.
997 * @dead_enode - the node to be marked as dead and added to the tail of the list
998 *
999 * Add the @dead_enode to the linked list in @mat.
1000 */
1001 static inline void mat_add(struct ma_topiary *mat,
1002 struct maple_enode *dead_enode)
1003 {
1004 mte_set_node_dead(dead_enode);
1005 mte_to_mat(dead_enode)->next = NULL;
1006 if (!mat->tail) {
1007 mat->tail = mat->head = dead_enode;
1008 return;
1009 }
1010
1011 mte_to_mat(mat->tail)->next = dead_enode;
1012 mat->tail = dead_enode;
1013 }
1014
1015 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1016 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1017
1018 /*
1019 * mas_mat_free() - Free all nodes in a dead list.
1020 * @mas - the maple state
1021 * @mat - the ma_topiary linked list of dead nodes to free.
1022 *
1023 * Free walk a dead list.
1024 */
1025 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1026 {
1027 struct maple_enode *next;
1028
1029 while (mat->head) {
1030 next = mte_to_mat(mat->head)->next;
1031 mas_free(mas, mat->head);
1032 mat->head = next;
1033 }
1034 }
1035
1036 /*
1037 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1038 * @mas - the maple state
1039 * @mat - the ma_topiary linked list of dead nodes to free.
1040 *
1041 * Destroy walk a dead list.
1042 */
1043 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1044 {
1045 struct maple_enode *next;
1046
1047 while (mat->head) {
1048 next = mte_to_mat(mat->head)->next;
1049 mte_destroy_walk(mat->head, mat->mtree);
1050 mat->head = next;
1051 }
1052 }
1053 /*
1054 * mas_descend() - Descend into the slot stored in the ma_state.
1055 * @mas - the maple state.
1056 *
1057 * Note: Not RCU safe, only use in write side or debug code.
1058 */
1059 static inline void mas_descend(struct ma_state *mas)
1060 {
1061 enum maple_type type;
1062 unsigned long *pivots;
1063 struct maple_node *node;
1064 void __rcu **slots;
1065
1066 node = mas_mn(mas);
1067 type = mte_node_type(mas->node);
1068 pivots = ma_pivots(node, type);
1069 slots = ma_slots(node, type);
1070
1071 if (mas->offset)
1072 mas->min = pivots[mas->offset - 1] + 1;
1073 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1074 mas->node = mas_slot(mas, slots, mas->offset);
1075 }
1076
1077 /*
1078 * mte_set_gap() - Set a maple node gap.
1079 * @mn: The encoded maple node
1080 * @gap: The offset of the gap to set
1081 * @val: The gap value
1082 */
1083 static inline void mte_set_gap(const struct maple_enode *mn,
1084 unsigned char gap, unsigned long val)
1085 {
1086 switch (mte_node_type(mn)) {
1087 default:
1088 break;
1089 case maple_arange_64:
1090 mte_to_node(mn)->ma64.gap[gap] = val;
1091 break;
1092 }
1093 }
1094
1095 /*
1096 * mas_ascend() - Walk up a level of the tree.
1097 * @mas: The maple state
1098 *
1099 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1100 * may cause several levels of walking up to find the correct min and max.
1101 * May find a dead node which will cause a premature return.
1102 * Return: 1 on dead node, 0 otherwise
1103 */
1104 static int mas_ascend(struct ma_state *mas)
1105 {
1106 struct maple_enode *p_enode; /* parent enode. */
1107 struct maple_enode *a_enode; /* ancestor enode. */
1108 struct maple_node *a_node; /* ancestor node. */
1109 struct maple_node *p_node; /* parent node. */
1110 unsigned char a_slot;
1111 enum maple_type a_type;
1112 unsigned long min, max;
1113 unsigned long *pivots;
1114 unsigned char offset;
1115 bool set_max = false, set_min = false;
1116
1117 a_node = mas_mn(mas);
1118 if (ma_is_root(a_node)) {
1119 mas->offset = 0;
1120 return 0;
1121 }
1122
1123 p_node = mte_parent(mas->node);
1124 if (unlikely(a_node == p_node))
1125 return 1;
1126 a_type = mas_parent_enum(mas, mas->node);
1127 offset = mte_parent_slot(mas->node);
1128 a_enode = mt_mk_node(p_node, a_type);
1129
1130 /* Check to make sure all parent information is still accurate */
1131 if (p_node != mte_parent(mas->node))
1132 return 1;
1133
1134 mas->node = a_enode;
1135 mas->offset = offset;
1136
1137 if (mte_is_root(a_enode)) {
1138 mas->max = ULONG_MAX;
1139 mas->min = 0;
1140 return 0;
1141 }
1142
1143 min = 0;
1144 max = ULONG_MAX;
1145 do {
1146 p_enode = a_enode;
1147 a_type = mas_parent_enum(mas, p_enode);
1148 a_node = mte_parent(p_enode);
1149 a_slot = mte_parent_slot(p_enode);
1150 a_enode = mt_mk_node(a_node, a_type);
1151 pivots = ma_pivots(a_node, a_type);
1152
1153 if (unlikely(ma_dead_node(a_node)))
1154 return 1;
1155
1156 if (!set_min && a_slot) {
1157 set_min = true;
1158 min = pivots[a_slot - 1] + 1;
1159 }
1160
1161 if (!set_max && a_slot < mt_pivots[a_type]) {
1162 set_max = true;
1163 max = pivots[a_slot];
1164 }
1165
1166 if (unlikely(ma_dead_node(a_node)))
1167 return 1;
1168
1169 if (unlikely(ma_is_root(a_node)))
1170 break;
1171
1172 } while (!set_min || !set_max);
1173
1174 mas->max = max;
1175 mas->min = min;
1176 return 0;
1177 }
1178
1179 /*
1180 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1181 * @mas: The maple state
1182 *
1183 * Return: A pointer to a maple node.
1184 */
1185 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1186 {
1187 struct maple_alloc *ret, *node = mas->alloc;
1188 unsigned long total = mas_allocated(mas);
1189 unsigned int req = mas_alloc_req(mas);
1190
1191 /* nothing or a request pending. */
1192 if (WARN_ON(!total))
1193 return NULL;
1194
1195 if (total == 1) {
1196 /* single allocation in this ma_state */
1197 mas->alloc = NULL;
1198 ret = node;
1199 goto single_node;
1200 }
1201
1202 if (node->node_count == 1) {
1203 /* Single allocation in this node. */
1204 mas->alloc = node->slot[0];
1205 mas->alloc->total = node->total - 1;
1206 ret = node;
1207 goto new_head;
1208 }
1209 node->total--;
1210 ret = node->slot[--node->node_count];
1211 node->slot[node->node_count] = NULL;
1212
1213 single_node:
1214 new_head:
1215 if (req) {
1216 req++;
1217 mas_set_alloc_req(mas, req);
1218 }
1219
1220 memset(ret, 0, sizeof(*ret));
1221 return (struct maple_node *)ret;
1222 }
1223
1224 /*
1225 * mas_push_node() - Push a node back on the maple state allocation.
1226 * @mas: The maple state
1227 * @used: The used maple node
1228 *
1229 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1230 * requested node count as necessary.
1231 */
1232 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1233 {
1234 struct maple_alloc *reuse = (struct maple_alloc *)used;
1235 struct maple_alloc *head = mas->alloc;
1236 unsigned long count;
1237 unsigned int requested = mas_alloc_req(mas);
1238
1239 count = mas_allocated(mas);
1240
1241 reuse->request_count = 0;
1242 reuse->node_count = 0;
1243 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1244 head->slot[head->node_count++] = reuse;
1245 head->total++;
1246 goto done;
1247 }
1248
1249 reuse->total = 1;
1250 if ((head) && !((unsigned long)head & 0x1)) {
1251 reuse->slot[0] = head;
1252 reuse->node_count = 1;
1253 reuse->total += head->total;
1254 }
1255
1256 mas->alloc = reuse;
1257 done:
1258 if (requested > 1)
1259 mas_set_alloc_req(mas, requested - 1);
1260 }
1261
1262 /*
1263 * mas_alloc_nodes() - Allocate nodes into a maple state
1264 * @mas: The maple state
1265 * @gfp: The GFP Flags
1266 */
1267 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1268 {
1269 struct maple_alloc *node;
1270 unsigned long allocated = mas_allocated(mas);
1271 unsigned int requested = mas_alloc_req(mas);
1272 unsigned int count;
1273 void **slots = NULL;
1274 unsigned int max_req = 0;
1275
1276 if (!requested)
1277 return;
1278
1279 mas_set_alloc_req(mas, 0);
1280 if (mas->mas_flags & MA_STATE_PREALLOC) {
1281 if (allocated)
1282 return;
1283 WARN_ON(!allocated);
1284 }
1285
1286 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1287 node = (struct maple_alloc *)mt_alloc_one(gfp);
1288 if (!node)
1289 goto nomem_one;
1290
1291 if (allocated) {
1292 node->slot[0] = mas->alloc;
1293 node->node_count = 1;
1294 } else {
1295 node->node_count = 0;
1296 }
1297
1298 mas->alloc = node;
1299 node->total = ++allocated;
1300 requested--;
1301 }
1302
1303 node = mas->alloc;
1304 node->request_count = 0;
1305 while (requested) {
1306 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1307 slots = (void **)&node->slot[node->node_count];
1308 max_req = min(requested, max_req);
1309 count = mt_alloc_bulk(gfp, max_req, slots);
1310 if (!count)
1311 goto nomem_bulk;
1312
1313 if (node->node_count == 0) {
1314 node->slot[0]->node_count = 0;
1315 node->slot[0]->request_count = 0;
1316 }
1317
1318 node->node_count += count;
1319 allocated += count;
1320 node = node->slot[0];
1321 requested -= count;
1322 }
1323 mas->alloc->total = allocated;
1324 return;
1325
1326 nomem_bulk:
1327 /* Clean up potential freed allocations on bulk failure */
1328 memset(slots, 0, max_req * sizeof(unsigned long));
1329 nomem_one:
1330 mas_set_alloc_req(mas, requested);
1331 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1332 mas->alloc->total = allocated;
1333 mas_set_err(mas, -ENOMEM);
1334 }
1335
1336 /*
1337 * mas_free() - Free an encoded maple node
1338 * @mas: The maple state
1339 * @used: The encoded maple node to free.
1340 *
1341 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1342 * otherwise.
1343 */
1344 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1345 {
1346 struct maple_node *tmp = mte_to_node(used);
1347
1348 if (mt_in_rcu(mas->tree))
1349 ma_free_rcu(tmp);
1350 else
1351 mas_push_node(mas, tmp);
1352 }
1353
1354 /*
1355 * mas_node_count() - Check if enough nodes are allocated and request more if
1356 * there is not enough nodes.
1357 * @mas: The maple state
1358 * @count: The number of nodes needed
1359 * @gfp: the gfp flags
1360 */
1361 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1362 {
1363 unsigned long allocated = mas_allocated(mas);
1364
1365 if (allocated < count) {
1366 mas_set_alloc_req(mas, count - allocated);
1367 mas_alloc_nodes(mas, gfp);
1368 }
1369 }
1370
1371 /*
1372 * mas_node_count() - Check if enough nodes are allocated and request more if
1373 * there is not enough nodes.
1374 * @mas: The maple state
1375 * @count: The number of nodes needed
1376 *
1377 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1378 */
1379 static void mas_node_count(struct ma_state *mas, int count)
1380 {
1381 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1382 }
1383
1384 /*
1385 * mas_start() - Sets up maple state for operations.
1386 * @mas: The maple state.
1387 *
1388 * If mas->node == MAS_START, then set the min, max and depth to
1389 * defaults.
1390 *
1391 * Return:
1392 * - If mas->node is an error or not MAS_START, return NULL.
1393 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1394 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1395 * - If it's a tree: NULL & mas->node == safe root node.
1396 */
1397 static inline struct maple_enode *mas_start(struct ma_state *mas)
1398 {
1399 if (likely(mas_is_start(mas))) {
1400 struct maple_enode *root;
1401
1402 mas->min = 0;
1403 mas->max = ULONG_MAX;
1404 mas->depth = 0;
1405
1406 retry:
1407 root = mas_root(mas);
1408 /* Tree with nodes */
1409 if (likely(xa_is_node(root))) {
1410 mas->depth = 1;
1411 mas->node = mte_safe_root(root);
1412 mas->offset = 0;
1413 if (mte_dead_node(mas->node))
1414 goto retry;
1415
1416 return NULL;
1417 }
1418
1419 /* empty tree */
1420 if (unlikely(!root)) {
1421 mas->node = MAS_NONE;
1422 mas->offset = MAPLE_NODE_SLOTS;
1423 return NULL;
1424 }
1425
1426 /* Single entry tree */
1427 mas->node = MAS_ROOT;
1428 mas->offset = MAPLE_NODE_SLOTS;
1429
1430 /* Single entry tree. */
1431 if (mas->index > 0)
1432 return NULL;
1433
1434 return root;
1435 }
1436
1437 return NULL;
1438 }
1439
1440 /*
1441 * ma_data_end() - Find the end of the data in a node.
1442 * @node: The maple node
1443 * @type: The maple node type
1444 * @pivots: The array of pivots in the node
1445 * @max: The maximum value in the node
1446 *
1447 * Uses metadata to find the end of the data when possible.
1448 * Return: The zero indexed last slot with data (may be null).
1449 */
1450 static inline unsigned char ma_data_end(struct maple_node *node,
1451 enum maple_type type,
1452 unsigned long *pivots,
1453 unsigned long max)
1454 {
1455 unsigned char offset;
1456
1457 if (!pivots)
1458 return 0;
1459
1460 if (type == maple_arange_64)
1461 return ma_meta_end(node, type);
1462
1463 offset = mt_pivots[type] - 1;
1464 if (likely(!pivots[offset]))
1465 return ma_meta_end(node, type);
1466
1467 if (likely(pivots[offset] == max))
1468 return offset;
1469
1470 return mt_pivots[type];
1471 }
1472
1473 /*
1474 * mas_data_end() - Find the end of the data (slot).
1475 * @mas: the maple state
1476 *
1477 * This method is optimized to check the metadata of a node if the node type
1478 * supports data end metadata.
1479 *
1480 * Return: The zero indexed last slot with data (may be null).
1481 */
1482 static inline unsigned char mas_data_end(struct ma_state *mas)
1483 {
1484 enum maple_type type;
1485 struct maple_node *node;
1486 unsigned char offset;
1487 unsigned long *pivots;
1488
1489 type = mte_node_type(mas->node);
1490 node = mas_mn(mas);
1491 if (type == maple_arange_64)
1492 return ma_meta_end(node, type);
1493
1494 pivots = ma_pivots(node, type);
1495 if (unlikely(ma_dead_node(node)))
1496 return 0;
1497
1498 offset = mt_pivots[type] - 1;
1499 if (likely(!pivots[offset]))
1500 return ma_meta_end(node, type);
1501
1502 if (likely(pivots[offset] == mas->max))
1503 return offset;
1504
1505 return mt_pivots[type];
1506 }
1507
1508 /*
1509 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1510 * @mas - the maple state
1511 *
1512 * Return: The maximum gap in the leaf.
1513 */
1514 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1515 {
1516 enum maple_type mt;
1517 unsigned long pstart, gap, max_gap;
1518 struct maple_node *mn;
1519 unsigned long *pivots;
1520 void __rcu **slots;
1521 unsigned char i;
1522 unsigned char max_piv;
1523
1524 mt = mte_node_type(mas->node);
1525 mn = mas_mn(mas);
1526 slots = ma_slots(mn, mt);
1527 max_gap = 0;
1528 if (unlikely(ma_is_dense(mt))) {
1529 gap = 0;
1530 for (i = 0; i < mt_slots[mt]; i++) {
1531 if (slots[i]) {
1532 if (gap > max_gap)
1533 max_gap = gap;
1534 gap = 0;
1535 } else {
1536 gap++;
1537 }
1538 }
1539 if (gap > max_gap)
1540 max_gap = gap;
1541 return max_gap;
1542 }
1543
1544 /*
1545 * Check the first implied pivot optimizes the loop below and slot 1 may
1546 * be skipped if there is a gap in slot 0.
1547 */
1548 pivots = ma_pivots(mn, mt);
1549 if (likely(!slots[0])) {
1550 max_gap = pivots[0] - mas->min + 1;
1551 i = 2;
1552 } else {
1553 i = 1;
1554 }
1555
1556 /* reduce max_piv as the special case is checked before the loop */
1557 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1558 /*
1559 * Check end implied pivot which can only be a gap on the right most
1560 * node.
1561 */
1562 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1563 gap = ULONG_MAX - pivots[max_piv];
1564 if (gap > max_gap)
1565 max_gap = gap;
1566 }
1567
1568 for (; i <= max_piv; i++) {
1569 /* data == no gap. */
1570 if (likely(slots[i]))
1571 continue;
1572
1573 pstart = pivots[i - 1];
1574 gap = pivots[i] - pstart;
1575 if (gap > max_gap)
1576 max_gap = gap;
1577
1578 /* There cannot be two gaps in a row. */
1579 i++;
1580 }
1581 return max_gap;
1582 }
1583
1584 /*
1585 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1586 * @node: The maple node
1587 * @gaps: The pointer to the gaps
1588 * @mt: The maple node type
1589 * @*off: Pointer to store the offset location of the gap.
1590 *
1591 * Uses the metadata data end to scan backwards across set gaps.
1592 *
1593 * Return: The maximum gap value
1594 */
1595 static inline unsigned long
1596 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1597 unsigned char *off)
1598 {
1599 unsigned char offset, i;
1600 unsigned long max_gap = 0;
1601
1602 i = offset = ma_meta_end(node, mt);
1603 do {
1604 if (gaps[i] > max_gap) {
1605 max_gap = gaps[i];
1606 offset = i;
1607 }
1608 } while (i--);
1609
1610 *off = offset;
1611 return max_gap;
1612 }
1613
1614 /*
1615 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1616 * @mas: The maple state.
1617 *
1618 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1619 *
1620 * Return: The gap value.
1621 */
1622 static inline unsigned long mas_max_gap(struct ma_state *mas)
1623 {
1624 unsigned long *gaps;
1625 unsigned char offset;
1626 enum maple_type mt;
1627 struct maple_node *node;
1628
1629 mt = mte_node_type(mas->node);
1630 if (ma_is_leaf(mt))
1631 return mas_leaf_max_gap(mas);
1632
1633 node = mas_mn(mas);
1634 offset = ma_meta_gap(node, mt);
1635 if (offset == MAPLE_ARANGE64_META_MAX)
1636 return 0;
1637
1638 gaps = ma_gaps(node, mt);
1639 return gaps[offset];
1640 }
1641
1642 /*
1643 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1644 * @mas: The maple state
1645 * @offset: The gap offset in the parent to set
1646 * @new: The new gap value.
1647 *
1648 * Set the parent gap then continue to set the gap upwards, using the metadata
1649 * of the parent to see if it is necessary to check the node above.
1650 */
1651 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1652 unsigned long new)
1653 {
1654 unsigned long meta_gap = 0;
1655 struct maple_node *pnode;
1656 struct maple_enode *penode;
1657 unsigned long *pgaps;
1658 unsigned char meta_offset;
1659 enum maple_type pmt;
1660
1661 pnode = mte_parent(mas->node);
1662 pmt = mas_parent_enum(mas, mas->node);
1663 penode = mt_mk_node(pnode, pmt);
1664 pgaps = ma_gaps(pnode, pmt);
1665
1666 ascend:
1667 meta_offset = ma_meta_gap(pnode, pmt);
1668 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1669 meta_gap = 0;
1670 else
1671 meta_gap = pgaps[meta_offset];
1672
1673 pgaps[offset] = new;
1674
1675 if (meta_gap == new)
1676 return;
1677
1678 if (offset != meta_offset) {
1679 if (meta_gap > new)
1680 return;
1681
1682 ma_set_meta_gap(pnode, pmt, offset);
1683 } else if (new < meta_gap) {
1684 meta_offset = 15;
1685 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1686 ma_set_meta_gap(pnode, pmt, meta_offset);
1687 }
1688
1689 if (ma_is_root(pnode))
1690 return;
1691
1692 /* Go to the parent node. */
1693 pnode = mte_parent(penode);
1694 pmt = mas_parent_enum(mas, penode);
1695 pgaps = ma_gaps(pnode, pmt);
1696 offset = mte_parent_slot(penode);
1697 penode = mt_mk_node(pnode, pmt);
1698 goto ascend;
1699 }
1700
1701 /*
1702 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1703 * @mas - the maple state.
1704 */
1705 static inline void mas_update_gap(struct ma_state *mas)
1706 {
1707 unsigned char pslot;
1708 unsigned long p_gap;
1709 unsigned long max_gap;
1710
1711 if (!mt_is_alloc(mas->tree))
1712 return;
1713
1714 if (mte_is_root(mas->node))
1715 return;
1716
1717 max_gap = mas_max_gap(mas);
1718
1719 pslot = mte_parent_slot(mas->node);
1720 p_gap = ma_gaps(mte_parent(mas->node),
1721 mas_parent_enum(mas, mas->node))[pslot];
1722
1723 if (p_gap != max_gap)
1724 mas_parent_gap(mas, pslot, max_gap);
1725 }
1726
1727 /*
1728 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1729 * @parent with the slot encoded.
1730 * @mas - the maple state (for the tree)
1731 * @parent - the maple encoded node containing the children.
1732 */
1733 static inline void mas_adopt_children(struct ma_state *mas,
1734 struct maple_enode *parent)
1735 {
1736 enum maple_type type = mte_node_type(parent);
1737 struct maple_node *node = mas_mn(mas);
1738 void __rcu **slots = ma_slots(node, type);
1739 unsigned long *pivots = ma_pivots(node, type);
1740 struct maple_enode *child;
1741 unsigned char offset;
1742
1743 offset = ma_data_end(node, type, pivots, mas->max);
1744 do {
1745 child = mas_slot_locked(mas, slots, offset);
1746 mte_set_parent(child, parent, offset);
1747 } while (offset--);
1748 }
1749
1750 /*
1751 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1752 * parent encoding to locate the maple node in the tree.
1753 * @mas - the ma_state to use for operations.
1754 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1755 * leave the node (true) and handle the adoption and free elsewhere.
1756 */
1757 static inline void mas_replace(struct ma_state *mas, bool advanced)
1758 __must_hold(mas->tree->lock)
1759 {
1760 struct maple_node *mn = mas_mn(mas);
1761 struct maple_enode *old_enode;
1762 unsigned char offset = 0;
1763 void __rcu **slots = NULL;
1764
1765 if (ma_is_root(mn)) {
1766 old_enode = mas_root_locked(mas);
1767 } else {
1768 offset = mte_parent_slot(mas->node);
1769 slots = ma_slots(mte_parent(mas->node),
1770 mas_parent_enum(mas, mas->node));
1771 old_enode = mas_slot_locked(mas, slots, offset);
1772 }
1773
1774 if (!advanced && !mte_is_leaf(mas->node))
1775 mas_adopt_children(mas, mas->node);
1776
1777 if (mte_is_root(mas->node)) {
1778 mn->parent = ma_parent_ptr(
1779 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1780 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1781 mas_set_height(mas);
1782 } else {
1783 rcu_assign_pointer(slots[offset], mas->node);
1784 }
1785
1786 if (!advanced) {
1787 mte_set_node_dead(old_enode);
1788 mas_free(mas, old_enode);
1789 }
1790 }
1791
1792 /*
1793 * mas_new_child() - Find the new child of a node.
1794 * @mas: the maple state
1795 * @child: the maple state to store the child.
1796 */
1797 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1798 __must_hold(mas->tree->lock)
1799 {
1800 enum maple_type mt;
1801 unsigned char offset;
1802 unsigned char end;
1803 unsigned long *pivots;
1804 struct maple_enode *entry;
1805 struct maple_node *node;
1806 void __rcu **slots;
1807
1808 mt = mte_node_type(mas->node);
1809 node = mas_mn(mas);
1810 slots = ma_slots(node, mt);
1811 pivots = ma_pivots(node, mt);
1812 end = ma_data_end(node, mt, pivots, mas->max);
1813 for (offset = mas->offset; offset <= end; offset++) {
1814 entry = mas_slot_locked(mas, slots, offset);
1815 if (mte_parent(entry) == node) {
1816 *child = *mas;
1817 mas->offset = offset + 1;
1818 child->offset = offset;
1819 mas_descend(child);
1820 child->offset = 0;
1821 return true;
1822 }
1823 }
1824 return false;
1825 }
1826
1827 /*
1828 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1829 * old data or set b_node->b_end.
1830 * @b_node: the maple_big_node
1831 * @shift: the shift count
1832 */
1833 static inline void mab_shift_right(struct maple_big_node *b_node,
1834 unsigned char shift)
1835 {
1836 unsigned long size = b_node->b_end * sizeof(unsigned long);
1837
1838 memmove(b_node->pivot + shift, b_node->pivot, size);
1839 memmove(b_node->slot + shift, b_node->slot, size);
1840 if (b_node->type == maple_arange_64)
1841 memmove(b_node->gap + shift, b_node->gap, size);
1842 }
1843
1844 /*
1845 * mab_middle_node() - Check if a middle node is needed (unlikely)
1846 * @b_node: the maple_big_node that contains the data.
1847 * @size: the amount of data in the b_node
1848 * @split: the potential split location
1849 * @slot_count: the size that can be stored in a single node being considered.
1850 *
1851 * Return: true if a middle node is required.
1852 */
1853 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1854 unsigned char slot_count)
1855 {
1856 unsigned char size = b_node->b_end;
1857
1858 if (size >= 2 * slot_count)
1859 return true;
1860
1861 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1862 return true;
1863
1864 return false;
1865 }
1866
1867 /*
1868 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1869 * @b_node: the maple_big_node with the data
1870 * @split: the suggested split location
1871 * @slot_count: the number of slots in the node being considered.
1872 *
1873 * Return: the split location.
1874 */
1875 static inline int mab_no_null_split(struct maple_big_node *b_node,
1876 unsigned char split, unsigned char slot_count)
1877 {
1878 if (!b_node->slot[split]) {
1879 /*
1880 * If the split is less than the max slot && the right side will
1881 * still be sufficient, then increment the split on NULL.
1882 */
1883 if ((split < slot_count - 1) &&
1884 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1885 split++;
1886 else
1887 split--;
1888 }
1889 return split;
1890 }
1891
1892 /*
1893 * mab_calc_split() - Calculate the split location and if there needs to be two
1894 * splits.
1895 * @bn: The maple_big_node with the data
1896 * @mid_split: The second split, if required. 0 otherwise.
1897 *
1898 * Return: The first split location. The middle split is set in @mid_split.
1899 */
1900 static inline int mab_calc_split(struct ma_state *mas,
1901 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1902 {
1903 unsigned char b_end = bn->b_end;
1904 int split = b_end / 2; /* Assume equal split. */
1905 unsigned char slot_min, slot_count = mt_slots[bn->type];
1906
1907 /*
1908 * To support gap tracking, all NULL entries are kept together and a node cannot
1909 * end on a NULL entry, with the exception of the left-most leaf. The
1910 * limitation means that the split of a node must be checked for this condition
1911 * and be able to put more data in one direction or the other.
1912 */
1913 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1914 *mid_split = 0;
1915 split = b_end - mt_min_slots[bn->type];
1916
1917 if (!ma_is_leaf(bn->type))
1918 return split;
1919
1920 mas->mas_flags |= MA_STATE_REBALANCE;
1921 if (!bn->slot[split])
1922 split--;
1923 return split;
1924 }
1925
1926 /*
1927 * Although extremely rare, it is possible to enter what is known as the 3-way
1928 * split scenario. The 3-way split comes about by means of a store of a range
1929 * that overwrites the end and beginning of two full nodes. The result is a set
1930 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1931 * also be located in different parent nodes which are also full. This can
1932 * carry upwards all the way to the root in the worst case.
1933 */
1934 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1935 split = b_end / 3;
1936 *mid_split = split * 2;
1937 } else {
1938 slot_min = mt_min_slots[bn->type];
1939
1940 *mid_split = 0;
1941 /*
1942 * Avoid having a range less than the slot count unless it
1943 * causes one node to be deficient.
1944 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1945 */
1946 while (((bn->pivot[split] - min) < slot_count - 1) &&
1947 (split < slot_count - 1) && (b_end - split > slot_min))
1948 split++;
1949 }
1950
1951 /* Avoid ending a node on a NULL entry */
1952 split = mab_no_null_split(bn, split, slot_count);
1953
1954 if (unlikely(*mid_split))
1955 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1956
1957 return split;
1958 }
1959
1960 /*
1961 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1962 * and set @b_node->b_end to the next free slot.
1963 * @mas: The maple state
1964 * @mas_start: The starting slot to copy
1965 * @mas_end: The end slot to copy (inclusively)
1966 * @b_node: The maple_big_node to place the data
1967 * @mab_start: The starting location in maple_big_node to store the data.
1968 */
1969 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1970 unsigned char mas_end, struct maple_big_node *b_node,
1971 unsigned char mab_start)
1972 {
1973 enum maple_type mt;
1974 struct maple_node *node;
1975 void __rcu **slots;
1976 unsigned long *pivots, *gaps;
1977 int i = mas_start, j = mab_start;
1978 unsigned char piv_end;
1979
1980 node = mas_mn(mas);
1981 mt = mte_node_type(mas->node);
1982 pivots = ma_pivots(node, mt);
1983 if (!i) {
1984 b_node->pivot[j] = pivots[i++];
1985 if (unlikely(i > mas_end))
1986 goto complete;
1987 j++;
1988 }
1989
1990 piv_end = min(mas_end, mt_pivots[mt]);
1991 for (; i < piv_end; i++, j++) {
1992 b_node->pivot[j] = pivots[i];
1993 if (unlikely(!b_node->pivot[j]))
1994 break;
1995
1996 if (unlikely(mas->max == b_node->pivot[j]))
1997 goto complete;
1998 }
1999
2000 if (likely(i <= mas_end))
2001 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2002
2003 complete:
2004 b_node->b_end = ++j;
2005 j -= mab_start;
2006 slots = ma_slots(node, mt);
2007 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2008 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2009 gaps = ma_gaps(node, mt);
2010 memcpy(b_node->gap + mab_start, gaps + mas_start,
2011 sizeof(unsigned long) * j);
2012 }
2013 }
2014
2015 /*
2016 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2017 * @mas: The maple state
2018 * @node: The maple node
2019 * @pivots: pointer to the maple node pivots
2020 * @mt: The maple type
2021 * @end: The assumed end
2022 *
2023 * Note, end may be incremented within this function but not modified at the
2024 * source. This is fine since the metadata is the last thing to be stored in a
2025 * node during a write.
2026 */
2027 static inline void mas_leaf_set_meta(struct ma_state *mas,
2028 struct maple_node *node, unsigned long *pivots,
2029 enum maple_type mt, unsigned char end)
2030 {
2031 /* There is no room for metadata already */
2032 if (mt_pivots[mt] <= end)
2033 return;
2034
2035 if (pivots[end] && pivots[end] < mas->max)
2036 end++;
2037
2038 if (end < mt_slots[mt] - 1)
2039 ma_set_meta(node, mt, 0, end);
2040 }
2041
2042 /*
2043 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2044 * @b_node: the maple_big_node that has the data
2045 * @mab_start: the start location in @b_node.
2046 * @mab_end: The end location in @b_node (inclusively)
2047 * @mas: The maple state with the maple encoded node.
2048 */
2049 static inline void mab_mas_cp(struct maple_big_node *b_node,
2050 unsigned char mab_start, unsigned char mab_end,
2051 struct ma_state *mas, bool new_max)
2052 {
2053 int i, j = 0;
2054 enum maple_type mt = mte_node_type(mas->node);
2055 struct maple_node *node = mte_to_node(mas->node);
2056 void __rcu **slots = ma_slots(node, mt);
2057 unsigned long *pivots = ma_pivots(node, mt);
2058 unsigned long *gaps = NULL;
2059 unsigned char end;
2060
2061 if (mab_end - mab_start > mt_pivots[mt])
2062 mab_end--;
2063
2064 if (!pivots[mt_pivots[mt] - 1])
2065 slots[mt_pivots[mt]] = NULL;
2066
2067 i = mab_start;
2068 do {
2069 pivots[j++] = b_node->pivot[i++];
2070 } while (i <= mab_end && likely(b_node->pivot[i]));
2071
2072 memcpy(slots, b_node->slot + mab_start,
2073 sizeof(void *) * (i - mab_start));
2074
2075 if (new_max)
2076 mas->max = b_node->pivot[i - 1];
2077
2078 end = j - 1;
2079 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2080 unsigned long max_gap = 0;
2081 unsigned char offset = 15;
2082
2083 gaps = ma_gaps(node, mt);
2084 do {
2085 gaps[--j] = b_node->gap[--i];
2086 if (gaps[j] > max_gap) {
2087 offset = j;
2088 max_gap = gaps[j];
2089 }
2090 } while (j);
2091
2092 ma_set_meta(node, mt, offset, end);
2093 } else {
2094 mas_leaf_set_meta(mas, node, pivots, mt, end);
2095 }
2096 }
2097
2098 /*
2099 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2100 * @mas: the maple state with the maple encoded node of the sub-tree.
2101 *
2102 * Descend through a sub-tree and adopt children who do not have the correct
2103 * parents set. Follow the parents which have the correct parents as they are
2104 * the new entries which need to be followed to find other incorrectly set
2105 * parents.
2106 */
2107 static inline void mas_descend_adopt(struct ma_state *mas)
2108 {
2109 struct ma_state list[3], next[3];
2110 int i, n;
2111
2112 /*
2113 * At each level there may be up to 3 correct parent pointers which indicates
2114 * the new nodes which need to be walked to find any new nodes at a lower level.
2115 */
2116
2117 for (i = 0; i < 3; i++) {
2118 list[i] = *mas;
2119 list[i].offset = 0;
2120 next[i].offset = 0;
2121 }
2122 next[0] = *mas;
2123
2124 while (!mte_is_leaf(list[0].node)) {
2125 n = 0;
2126 for (i = 0; i < 3; i++) {
2127 if (mas_is_none(&list[i]))
2128 continue;
2129
2130 if (i && list[i-1].node == list[i].node)
2131 continue;
2132
2133 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2134 n++;
2135
2136 mas_adopt_children(&list[i], list[i].node);
2137 }
2138
2139 while (n < 3)
2140 next[n++].node = MAS_NONE;
2141
2142 /* descend by setting the list to the children */
2143 for (i = 0; i < 3; i++)
2144 list[i] = next[i];
2145 }
2146 }
2147
2148 /*
2149 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2150 * @mas: The maple state
2151 * @end: The maple node end
2152 * @mt: The maple node type
2153 */
2154 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2155 enum maple_type mt)
2156 {
2157 if (!(mas->mas_flags & MA_STATE_BULK))
2158 return;
2159
2160 if (mte_is_root(mas->node))
2161 return;
2162
2163 if (end > mt_min_slots[mt]) {
2164 mas->mas_flags &= ~MA_STATE_REBALANCE;
2165 return;
2166 }
2167 }
2168
2169 /*
2170 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2171 * data from a maple encoded node.
2172 * @wr_mas: the maple write state
2173 * @b_node: the maple_big_node to fill with data
2174 * @offset_end: the offset to end copying
2175 *
2176 * Return: The actual end of the data stored in @b_node
2177 */
2178 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2179 struct maple_big_node *b_node, unsigned char offset_end)
2180 {
2181 unsigned char slot;
2182 unsigned char b_end;
2183 /* Possible underflow of piv will wrap back to 0 before use. */
2184 unsigned long piv;
2185 struct ma_state *mas = wr_mas->mas;
2186
2187 b_node->type = wr_mas->type;
2188 b_end = 0;
2189 slot = mas->offset;
2190 if (slot) {
2191 /* Copy start data up to insert. */
2192 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2193 b_end = b_node->b_end;
2194 piv = b_node->pivot[b_end - 1];
2195 } else
2196 piv = mas->min - 1;
2197
2198 if (piv + 1 < mas->index) {
2199 /* Handle range starting after old range */
2200 b_node->slot[b_end] = wr_mas->content;
2201 if (!wr_mas->content)
2202 b_node->gap[b_end] = mas->index - 1 - piv;
2203 b_node->pivot[b_end++] = mas->index - 1;
2204 }
2205
2206 /* Store the new entry. */
2207 mas->offset = b_end;
2208 b_node->slot[b_end] = wr_mas->entry;
2209 b_node->pivot[b_end] = mas->last;
2210
2211 /* Appended. */
2212 if (mas->last >= mas->max)
2213 goto b_end;
2214
2215 /* Handle new range ending before old range ends */
2216 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2217 if (piv > mas->last) {
2218 if (piv == ULONG_MAX)
2219 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2220
2221 if (offset_end != slot)
2222 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2223 offset_end);
2224
2225 b_node->slot[++b_end] = wr_mas->content;
2226 if (!wr_mas->content)
2227 b_node->gap[b_end] = piv - mas->last + 1;
2228 b_node->pivot[b_end] = piv;
2229 }
2230
2231 slot = offset_end + 1;
2232 if (slot > wr_mas->node_end)
2233 goto b_end;
2234
2235 /* Copy end data to the end of the node. */
2236 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2237 b_node->b_end--;
2238 return;
2239
2240 b_end:
2241 b_node->b_end = b_end;
2242 }
2243
2244 /*
2245 * mas_prev_sibling() - Find the previous node with the same parent.
2246 * @mas: the maple state
2247 *
2248 * Return: True if there is a previous sibling, false otherwise.
2249 */
2250 static inline bool mas_prev_sibling(struct ma_state *mas)
2251 {
2252 unsigned int p_slot = mte_parent_slot(mas->node);
2253
2254 if (mte_is_root(mas->node))
2255 return false;
2256
2257 if (!p_slot)
2258 return false;
2259
2260 mas_ascend(mas);
2261 mas->offset = p_slot - 1;
2262 mas_descend(mas);
2263 return true;
2264 }
2265
2266 /*
2267 * mas_next_sibling() - Find the next node with the same parent.
2268 * @mas: the maple state
2269 *
2270 * Return: true if there is a next sibling, false otherwise.
2271 */
2272 static inline bool mas_next_sibling(struct ma_state *mas)
2273 {
2274 MA_STATE(parent, mas->tree, mas->index, mas->last);
2275
2276 if (mte_is_root(mas->node))
2277 return false;
2278
2279 parent = *mas;
2280 mas_ascend(&parent);
2281 parent.offset = mte_parent_slot(mas->node) + 1;
2282 if (parent.offset > mas_data_end(&parent))
2283 return false;
2284
2285 *mas = parent;
2286 mas_descend(mas);
2287 return true;
2288 }
2289
2290 /*
2291 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2292 * @enode: The encoded maple node.
2293 *
2294 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2295 *
2296 * Return: @enode or MAS_NONE
2297 */
2298 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2299 {
2300 if (enode)
2301 return enode;
2302
2303 return ma_enode_ptr(MAS_NONE);
2304 }
2305
2306 /*
2307 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2308 * @wr_mas: The maple write state
2309 *
2310 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2311 */
2312 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2313 {
2314 struct ma_state *mas = wr_mas->mas;
2315 unsigned char count, offset;
2316
2317 if (unlikely(ma_is_dense(wr_mas->type))) {
2318 wr_mas->r_max = wr_mas->r_min = mas->index;
2319 mas->offset = mas->index = mas->min;
2320 return;
2321 }
2322
2323 wr_mas->node = mas_mn(wr_mas->mas);
2324 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2325 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2326 wr_mas->pivots, mas->max);
2327 offset = mas->offset;
2328
2329 while (offset < count && mas->index > wr_mas->pivots[offset])
2330 offset++;
2331
2332 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2333 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2334 wr_mas->offset_end = mas->offset = offset;
2335 }
2336
2337 /*
2338 * mas_topiary_range() - Add a range of slots to the topiary.
2339 * @mas: The maple state
2340 * @destroy: The topiary to add the slots (usually destroy)
2341 * @start: The starting slot inclusively
2342 * @end: The end slot inclusively
2343 */
2344 static inline void mas_topiary_range(struct ma_state *mas,
2345 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2346 {
2347 void __rcu **slots;
2348 unsigned char offset;
2349
2350 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2351 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2352 for (offset = start; offset <= end; offset++) {
2353 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2354
2355 if (mte_dead_node(enode))
2356 continue;
2357
2358 mat_add(destroy, enode);
2359 }
2360 }
2361
2362 /*
2363 * mast_topiary() - Add the portions of the tree to the removal list; either to
2364 * be freed or discarded (destroy walk).
2365 * @mast: The maple_subtree_state.
2366 */
2367 static inline void mast_topiary(struct maple_subtree_state *mast)
2368 {
2369 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2370 unsigned char r_start, r_end;
2371 unsigned char l_start, l_end;
2372 void __rcu **l_slots, **r_slots;
2373
2374 wr_mas.type = mte_node_type(mast->orig_l->node);
2375 mast->orig_l->index = mast->orig_l->last;
2376 mas_wr_node_walk(&wr_mas);
2377 l_start = mast->orig_l->offset + 1;
2378 l_end = mas_data_end(mast->orig_l);
2379 r_start = 0;
2380 r_end = mast->orig_r->offset;
2381
2382 if (r_end)
2383 r_end--;
2384
2385 l_slots = ma_slots(mas_mn(mast->orig_l),
2386 mte_node_type(mast->orig_l->node));
2387
2388 r_slots = ma_slots(mas_mn(mast->orig_r),
2389 mte_node_type(mast->orig_r->node));
2390
2391 if ((l_start < l_end) &&
2392 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2393 l_start++;
2394 }
2395
2396 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2397 if (r_end)
2398 r_end--;
2399 }
2400
2401 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2402 return;
2403
2404 /* At the node where left and right sides meet, add the parts between */
2405 if (mast->orig_l->node == mast->orig_r->node) {
2406 return mas_topiary_range(mast->orig_l, mast->destroy,
2407 l_start, r_end);
2408 }
2409
2410 /* mast->orig_r is different and consumed. */
2411 if (mte_is_leaf(mast->orig_r->node))
2412 return;
2413
2414 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2415 l_end--;
2416
2417
2418 if (l_start <= l_end)
2419 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2420
2421 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2422 r_start++;
2423
2424 if (r_start <= r_end)
2425 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2426 }
2427
2428 /*
2429 * mast_rebalance_next() - Rebalance against the next node
2430 * @mast: The maple subtree state
2431 * @old_r: The encoded maple node to the right (next node).
2432 */
2433 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2434 {
2435 unsigned char b_end = mast->bn->b_end;
2436
2437 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2438 mast->bn, b_end);
2439 mast->orig_r->last = mast->orig_r->max;
2440 }
2441
2442 /*
2443 * mast_rebalance_prev() - Rebalance against the previous node
2444 * @mast: The maple subtree state
2445 * @old_l: The encoded maple node to the left (previous node)
2446 */
2447 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2448 {
2449 unsigned char end = mas_data_end(mast->orig_l) + 1;
2450 unsigned char b_end = mast->bn->b_end;
2451
2452 mab_shift_right(mast->bn, end);
2453 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2454 mast->l->min = mast->orig_l->min;
2455 mast->orig_l->index = mast->orig_l->min;
2456 mast->bn->b_end = end + b_end;
2457 mast->l->offset += end;
2458 }
2459
2460 /*
2461 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2462 * the node to the right. Checking the nodes to the right then the left at each
2463 * level upwards until root is reached. Free and destroy as needed.
2464 * Data is copied into the @mast->bn.
2465 * @mast: The maple_subtree_state.
2466 */
2467 static inline
2468 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2469 {
2470 struct ma_state r_tmp = *mast->orig_r;
2471 struct ma_state l_tmp = *mast->orig_l;
2472 struct maple_enode *ancestor = NULL;
2473 unsigned char start, end;
2474 unsigned char depth = 0;
2475
2476 r_tmp = *mast->orig_r;
2477 l_tmp = *mast->orig_l;
2478 do {
2479 mas_ascend(mast->orig_r);
2480 mas_ascend(mast->orig_l);
2481 depth++;
2482 if (!ancestor &&
2483 (mast->orig_r->node == mast->orig_l->node)) {
2484 ancestor = mast->orig_r->node;
2485 end = mast->orig_r->offset - 1;
2486 start = mast->orig_l->offset + 1;
2487 }
2488
2489 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2490 if (!ancestor) {
2491 ancestor = mast->orig_r->node;
2492 start = 0;
2493 }
2494
2495 mast->orig_r->offset++;
2496 do {
2497 mas_descend(mast->orig_r);
2498 mast->orig_r->offset = 0;
2499 depth--;
2500 } while (depth);
2501
2502 mast_rebalance_next(mast);
2503 do {
2504 unsigned char l_off = 0;
2505 struct maple_enode *child = r_tmp.node;
2506
2507 mas_ascend(&r_tmp);
2508 if (ancestor == r_tmp.node)
2509 l_off = start;
2510
2511 if (r_tmp.offset)
2512 r_tmp.offset--;
2513
2514 if (l_off < r_tmp.offset)
2515 mas_topiary_range(&r_tmp, mast->destroy,
2516 l_off, r_tmp.offset);
2517
2518 if (l_tmp.node != child)
2519 mat_add(mast->free, child);
2520
2521 } while (r_tmp.node != ancestor);
2522
2523 *mast->orig_l = l_tmp;
2524 return true;
2525
2526 } else if (mast->orig_l->offset != 0) {
2527 if (!ancestor) {
2528 ancestor = mast->orig_l->node;
2529 end = mas_data_end(mast->orig_l);
2530 }
2531
2532 mast->orig_l->offset--;
2533 do {
2534 mas_descend(mast->orig_l);
2535 mast->orig_l->offset =
2536 mas_data_end(mast->orig_l);
2537 depth--;
2538 } while (depth);
2539
2540 mast_rebalance_prev(mast);
2541 do {
2542 unsigned char r_off;
2543 struct maple_enode *child = l_tmp.node;
2544
2545 mas_ascend(&l_tmp);
2546 if (ancestor == l_tmp.node)
2547 r_off = end;
2548 else
2549 r_off = mas_data_end(&l_tmp);
2550
2551 if (l_tmp.offset < r_off)
2552 l_tmp.offset++;
2553
2554 if (l_tmp.offset < r_off)
2555 mas_topiary_range(&l_tmp, mast->destroy,
2556 l_tmp.offset, r_off);
2557
2558 if (r_tmp.node != child)
2559 mat_add(mast->free, child);
2560
2561 } while (l_tmp.node != ancestor);
2562
2563 *mast->orig_r = r_tmp;
2564 return true;
2565 }
2566 } while (!mte_is_root(mast->orig_r->node));
2567
2568 *mast->orig_r = r_tmp;
2569 *mast->orig_l = l_tmp;
2570 return false;
2571 }
2572
2573 /*
2574 * mast_ascend_free() - Add current original maple state nodes to the free list
2575 * and ascend.
2576 * @mast: the maple subtree state.
2577 *
2578 * Ascend the original left and right sides and add the previous nodes to the
2579 * free list. Set the slots to point to the correct location in the new nodes.
2580 */
2581 static inline void
2582 mast_ascend_free(struct maple_subtree_state *mast)
2583 {
2584 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2585 struct maple_enode *left = mast->orig_l->node;
2586 struct maple_enode *right = mast->orig_r->node;
2587
2588 mas_ascend(mast->orig_l);
2589 mas_ascend(mast->orig_r);
2590 mat_add(mast->free, left);
2591
2592 if (left != right)
2593 mat_add(mast->free, right);
2594
2595 mast->orig_r->offset = 0;
2596 mast->orig_r->index = mast->r->max;
2597 /* last should be larger than or equal to index */
2598 if (mast->orig_r->last < mast->orig_r->index)
2599 mast->orig_r->last = mast->orig_r->index;
2600 /*
2601 * The node may not contain the value so set slot to ensure all
2602 * of the nodes contents are freed or destroyed.
2603 */
2604 wr_mas.type = mte_node_type(mast->orig_r->node);
2605 mas_wr_node_walk(&wr_mas);
2606 /* Set up the left side of things */
2607 mast->orig_l->offset = 0;
2608 mast->orig_l->index = mast->l->min;
2609 wr_mas.mas = mast->orig_l;
2610 wr_mas.type = mte_node_type(mast->orig_l->node);
2611 mas_wr_node_walk(&wr_mas);
2612
2613 mast->bn->type = wr_mas.type;
2614 }
2615
2616 /*
2617 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2618 * @mas: the maple state with the allocations.
2619 * @b_node: the maple_big_node with the type encoding.
2620 *
2621 * Use the node type from the maple_big_node to allocate a new node from the
2622 * ma_state. This function exists mainly for code readability.
2623 *
2624 * Return: A new maple encoded node
2625 */
2626 static inline struct maple_enode
2627 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2628 {
2629 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2630 }
2631
2632 /*
2633 * mas_mab_to_node() - Set up right and middle nodes
2634 *
2635 * @mas: the maple state that contains the allocations.
2636 * @b_node: the node which contains the data.
2637 * @left: The pointer which will have the left node
2638 * @right: The pointer which may have the right node
2639 * @middle: the pointer which may have the middle node (rare)
2640 * @mid_split: the split location for the middle node
2641 *
2642 * Return: the split of left.
2643 */
2644 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2645 struct maple_big_node *b_node, struct maple_enode **left,
2646 struct maple_enode **right, struct maple_enode **middle,
2647 unsigned char *mid_split, unsigned long min)
2648 {
2649 unsigned char split = 0;
2650 unsigned char slot_count = mt_slots[b_node->type];
2651
2652 *left = mas_new_ma_node(mas, b_node);
2653 *right = NULL;
2654 *middle = NULL;
2655 *mid_split = 0;
2656
2657 if (b_node->b_end < slot_count) {
2658 split = b_node->b_end;
2659 } else {
2660 split = mab_calc_split(mas, b_node, mid_split, min);
2661 *right = mas_new_ma_node(mas, b_node);
2662 }
2663
2664 if (*mid_split)
2665 *middle = mas_new_ma_node(mas, b_node);
2666
2667 return split;
2668
2669 }
2670
2671 /*
2672 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2673 * pointer.
2674 * @b_node - the big node to add the entry
2675 * @mas - the maple state to get the pivot (mas->max)
2676 * @entry - the entry to add, if NULL nothing happens.
2677 */
2678 static inline void mab_set_b_end(struct maple_big_node *b_node,
2679 struct ma_state *mas,
2680 void *entry)
2681 {
2682 if (!entry)
2683 return;
2684
2685 b_node->slot[b_node->b_end] = entry;
2686 if (mt_is_alloc(mas->tree))
2687 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2688 b_node->pivot[b_node->b_end++] = mas->max;
2689 }
2690
2691 /*
2692 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2693 * of @mas->node to either @left or @right, depending on @slot and @split
2694 *
2695 * @mas - the maple state with the node that needs a parent
2696 * @left - possible parent 1
2697 * @right - possible parent 2
2698 * @slot - the slot the mas->node was placed
2699 * @split - the split location between @left and @right
2700 */
2701 static inline void mas_set_split_parent(struct ma_state *mas,
2702 struct maple_enode *left,
2703 struct maple_enode *right,
2704 unsigned char *slot, unsigned char split)
2705 {
2706 if (mas_is_none(mas))
2707 return;
2708
2709 if ((*slot) <= split)
2710 mte_set_parent(mas->node, left, *slot);
2711 else if (right)
2712 mte_set_parent(mas->node, right, (*slot) - split - 1);
2713
2714 (*slot)++;
2715 }
2716
2717 /*
2718 * mte_mid_split_check() - Check if the next node passes the mid-split
2719 * @**l: Pointer to left encoded maple node.
2720 * @**m: Pointer to middle encoded maple node.
2721 * @**r: Pointer to right encoded maple node.
2722 * @slot: The offset
2723 * @*split: The split location.
2724 * @mid_split: The middle split.
2725 */
2726 static inline void mte_mid_split_check(struct maple_enode **l,
2727 struct maple_enode **r,
2728 struct maple_enode *right,
2729 unsigned char slot,
2730 unsigned char *split,
2731 unsigned char mid_split)
2732 {
2733 if (*r == right)
2734 return;
2735
2736 if (slot < mid_split)
2737 return;
2738
2739 *l = *r;
2740 *r = right;
2741 *split = mid_split;
2742 }
2743
2744 /*
2745 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2746 * is taken from @mast->l.
2747 * @mast - the maple subtree state
2748 * @left - the left node
2749 * @right - the right node
2750 * @split - the split location.
2751 */
2752 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2753 struct maple_enode *left,
2754 struct maple_enode *middle,
2755 struct maple_enode *right,
2756 unsigned char split,
2757 unsigned char mid_split)
2758 {
2759 unsigned char slot;
2760 struct maple_enode *l = left;
2761 struct maple_enode *r = right;
2762
2763 if (mas_is_none(mast->l))
2764 return;
2765
2766 if (middle)
2767 r = middle;
2768
2769 slot = mast->l->offset;
2770
2771 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2772 mas_set_split_parent(mast->l, l, r, &slot, split);
2773
2774 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2775 mas_set_split_parent(mast->m, l, r, &slot, split);
2776
2777 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2778 mas_set_split_parent(mast->r, l, r, &slot, split);
2779 }
2780
2781 /*
2782 * mas_wmb_replace() - Write memory barrier and replace
2783 * @mas: The maple state
2784 * @free: the maple topiary list of nodes to free
2785 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2786 *
2787 * Updates gap as necessary.
2788 */
2789 static inline void mas_wmb_replace(struct ma_state *mas,
2790 struct ma_topiary *free,
2791 struct ma_topiary *destroy)
2792 {
2793 /* All nodes must see old data as dead prior to replacing that data */
2794 smp_wmb(); /* Needed for RCU */
2795
2796 /* Insert the new data in the tree */
2797 mas_replace(mas, true);
2798
2799 if (!mte_is_leaf(mas->node))
2800 mas_descend_adopt(mas);
2801
2802 mas_mat_free(mas, free);
2803
2804 if (destroy)
2805 mas_mat_destroy(mas, destroy);
2806
2807 if (mte_is_leaf(mas->node))
2808 return;
2809
2810 mas_update_gap(mas);
2811 }
2812
2813 /*
2814 * mast_new_root() - Set a new tree root during subtree creation
2815 * @mast: The maple subtree state
2816 * @mas: The maple state
2817 */
2818 static inline void mast_new_root(struct maple_subtree_state *mast,
2819 struct ma_state *mas)
2820 {
2821 mas_mn(mast->l)->parent =
2822 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2823 if (!mte_dead_node(mast->orig_l->node) &&
2824 !mte_is_root(mast->orig_l->node)) {
2825 do {
2826 mast_ascend_free(mast);
2827 mast_topiary(mast);
2828 } while (!mte_is_root(mast->orig_l->node));
2829 }
2830 if ((mast->orig_l->node != mas->node) &&
2831 (mast->l->depth > mas_mt_height(mas))) {
2832 mat_add(mast->free, mas->node);
2833 }
2834 }
2835
2836 /*
2837 * mast_cp_to_nodes() - Copy data out to nodes.
2838 * @mast: The maple subtree state
2839 * @left: The left encoded maple node
2840 * @middle: The middle encoded maple node
2841 * @right: The right encoded maple node
2842 * @split: The location to split between left and (middle ? middle : right)
2843 * @mid_split: The location to split between middle and right.
2844 */
2845 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2846 struct maple_enode *left, struct maple_enode *middle,
2847 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2848 {
2849 bool new_lmax = true;
2850
2851 mast->l->node = mte_node_or_none(left);
2852 mast->m->node = mte_node_or_none(middle);
2853 mast->r->node = mte_node_or_none(right);
2854
2855 mast->l->min = mast->orig_l->min;
2856 if (split == mast->bn->b_end) {
2857 mast->l->max = mast->orig_r->max;
2858 new_lmax = false;
2859 }
2860
2861 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2862
2863 if (middle) {
2864 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2865 mast->m->min = mast->bn->pivot[split] + 1;
2866 split = mid_split;
2867 }
2868
2869 mast->r->max = mast->orig_r->max;
2870 if (right) {
2871 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2872 mast->r->min = mast->bn->pivot[split] + 1;
2873 }
2874 }
2875
2876 /*
2877 * mast_combine_cp_left - Copy in the original left side of the tree into the
2878 * combined data set in the maple subtree state big node.
2879 * @mast: The maple subtree state
2880 */
2881 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2882 {
2883 unsigned char l_slot = mast->orig_l->offset;
2884
2885 if (!l_slot)
2886 return;
2887
2888 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2889 }
2890
2891 /*
2892 * mast_combine_cp_right: Copy in the original right side of the tree into the
2893 * combined data set in the maple subtree state big node.
2894 * @mast: The maple subtree state
2895 */
2896 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2897 {
2898 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2899 return;
2900
2901 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2902 mt_slot_count(mast->orig_r->node), mast->bn,
2903 mast->bn->b_end);
2904 mast->orig_r->last = mast->orig_r->max;
2905 }
2906
2907 /*
2908 * mast_sufficient: Check if the maple subtree state has enough data in the big
2909 * node to create at least one sufficient node
2910 * @mast: the maple subtree state
2911 */
2912 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2913 {
2914 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2915 return true;
2916
2917 return false;
2918 }
2919
2920 /*
2921 * mast_overflow: Check if there is too much data in the subtree state for a
2922 * single node.
2923 * @mast: The maple subtree state
2924 */
2925 static inline bool mast_overflow(struct maple_subtree_state *mast)
2926 {
2927 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2928 return true;
2929
2930 return false;
2931 }
2932
2933 static inline void *mtree_range_walk(struct ma_state *mas)
2934 {
2935 unsigned long *pivots;
2936 unsigned char offset;
2937 struct maple_node *node;
2938 struct maple_enode *next, *last;
2939 enum maple_type type;
2940 void __rcu **slots;
2941 unsigned char end;
2942 unsigned long max, min;
2943 unsigned long prev_max, prev_min;
2944
2945 next = mas->node;
2946 min = mas->min;
2947 max = mas->max;
2948 do {
2949 offset = 0;
2950 last = next;
2951 node = mte_to_node(next);
2952 type = mte_node_type(next);
2953 pivots = ma_pivots(node, type);
2954 end = ma_data_end(node, type, pivots, max);
2955 if (unlikely(ma_dead_node(node)))
2956 goto dead_node;
2957
2958 if (pivots[offset] >= mas->index) {
2959 prev_max = max;
2960 prev_min = min;
2961 max = pivots[offset];
2962 goto next;
2963 }
2964
2965 do {
2966 offset++;
2967 } while ((offset < end) && (pivots[offset] < mas->index));
2968
2969 prev_min = min;
2970 min = pivots[offset - 1] + 1;
2971 prev_max = max;
2972 if (likely(offset < end && pivots[offset]))
2973 max = pivots[offset];
2974
2975 next:
2976 slots = ma_slots(node, type);
2977 next = mt_slot(mas->tree, slots, offset);
2978 if (unlikely(ma_dead_node(node)))
2979 goto dead_node;
2980 } while (!ma_is_leaf(type));
2981
2982 mas->offset = offset;
2983 mas->index = min;
2984 mas->last = max;
2985 mas->min = prev_min;
2986 mas->max = prev_max;
2987 mas->node = last;
2988 return (void *)next;
2989
2990 dead_node:
2991 mas_reset(mas);
2992 return NULL;
2993 }
2994
2995 /*
2996 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2997 * @mas: The starting maple state
2998 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2999 * @count: The estimated count of iterations needed.
3000 *
3001 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3002 * is hit. First @b_node is split into two entries which are inserted into the
3003 * next iteration of the loop. @b_node is returned populated with the final
3004 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
3005 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3006 * to account of what has been copied into the new sub-tree. The update of
3007 * orig_l_mas->last is used in mas_consume to find the slots that will need to
3008 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
3009 * the new sub-tree in case the sub-tree becomes the full tree.
3010 *
3011 * Return: the number of elements in b_node during the last loop.
3012 */
3013 static int mas_spanning_rebalance(struct ma_state *mas,
3014 struct maple_subtree_state *mast, unsigned char count)
3015 {
3016 unsigned char split, mid_split;
3017 unsigned char slot = 0;
3018 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3019
3020 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3021 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3022 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3023 MA_TOPIARY(free, mas->tree);
3024 MA_TOPIARY(destroy, mas->tree);
3025
3026 /*
3027 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3028 * Rebalancing is done by use of the ``struct maple_topiary``.
3029 */
3030 mast->l = &l_mas;
3031 mast->m = &m_mas;
3032 mast->r = &r_mas;
3033 mast->free = &free;
3034 mast->destroy = &destroy;
3035 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3036
3037 /* Check if this is not root and has sufficient data. */
3038 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3039 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3040 mast_spanning_rebalance(mast);
3041
3042 mast->orig_l->depth = 0;
3043
3044 /*
3045 * Each level of the tree is examined and balanced, pushing data to the left or
3046 * right, or rebalancing against left or right nodes is employed to avoid
3047 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3048 * the tree is created, there may be a mix of new and old nodes. The old nodes
3049 * will have the incorrect parent pointers and currently be in two trees: the
3050 * original tree and the partially new tree. To remedy the parent pointers in
3051 * the old tree, the new data is swapped into the active tree and a walk down
3052 * the tree is performed and the parent pointers are updated.
3053 * See mas_descend_adopt() for more information..
3054 */
3055 while (count--) {
3056 mast->bn->b_end--;
3057 mast->bn->type = mte_node_type(mast->orig_l->node);
3058 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3059 &mid_split, mast->orig_l->min);
3060 mast_set_split_parents(mast, left, middle, right, split,
3061 mid_split);
3062 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3063
3064 /*
3065 * Copy data from next level in the tree to mast->bn from next
3066 * iteration
3067 */
3068 memset(mast->bn, 0, sizeof(struct maple_big_node));
3069 mast->bn->type = mte_node_type(left);
3070 mast->orig_l->depth++;
3071
3072 /* Root already stored in l->node. */
3073 if (mas_is_root_limits(mast->l))
3074 goto new_root;
3075
3076 mast_ascend_free(mast);
3077 mast_combine_cp_left(mast);
3078 l_mas.offset = mast->bn->b_end;
3079 mab_set_b_end(mast->bn, &l_mas, left);
3080 mab_set_b_end(mast->bn, &m_mas, middle);
3081 mab_set_b_end(mast->bn, &r_mas, right);
3082
3083 /* Copy anything necessary out of the right node. */
3084 mast_combine_cp_right(mast);
3085 mast_topiary(mast);
3086 mast->orig_l->last = mast->orig_l->max;
3087
3088 if (mast_sufficient(mast))
3089 continue;
3090
3091 if (mast_overflow(mast))
3092 continue;
3093
3094 /* May be a new root stored in mast->bn */
3095 if (mas_is_root_limits(mast->orig_l))
3096 break;
3097
3098 mast_spanning_rebalance(mast);
3099
3100 /* rebalancing from other nodes may require another loop. */
3101 if (!count)
3102 count++;
3103 }
3104
3105 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3106 mte_node_type(mast->orig_l->node));
3107 mast->orig_l->depth++;
3108 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3109 mte_set_parent(left, l_mas.node, slot);
3110 if (middle)
3111 mte_set_parent(middle, l_mas.node, ++slot);
3112
3113 if (right)
3114 mte_set_parent(right, l_mas.node, ++slot);
3115
3116 if (mas_is_root_limits(mast->l)) {
3117 new_root:
3118 mast_new_root(mast, mas);
3119 } else {
3120 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3121 }
3122
3123 if (!mte_dead_node(mast->orig_l->node))
3124 mat_add(&free, mast->orig_l->node);
3125
3126 mas->depth = mast->orig_l->depth;
3127 *mast->orig_l = l_mas;
3128 mte_set_node_dead(mas->node);
3129
3130 /* Set up mas for insertion. */
3131 mast->orig_l->depth = mas->depth;
3132 mast->orig_l->alloc = mas->alloc;
3133 *mas = *mast->orig_l;
3134 mas_wmb_replace(mas, &free, &destroy);
3135 mtree_range_walk(mas);
3136 return mast->bn->b_end;
3137 }
3138
3139 /*
3140 * mas_rebalance() - Rebalance a given node.
3141 * @mas: The maple state
3142 * @b_node: The big maple node.
3143 *
3144 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3145 * Continue upwards until tree is sufficient.
3146 *
3147 * Return: the number of elements in b_node during the last loop.
3148 */
3149 static inline int mas_rebalance(struct ma_state *mas,
3150 struct maple_big_node *b_node)
3151 {
3152 char empty_count = mas_mt_height(mas);
3153 struct maple_subtree_state mast;
3154 unsigned char shift, b_end = ++b_node->b_end;
3155
3156 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3157 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3158
3159 trace_ma_op(__func__, mas);
3160
3161 /*
3162 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3163 * against the node to the right if it exists, otherwise the node to the
3164 * left of this node is rebalanced against this node. If rebalancing
3165 * causes just one node to be produced instead of two, then the parent
3166 * is also examined and rebalanced if it is insufficient. Every level
3167 * tries to combine the data in the same way. If one node contains the
3168 * entire range of the tree, then that node is used as a new root node.
3169 */
3170 mas_node_count(mas, 1 + empty_count * 3);
3171 if (mas_is_err(mas))
3172 return 0;
3173
3174 mast.orig_l = &l_mas;
3175 mast.orig_r = &r_mas;
3176 mast.bn = b_node;
3177 mast.bn->type = mte_node_type(mas->node);
3178
3179 l_mas = r_mas = *mas;
3180
3181 if (mas_next_sibling(&r_mas)) {
3182 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3183 r_mas.last = r_mas.index = r_mas.max;
3184 } else {
3185 mas_prev_sibling(&l_mas);
3186 shift = mas_data_end(&l_mas) + 1;
3187 mab_shift_right(b_node, shift);
3188 mas->offset += shift;
3189 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3190 b_node->b_end = shift + b_end;
3191 l_mas.index = l_mas.last = l_mas.min;
3192 }
3193
3194 return mas_spanning_rebalance(mas, &mast, empty_count);
3195 }
3196
3197 /*
3198 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3199 * state.
3200 * @mas: The maple state
3201 * @end: The end of the left-most node.
3202 *
3203 * During a mass-insert event (such as forking), it may be necessary to
3204 * rebalance the left-most node when it is not sufficient.
3205 */
3206 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3207 {
3208 enum maple_type mt = mte_node_type(mas->node);
3209 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3210 struct maple_enode *eparent;
3211 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3212 void __rcu **l_slots, **slots;
3213 unsigned long *l_pivs, *pivs, gap;
3214 bool in_rcu = mt_in_rcu(mas->tree);
3215
3216 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3217
3218 l_mas = *mas;
3219 mas_prev_sibling(&l_mas);
3220
3221 /* set up node. */
3222 if (in_rcu) {
3223 /* Allocate for both left and right as well as parent. */
3224 mas_node_count(mas, 3);
3225 if (mas_is_err(mas))
3226 return;
3227
3228 newnode = mas_pop_node(mas);
3229 } else {
3230 newnode = &reuse;
3231 }
3232
3233 node = mas_mn(mas);
3234 newnode->parent = node->parent;
3235 slots = ma_slots(newnode, mt);
3236 pivs = ma_pivots(newnode, mt);
3237 left = mas_mn(&l_mas);
3238 l_slots = ma_slots(left, mt);
3239 l_pivs = ma_pivots(left, mt);
3240 if (!l_slots[split])
3241 split++;
3242 tmp = mas_data_end(&l_mas) - split;
3243
3244 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3245 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3246 pivs[tmp] = l_mas.max;
3247 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3248 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3249
3250 l_mas.max = l_pivs[split];
3251 mas->min = l_mas.max + 1;
3252 eparent = mt_mk_node(mte_parent(l_mas.node),
3253 mas_parent_enum(&l_mas, l_mas.node));
3254 tmp += end;
3255 if (!in_rcu) {
3256 unsigned char max_p = mt_pivots[mt];
3257 unsigned char max_s = mt_slots[mt];
3258
3259 if (tmp < max_p)
3260 memset(pivs + tmp, 0,
3261 sizeof(unsigned long) * (max_p - tmp));
3262
3263 if (tmp < mt_slots[mt])
3264 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3265
3266 memcpy(node, newnode, sizeof(struct maple_node));
3267 ma_set_meta(node, mt, 0, tmp - 1);
3268 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3269 l_pivs[split]);
3270
3271 /* Remove data from l_pivs. */
3272 tmp = split + 1;
3273 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3274 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3275 ma_set_meta(left, mt, 0, split);
3276
3277 goto done;
3278 }
3279
3280 /* RCU requires replacing both l_mas, mas, and parent. */
3281 mas->node = mt_mk_node(newnode, mt);
3282 ma_set_meta(newnode, mt, 0, tmp);
3283
3284 new_left = mas_pop_node(mas);
3285 new_left->parent = left->parent;
3286 mt = mte_node_type(l_mas.node);
3287 slots = ma_slots(new_left, mt);
3288 pivs = ma_pivots(new_left, mt);
3289 memcpy(slots, l_slots, sizeof(void *) * split);
3290 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3291 ma_set_meta(new_left, mt, 0, split);
3292 l_mas.node = mt_mk_node(new_left, mt);
3293
3294 /* replace parent. */
3295 offset = mte_parent_slot(mas->node);
3296 mt = mas_parent_enum(&l_mas, l_mas.node);
3297 parent = mas_pop_node(mas);
3298 slots = ma_slots(parent, mt);
3299 pivs = ma_pivots(parent, mt);
3300 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3301 rcu_assign_pointer(slots[offset], mas->node);
3302 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3303 pivs[offset - 1] = l_mas.max;
3304 eparent = mt_mk_node(parent, mt);
3305 done:
3306 gap = mas_leaf_max_gap(mas);
3307 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3308 gap = mas_leaf_max_gap(&l_mas);
3309 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3310 mas_ascend(mas);
3311
3312 if (in_rcu)
3313 mas_replace(mas, false);
3314
3315 mas_update_gap(mas);
3316 }
3317
3318 /*
3319 * mas_split_final_node() - Split the final node in a subtree operation.
3320 * @mast: the maple subtree state
3321 * @mas: The maple state
3322 * @height: The height of the tree in case it's a new root.
3323 */
3324 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3325 struct ma_state *mas, int height)
3326 {
3327 struct maple_enode *ancestor;
3328
3329 if (mte_is_root(mas->node)) {
3330 if (mt_is_alloc(mas->tree))
3331 mast->bn->type = maple_arange_64;
3332 else
3333 mast->bn->type = maple_range_64;
3334 mas->depth = height;
3335 }
3336 /*
3337 * Only a single node is used here, could be root.
3338 * The Big_node data should just fit in a single node.
3339 */
3340 ancestor = mas_new_ma_node(mas, mast->bn);
3341 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3342 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3343 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3344
3345 mast->l->node = ancestor;
3346 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3347 mas->offset = mast->bn->b_end - 1;
3348 return true;
3349 }
3350
3351 /*
3352 * mast_fill_bnode() - Copy data into the big node in the subtree state
3353 * @mast: The maple subtree state
3354 * @mas: the maple state
3355 * @skip: The number of entries to skip for new nodes insertion.
3356 */
3357 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3358 struct ma_state *mas,
3359 unsigned char skip)
3360 {
3361 bool cp = true;
3362 struct maple_enode *old = mas->node;
3363 unsigned char split;
3364
3365 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3366 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3367 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3368 mast->bn->b_end = 0;
3369
3370 if (mte_is_root(mas->node)) {
3371 cp = false;
3372 } else {
3373 mas_ascend(mas);
3374 mat_add(mast->free, old);
3375 mas->offset = mte_parent_slot(mas->node);
3376 }
3377
3378 if (cp && mast->l->offset)
3379 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3380
3381 split = mast->bn->b_end;
3382 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3383 mast->r->offset = mast->bn->b_end;
3384 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3385 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3386 cp = false;
3387
3388 if (cp)
3389 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3390 mast->bn, mast->bn->b_end);
3391
3392 mast->bn->b_end--;
3393 mast->bn->type = mte_node_type(mas->node);
3394 }
3395
3396 /*
3397 * mast_split_data() - Split the data in the subtree state big node into regular
3398 * nodes.
3399 * @mast: The maple subtree state
3400 * @mas: The maple state
3401 * @split: The location to split the big node
3402 */
3403 static inline void mast_split_data(struct maple_subtree_state *mast,
3404 struct ma_state *mas, unsigned char split)
3405 {
3406 unsigned char p_slot;
3407
3408 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3409 mte_set_pivot(mast->r->node, 0, mast->r->max);
3410 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3411 mast->l->offset = mte_parent_slot(mas->node);
3412 mast->l->max = mast->bn->pivot[split];
3413 mast->r->min = mast->l->max + 1;
3414 if (mte_is_leaf(mas->node))
3415 return;
3416
3417 p_slot = mast->orig_l->offset;
3418 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3419 &p_slot, split);
3420 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3421 &p_slot, split);
3422 }
3423
3424 /*
3425 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3426 * data to the right or left node if there is room.
3427 * @mas: The maple state
3428 * @height: The current height of the maple state
3429 * @mast: The maple subtree state
3430 * @left: Push left or not.
3431 *
3432 * Keeping the height of the tree low means faster lookups.
3433 *
3434 * Return: True if pushed, false otherwise.
3435 */
3436 static inline bool mas_push_data(struct ma_state *mas, int height,
3437 struct maple_subtree_state *mast, bool left)
3438 {
3439 unsigned char slot_total = mast->bn->b_end;
3440 unsigned char end, space, split;
3441
3442 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3443 tmp_mas = *mas;
3444 tmp_mas.depth = mast->l->depth;
3445
3446 if (left && !mas_prev_sibling(&tmp_mas))
3447 return false;
3448 else if (!left && !mas_next_sibling(&tmp_mas))
3449 return false;
3450
3451 end = mas_data_end(&tmp_mas);
3452 slot_total += end;
3453 space = 2 * mt_slot_count(mas->node) - 2;
3454 /* -2 instead of -1 to ensure there isn't a triple split */
3455 if (ma_is_leaf(mast->bn->type))
3456 space--;
3457
3458 if (mas->max == ULONG_MAX)
3459 space--;
3460
3461 if (slot_total >= space)
3462 return false;
3463
3464 /* Get the data; Fill mast->bn */
3465 mast->bn->b_end++;
3466 if (left) {
3467 mab_shift_right(mast->bn, end + 1);
3468 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3469 mast->bn->b_end = slot_total + 1;
3470 } else {
3471 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3472 }
3473
3474 /* Configure mast for splitting of mast->bn */
3475 split = mt_slots[mast->bn->type] - 2;
3476 if (left) {
3477 /* Switch mas to prev node */
3478 mat_add(mast->free, mas->node);
3479 *mas = tmp_mas;
3480 /* Start using mast->l for the left side. */
3481 tmp_mas.node = mast->l->node;
3482 *mast->l = tmp_mas;
3483 } else {
3484 mat_add(mast->free, tmp_mas.node);
3485 tmp_mas.node = mast->r->node;
3486 *mast->r = tmp_mas;
3487 split = slot_total - split;
3488 }
3489 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3490 /* Update parent slot for split calculation. */
3491 if (left)
3492 mast->orig_l->offset += end + 1;
3493
3494 mast_split_data(mast, mas, split);
3495 mast_fill_bnode(mast, mas, 2);
3496 mas_split_final_node(mast, mas, height + 1);
3497 return true;
3498 }
3499
3500 /*
3501 * mas_split() - Split data that is too big for one node into two.
3502 * @mas: The maple state
3503 * @b_node: The maple big node
3504 * Return: 1 on success, 0 on failure.
3505 */
3506 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3507 {
3508 struct maple_subtree_state mast;
3509 int height = 0;
3510 unsigned char mid_split, split = 0;
3511
3512 /*
3513 * Splitting is handled differently from any other B-tree; the Maple
3514 * Tree splits upwards. Splitting up means that the split operation
3515 * occurs when the walk of the tree hits the leaves and not on the way
3516 * down. The reason for splitting up is that it is impossible to know
3517 * how much space will be needed until the leaf is (or leaves are)
3518 * reached. Since overwriting data is allowed and a range could
3519 * overwrite more than one range or result in changing one entry into 3
3520 * entries, it is impossible to know if a split is required until the
3521 * data is examined.
3522 *
3523 * Splitting is a balancing act between keeping allocations to a minimum
3524 * and avoiding a 'jitter' event where a tree is expanded to make room
3525 * for an entry followed by a contraction when the entry is removed. To
3526 * accomplish the balance, there are empty slots remaining in both left
3527 * and right nodes after a split.
3528 */
3529 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3530 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3531 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3532 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3533 MA_TOPIARY(mat, mas->tree);
3534
3535 trace_ma_op(__func__, mas);
3536 mas->depth = mas_mt_height(mas);
3537 /* Allocation failures will happen early. */
3538 mas_node_count(mas, 1 + mas->depth * 2);
3539 if (mas_is_err(mas))
3540 return 0;
3541
3542 mast.l = &l_mas;
3543 mast.r = &r_mas;
3544 mast.orig_l = &prev_l_mas;
3545 mast.orig_r = &prev_r_mas;
3546 mast.free = &mat;
3547 mast.bn = b_node;
3548
3549 while (height++ <= mas->depth) {
3550 if (mt_slots[b_node->type] > b_node->b_end) {
3551 mas_split_final_node(&mast, mas, height);
3552 break;
3553 }
3554
3555 l_mas = r_mas = *mas;
3556 l_mas.node = mas_new_ma_node(mas, b_node);
3557 r_mas.node = mas_new_ma_node(mas, b_node);
3558 /*
3559 * Another way that 'jitter' is avoided is to terminate a split up early if the
3560 * left or right node has space to spare. This is referred to as "pushing left"
3561 * or "pushing right" and is similar to the B* tree, except the nodes left or
3562 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3563 * is a significant savings.
3564 */
3565 /* Try to push left. */
3566 if (mas_push_data(mas, height, &mast, true))
3567 break;
3568
3569 /* Try to push right. */
3570 if (mas_push_data(mas, height, &mast, false))
3571 break;
3572
3573 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3574 mast_split_data(&mast, mas, split);
3575 /*
3576 * Usually correct, mab_mas_cp in the above call overwrites
3577 * r->max.
3578 */
3579 mast.r->max = mas->max;
3580 mast_fill_bnode(&mast, mas, 1);
3581 prev_l_mas = *mast.l;
3582 prev_r_mas = *mast.r;
3583 }
3584
3585 /* Set the original node as dead */
3586 mat_add(mast.free, mas->node);
3587 mas->node = l_mas.node;
3588 mas_wmb_replace(mas, mast.free, NULL);
3589 mtree_range_walk(mas);
3590 return 1;
3591 }
3592
3593 /*
3594 * mas_reuse_node() - Reuse the node to store the data.
3595 * @wr_mas: The maple write state
3596 * @bn: The maple big node
3597 * @end: The end of the data.
3598 *
3599 * Will always return false in RCU mode.
3600 *
3601 * Return: True if node was reused, false otherwise.
3602 */
3603 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3604 struct maple_big_node *bn, unsigned char end)
3605 {
3606 /* Need to be rcu safe. */
3607 if (mt_in_rcu(wr_mas->mas->tree))
3608 return false;
3609
3610 if (end > bn->b_end) {
3611 int clear = mt_slots[wr_mas->type] - bn->b_end;
3612
3613 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3614 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3615 }
3616 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3617 return true;
3618 }
3619
3620 /*
3621 * mas_commit_b_node() - Commit the big node into the tree.
3622 * @wr_mas: The maple write state
3623 * @b_node: The maple big node
3624 * @end: The end of the data.
3625 */
3626 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3627 struct maple_big_node *b_node, unsigned char end)
3628 {
3629 struct maple_node *node;
3630 unsigned char b_end = b_node->b_end;
3631 enum maple_type b_type = b_node->type;
3632
3633 if ((b_end < mt_min_slots[b_type]) &&
3634 (!mte_is_root(wr_mas->mas->node)) &&
3635 (mas_mt_height(wr_mas->mas) > 1))
3636 return mas_rebalance(wr_mas->mas, b_node);
3637
3638 if (b_end >= mt_slots[b_type])
3639 return mas_split(wr_mas->mas, b_node);
3640
3641 if (mas_reuse_node(wr_mas, b_node, end))
3642 goto reuse_node;
3643
3644 mas_node_count(wr_mas->mas, 1);
3645 if (mas_is_err(wr_mas->mas))
3646 return 0;
3647
3648 node = mas_pop_node(wr_mas->mas);
3649 node->parent = mas_mn(wr_mas->mas)->parent;
3650 wr_mas->mas->node = mt_mk_node(node, b_type);
3651 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3652 mas_replace(wr_mas->mas, false);
3653 reuse_node:
3654 mas_update_gap(wr_mas->mas);
3655 return 1;
3656 }
3657
3658 /*
3659 * mas_root_expand() - Expand a root to a node
3660 * @mas: The maple state
3661 * @entry: The entry to store into the tree
3662 */
3663 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3664 {
3665 void *contents = mas_root_locked(mas);
3666 enum maple_type type = maple_leaf_64;
3667 struct maple_node *node;
3668 void __rcu **slots;
3669 unsigned long *pivots;
3670 int slot = 0;
3671
3672 mas_node_count(mas, 1);
3673 if (unlikely(mas_is_err(mas)))
3674 return 0;
3675
3676 node = mas_pop_node(mas);
3677 pivots = ma_pivots(node, type);
3678 slots = ma_slots(node, type);
3679 node->parent = ma_parent_ptr(
3680 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3681 mas->node = mt_mk_node(node, type);
3682
3683 if (mas->index) {
3684 if (contents) {
3685 rcu_assign_pointer(slots[slot], contents);
3686 if (likely(mas->index > 1))
3687 slot++;
3688 }
3689 pivots[slot++] = mas->index - 1;
3690 }
3691
3692 rcu_assign_pointer(slots[slot], entry);
3693 mas->offset = slot;
3694 pivots[slot] = mas->last;
3695 if (mas->last != ULONG_MAX)
3696 slot++;
3697 mas->depth = 1;
3698 mas_set_height(mas);
3699 ma_set_meta(node, maple_leaf_64, 0, slot);
3700 /* swap the new root into the tree */
3701 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3702 return slot;
3703 }
3704
3705 static inline void mas_store_root(struct ma_state *mas, void *entry)
3706 {
3707 if (likely((mas->last != 0) || (mas->index != 0)))
3708 mas_root_expand(mas, entry);
3709 else if (((unsigned long) (entry) & 3) == 2)
3710 mas_root_expand(mas, entry);
3711 else {
3712 rcu_assign_pointer(mas->tree->ma_root, entry);
3713 mas->node = MAS_START;
3714 }
3715 }
3716
3717 /*
3718 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3719 * spans the node.
3720 * @mas: The maple state
3721 * @piv: The pivot value being written
3722 * @type: The maple node type
3723 * @entry: The data to write
3724 *
3725 * Spanning writes are writes that start in one node and end in another OR if
3726 * the write of a %NULL will cause the node to end with a %NULL.
3727 *
3728 * Return: True if this is a spanning write, false otherwise.
3729 */
3730 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3731 {
3732 unsigned long max;
3733 unsigned long last = wr_mas->mas->last;
3734 unsigned long piv = wr_mas->r_max;
3735 enum maple_type type = wr_mas->type;
3736 void *entry = wr_mas->entry;
3737
3738 /* Contained in this pivot */
3739 if (piv > last)
3740 return false;
3741
3742 max = wr_mas->mas->max;
3743 if (unlikely(ma_is_leaf(type))) {
3744 /* Fits in the node, but may span slots. */
3745 if (last < max)
3746 return false;
3747
3748 /* Writes to the end of the node but not null. */
3749 if ((last == max) && entry)
3750 return false;
3751
3752 /*
3753 * Writing ULONG_MAX is not a spanning write regardless of the
3754 * value being written as long as the range fits in the node.
3755 */
3756 if ((last == ULONG_MAX) && (last == max))
3757 return false;
3758 } else if (piv == last) {
3759 if (entry)
3760 return false;
3761
3762 /* Detect spanning store wr walk */
3763 if (last == ULONG_MAX)
3764 return false;
3765 }
3766
3767 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3768
3769 return true;
3770 }
3771
3772 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3773 {
3774 wr_mas->type = mte_node_type(wr_mas->mas->node);
3775 mas_wr_node_walk(wr_mas);
3776 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3777 }
3778
3779 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3780 {
3781 wr_mas->mas->max = wr_mas->r_max;
3782 wr_mas->mas->min = wr_mas->r_min;
3783 wr_mas->mas->node = wr_mas->content;
3784 wr_mas->mas->offset = 0;
3785 wr_mas->mas->depth++;
3786 }
3787 /*
3788 * mas_wr_walk() - Walk the tree for a write.
3789 * @wr_mas: The maple write state
3790 *
3791 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3792 *
3793 * Return: True if it's contained in a node, false on spanning write.
3794 */
3795 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3796 {
3797 struct ma_state *mas = wr_mas->mas;
3798
3799 while (true) {
3800 mas_wr_walk_descend(wr_mas);
3801 if (unlikely(mas_is_span_wr(wr_mas)))
3802 return false;
3803
3804 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3805 mas->offset);
3806 if (ma_is_leaf(wr_mas->type))
3807 return true;
3808
3809 mas_wr_walk_traverse(wr_mas);
3810 }
3811
3812 return true;
3813 }
3814
3815 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3816 {
3817 struct ma_state *mas = wr_mas->mas;
3818
3819 while (true) {
3820 mas_wr_walk_descend(wr_mas);
3821 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3822 mas->offset);
3823 if (ma_is_leaf(wr_mas->type))
3824 return true;
3825 mas_wr_walk_traverse(wr_mas);
3826
3827 }
3828 return true;
3829 }
3830 /*
3831 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3832 * @l_wr_mas: The left maple write state
3833 * @r_wr_mas: The right maple write state
3834 */
3835 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3836 struct ma_wr_state *r_wr_mas)
3837 {
3838 struct ma_state *r_mas = r_wr_mas->mas;
3839 struct ma_state *l_mas = l_wr_mas->mas;
3840 unsigned char l_slot;
3841
3842 l_slot = l_mas->offset;
3843 if (!l_wr_mas->content)
3844 l_mas->index = l_wr_mas->r_min;
3845
3846 if ((l_mas->index == l_wr_mas->r_min) &&
3847 (l_slot &&
3848 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3849 if (l_slot > 1)
3850 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3851 else
3852 l_mas->index = l_mas->min;
3853
3854 l_mas->offset = l_slot - 1;
3855 }
3856
3857 if (!r_wr_mas->content) {
3858 if (r_mas->last < r_wr_mas->r_max)
3859 r_mas->last = r_wr_mas->r_max;
3860 r_mas->offset++;
3861 } else if ((r_mas->last == r_wr_mas->r_max) &&
3862 (r_mas->last < r_mas->max) &&
3863 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3864 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3865 r_wr_mas->type, r_mas->offset + 1);
3866 r_mas->offset++;
3867 }
3868 }
3869
3870 static inline void *mas_state_walk(struct ma_state *mas)
3871 {
3872 void *entry;
3873
3874 entry = mas_start(mas);
3875 if (mas_is_none(mas))
3876 return NULL;
3877
3878 if (mas_is_ptr(mas))
3879 return entry;
3880
3881 return mtree_range_walk(mas);
3882 }
3883
3884 /*
3885 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3886 * to date.
3887 *
3888 * @mas: The maple state.
3889 *
3890 * Note: Leaves mas in undesirable state.
3891 * Return: The entry for @mas->index or %NULL on dead node.
3892 */
3893 static inline void *mtree_lookup_walk(struct ma_state *mas)
3894 {
3895 unsigned long *pivots;
3896 unsigned char offset;
3897 struct maple_node *node;
3898 struct maple_enode *next;
3899 enum maple_type type;
3900 void __rcu **slots;
3901 unsigned char end;
3902 unsigned long max;
3903
3904 next = mas->node;
3905 max = ULONG_MAX;
3906 do {
3907 offset = 0;
3908 node = mte_to_node(next);
3909 type = mte_node_type(next);
3910 pivots = ma_pivots(node, type);
3911 end = ma_data_end(node, type, pivots, max);
3912 if (unlikely(ma_dead_node(node)))
3913 goto dead_node;
3914 do {
3915 if (pivots[offset] >= mas->index) {
3916 max = pivots[offset];
3917 break;
3918 }
3919 } while (++offset < end);
3920
3921 slots = ma_slots(node, type);
3922 next = mt_slot(mas->tree, slots, offset);
3923 if (unlikely(ma_dead_node(node)))
3924 goto dead_node;
3925 } while (!ma_is_leaf(type));
3926
3927 return (void *)next;
3928
3929 dead_node:
3930 mas_reset(mas);
3931 return NULL;
3932 }
3933
3934 /*
3935 * mas_new_root() - Create a new root node that only contains the entry passed
3936 * in.
3937 * @mas: The maple state
3938 * @entry: The entry to store.
3939 *
3940 * Only valid when the index == 0 and the last == ULONG_MAX
3941 *
3942 * Return 0 on error, 1 on success.
3943 */
3944 static inline int mas_new_root(struct ma_state *mas, void *entry)
3945 {
3946 struct maple_enode *root = mas_root_locked(mas);
3947 enum maple_type type = maple_leaf_64;
3948 struct maple_node *node;
3949 void __rcu **slots;
3950 unsigned long *pivots;
3951
3952 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3953 mas->depth = 0;
3954 mas_set_height(mas);
3955 rcu_assign_pointer(mas->tree->ma_root, entry);
3956 mas->node = MAS_START;
3957 goto done;
3958 }
3959
3960 mas_node_count(mas, 1);
3961 if (mas_is_err(mas))
3962 return 0;
3963
3964 node = mas_pop_node(mas);
3965 pivots = ma_pivots(node, type);
3966 slots = ma_slots(node, type);
3967 node->parent = ma_parent_ptr(
3968 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3969 mas->node = mt_mk_node(node, type);
3970 rcu_assign_pointer(slots[0], entry);
3971 pivots[0] = mas->last;
3972 mas->depth = 1;
3973 mas_set_height(mas);
3974 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3975
3976 done:
3977 if (xa_is_node(root))
3978 mte_destroy_walk(root, mas->tree);
3979
3980 return 1;
3981 }
3982 /*
3983 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3984 * and new nodes where necessary, then place the sub-tree in the actual tree.
3985 * Note that mas is expected to point to the node which caused the store to
3986 * span.
3987 * @wr_mas: The maple write state
3988 *
3989 * Return: 0 on error, positive on success.
3990 */
3991 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3992 {
3993 struct maple_subtree_state mast;
3994 struct maple_big_node b_node;
3995 struct ma_state *mas;
3996 unsigned char height;
3997
3998 /* Left and Right side of spanning store */
3999 MA_STATE(l_mas, NULL, 0, 0);
4000 MA_STATE(r_mas, NULL, 0, 0);
4001
4002 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4003 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4004
4005 /*
4006 * A store operation that spans multiple nodes is called a spanning
4007 * store and is handled early in the store call stack by the function
4008 * mas_is_span_wr(). When a spanning store is identified, the maple
4009 * state is duplicated. The first maple state walks the left tree path
4010 * to ``index``, the duplicate walks the right tree path to ``last``.
4011 * The data in the two nodes are combined into a single node, two nodes,
4012 * or possibly three nodes (see the 3-way split above). A ``NULL``
4013 * written to the last entry of a node is considered a spanning store as
4014 * a rebalance is required for the operation to complete and an overflow
4015 * of data may happen.
4016 */
4017 mas = wr_mas->mas;
4018 trace_ma_op(__func__, mas);
4019
4020 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4021 return mas_new_root(mas, wr_mas->entry);
4022 /*
4023 * Node rebalancing may occur due to this store, so there may be three new
4024 * entries per level plus a new root.
4025 */
4026 height = mas_mt_height(mas);
4027 mas_node_count(mas, 1 + height * 3);
4028 if (mas_is_err(mas))
4029 return 0;
4030
4031 /*
4032 * Set up right side. Need to get to the next offset after the spanning
4033 * store to ensure it's not NULL and to combine both the next node and
4034 * the node with the start together.
4035 */
4036 r_mas = *mas;
4037 /* Avoid overflow, walk to next slot in the tree. */
4038 if (r_mas.last + 1)
4039 r_mas.last++;
4040
4041 r_mas.index = r_mas.last;
4042 mas_wr_walk_index(&r_wr_mas);
4043 r_mas.last = r_mas.index = mas->last;
4044
4045 /* Set up left side. */
4046 l_mas = *mas;
4047 mas_wr_walk_index(&l_wr_mas);
4048
4049 if (!wr_mas->entry) {
4050 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4051 mas->offset = l_mas.offset;
4052 mas->index = l_mas.index;
4053 mas->last = l_mas.last = r_mas.last;
4054 }
4055
4056 /* expanding NULLs may make this cover the entire range */
4057 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4058 mas_set_range(mas, 0, ULONG_MAX);
4059 return mas_new_root(mas, wr_mas->entry);
4060 }
4061
4062 memset(&b_node, 0, sizeof(struct maple_big_node));
4063 /* Copy l_mas and store the value in b_node. */
4064 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4065 /* Copy r_mas into b_node. */
4066 if (r_mas.offset <= r_wr_mas.node_end)
4067 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4068 &b_node, b_node.b_end + 1);
4069 else
4070 b_node.b_end++;
4071
4072 /* Stop spanning searches by searching for just index. */
4073 l_mas.index = l_mas.last = mas->index;
4074
4075 mast.bn = &b_node;
4076 mast.orig_l = &l_mas;
4077 mast.orig_r = &r_mas;
4078 /* Combine l_mas and r_mas and split them up evenly again. */
4079 return mas_spanning_rebalance(mas, &mast, height + 1);
4080 }
4081
4082 /*
4083 * mas_wr_node_store() - Attempt to store the value in a node
4084 * @wr_mas: The maple write state
4085 *
4086 * Attempts to reuse the node, but may allocate.
4087 *
4088 * Return: True if stored, false otherwise
4089 */
4090 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4091 {
4092 struct ma_state *mas = wr_mas->mas;
4093 void __rcu **dst_slots;
4094 unsigned long *dst_pivots;
4095 unsigned char dst_offset;
4096 unsigned char new_end = wr_mas->node_end;
4097 unsigned char offset;
4098 unsigned char node_slots = mt_slots[wr_mas->type];
4099 struct maple_node reuse, *newnode;
4100 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4101 bool in_rcu = mt_in_rcu(mas->tree);
4102
4103 offset = mas->offset;
4104 if (mas->last == wr_mas->r_max) {
4105 /* runs right to the end of the node */
4106 if (mas->last == mas->max)
4107 new_end = offset;
4108 /* don't copy this offset */
4109 wr_mas->offset_end++;
4110 } else if (mas->last < wr_mas->r_max) {
4111 /* new range ends in this range */
4112 if (unlikely(wr_mas->r_max == ULONG_MAX))
4113 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4114
4115 new_end++;
4116 } else {
4117 if (wr_mas->end_piv == mas->last)
4118 wr_mas->offset_end++;
4119
4120 new_end -= wr_mas->offset_end - offset - 1;
4121 }
4122
4123 /* new range starts within a range */
4124 if (wr_mas->r_min < mas->index)
4125 new_end++;
4126
4127 /* Not enough room */
4128 if (new_end >= node_slots)
4129 return false;
4130
4131 /* Not enough data. */
4132 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4133 !(mas->mas_flags & MA_STATE_BULK))
4134 return false;
4135
4136 /* set up node. */
4137 if (in_rcu) {
4138 mas_node_count(mas, 1);
4139 if (mas_is_err(mas))
4140 return false;
4141
4142 newnode = mas_pop_node(mas);
4143 } else {
4144 memset(&reuse, 0, sizeof(struct maple_node));
4145 newnode = &reuse;
4146 }
4147
4148 newnode->parent = mas_mn(mas)->parent;
4149 dst_pivots = ma_pivots(newnode, wr_mas->type);
4150 dst_slots = ma_slots(newnode, wr_mas->type);
4151 /* Copy from start to insert point */
4152 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4153 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4154 dst_offset = offset;
4155
4156 /* Handle insert of new range starting after old range */
4157 if (wr_mas->r_min < mas->index) {
4158 mas->offset++;
4159 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4160 dst_pivots[dst_offset++] = mas->index - 1;
4161 }
4162
4163 /* Store the new entry and range end. */
4164 if (dst_offset < max_piv)
4165 dst_pivots[dst_offset] = mas->last;
4166 mas->offset = dst_offset;
4167 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4168
4169 /*
4170 * this range wrote to the end of the node or it overwrote the rest of
4171 * the data
4172 */
4173 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4174 new_end = dst_offset;
4175 goto done;
4176 }
4177
4178 dst_offset++;
4179 /* Copy to the end of node if necessary. */
4180 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4181 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4182 sizeof(void *) * copy_size);
4183 if (dst_offset < max_piv) {
4184 if (copy_size > max_piv - dst_offset)
4185 copy_size = max_piv - dst_offset;
4186
4187 memcpy(dst_pivots + dst_offset,
4188 wr_mas->pivots + wr_mas->offset_end,
4189 sizeof(unsigned long) * copy_size);
4190 }
4191
4192 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4193 dst_pivots[new_end] = mas->max;
4194
4195 done:
4196 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4197 if (in_rcu) {
4198 mte_set_node_dead(mas->node);
4199 mas->node = mt_mk_node(newnode, wr_mas->type);
4200 mas_replace(mas, false);
4201 } else {
4202 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4203 }
4204 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4205 mas_update_gap(mas);
4206 return true;
4207 }
4208
4209 /*
4210 * mas_wr_slot_store: Attempt to store a value in a slot.
4211 * @wr_mas: the maple write state
4212 *
4213 * Return: True if stored, false otherwise
4214 */
4215 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4216 {
4217 struct ma_state *mas = wr_mas->mas;
4218 unsigned long lmax; /* Logical max. */
4219 unsigned char offset = mas->offset;
4220
4221 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4222 (offset != wr_mas->node_end)))
4223 return false;
4224
4225 if (offset == wr_mas->node_end - 1)
4226 lmax = mas->max;
4227 else
4228 lmax = wr_mas->pivots[offset + 1];
4229
4230 /* going to overwrite too many slots. */
4231 if (lmax < mas->last)
4232 return false;
4233
4234 if (wr_mas->r_min == mas->index) {
4235 /* overwriting two or more ranges with one. */
4236 if (lmax == mas->last)
4237 return false;
4238
4239 /* Overwriting all of offset and a portion of offset + 1. */
4240 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4241 wr_mas->pivots[offset] = mas->last;
4242 goto done;
4243 }
4244
4245 /* Doesn't end on the next range end. */
4246 if (lmax != mas->last)
4247 return false;
4248
4249 /* Overwriting a portion of offset and all of offset + 1 */
4250 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4251 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4252 wr_mas->pivots[offset + 1] = mas->last;
4253
4254 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4255 wr_mas->pivots[offset] = mas->index - 1;
4256 mas->offset++; /* Keep mas accurate. */
4257
4258 done:
4259 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4260 mas_update_gap(mas);
4261 return true;
4262 }
4263
4264 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4265 {
4266 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4267 (wr_mas->offset_end < wr_mas->node_end))
4268 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4269
4270 if (wr_mas->mas->last > wr_mas->end_piv)
4271 wr_mas->end_piv = wr_mas->mas->max;
4272 }
4273
4274 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4275 {
4276 struct ma_state *mas = wr_mas->mas;
4277
4278 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4279 mas->last = wr_mas->end_piv;
4280
4281 /* Check next slot(s) if we are overwriting the end */
4282 if ((mas->last == wr_mas->end_piv) &&
4283 (wr_mas->node_end != wr_mas->offset_end) &&
4284 !wr_mas->slots[wr_mas->offset_end + 1]) {
4285 wr_mas->offset_end++;
4286 if (wr_mas->offset_end == wr_mas->node_end)
4287 mas->last = mas->max;
4288 else
4289 mas->last = wr_mas->pivots[wr_mas->offset_end];
4290 wr_mas->end_piv = mas->last;
4291 }
4292
4293 if (!wr_mas->content) {
4294 /* If this one is null, the next and prev are not */
4295 mas->index = wr_mas->r_min;
4296 } else {
4297 /* Check prev slot if we are overwriting the start */
4298 if (mas->index == wr_mas->r_min && mas->offset &&
4299 !wr_mas->slots[mas->offset - 1]) {
4300 mas->offset--;
4301 wr_mas->r_min = mas->index =
4302 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4303 wr_mas->r_max = wr_mas->pivots[mas->offset];
4304 }
4305 }
4306 }
4307
4308 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4309 {
4310 unsigned char end = wr_mas->node_end;
4311 unsigned char new_end = end + 1;
4312 struct ma_state *mas = wr_mas->mas;
4313 unsigned char node_pivots = mt_pivots[wr_mas->type];
4314
4315 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4316 if (new_end < node_pivots)
4317 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4318
4319 if (new_end < node_pivots)
4320 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4321
4322 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4323 mas->offset = new_end;
4324 wr_mas->pivots[end] = mas->index - 1;
4325
4326 return true;
4327 }
4328
4329 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4330 if (new_end < node_pivots)
4331 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4332
4333 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4334 if (new_end < node_pivots)
4335 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4336
4337 wr_mas->pivots[end] = mas->last;
4338 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4339 return true;
4340 }
4341
4342 return false;
4343 }
4344
4345 /*
4346 * mas_wr_bnode() - Slow path for a modification.
4347 * @wr_mas: The write maple state
4348 *
4349 * This is where split, rebalance end up.
4350 */
4351 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4352 {
4353 struct maple_big_node b_node;
4354
4355 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4356 memset(&b_node, 0, sizeof(struct maple_big_node));
4357 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4358 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4359 }
4360
4361 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4362 {
4363 unsigned char node_slots;
4364 unsigned char node_size;
4365 struct ma_state *mas = wr_mas->mas;
4366
4367 /* Direct replacement */
4368 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4369 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4370 if (!!wr_mas->entry ^ !!wr_mas->content)
4371 mas_update_gap(mas);
4372 return;
4373 }
4374
4375 /* Attempt to append */
4376 node_slots = mt_slots[wr_mas->type];
4377 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4378 if (mas->max == ULONG_MAX)
4379 node_size++;
4380
4381 /* slot and node store will not fit, go to the slow path */
4382 if (unlikely(node_size >= node_slots))
4383 goto slow_path;
4384
4385 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4386 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4387 if (!wr_mas->content || !wr_mas->entry)
4388 mas_update_gap(mas);
4389 return;
4390 }
4391
4392 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4393 return;
4394 else if (mas_wr_node_store(wr_mas))
4395 return;
4396
4397 if (mas_is_err(mas))
4398 return;
4399
4400 slow_path:
4401 mas_wr_bnode(wr_mas);
4402 }
4403
4404 /*
4405 * mas_wr_store_entry() - Internal call to store a value
4406 * @mas: The maple state
4407 * @entry: The entry to store.
4408 *
4409 * Return: The contents that was stored at the index.
4410 */
4411 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4412 {
4413 struct ma_state *mas = wr_mas->mas;
4414
4415 wr_mas->content = mas_start(mas);
4416 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4417 mas_store_root(mas, wr_mas->entry);
4418 return wr_mas->content;
4419 }
4420
4421 if (unlikely(!mas_wr_walk(wr_mas))) {
4422 mas_wr_spanning_store(wr_mas);
4423 return wr_mas->content;
4424 }
4425
4426 /* At this point, we are at the leaf node that needs to be altered. */
4427 wr_mas->end_piv = wr_mas->r_max;
4428 mas_wr_end_piv(wr_mas);
4429
4430 if (!wr_mas->entry)
4431 mas_wr_extend_null(wr_mas);
4432
4433 /* New root for a single pointer */
4434 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4435 mas_new_root(mas, wr_mas->entry);
4436 return wr_mas->content;
4437 }
4438
4439 mas_wr_modify(wr_mas);
4440 return wr_mas->content;
4441 }
4442
4443 /**
4444 * mas_insert() - Internal call to insert a value
4445 * @mas: The maple state
4446 * @entry: The entry to store
4447 *
4448 * Return: %NULL or the contents that already exists at the requested index
4449 * otherwise. The maple state needs to be checked for error conditions.
4450 */
4451 static inline void *mas_insert(struct ma_state *mas, void *entry)
4452 {
4453 MA_WR_STATE(wr_mas, mas, entry);
4454
4455 /*
4456 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4457 * tree. If the insert fits exactly into an existing gap with a value
4458 * of NULL, then the slot only needs to be written with the new value.
4459 * If the range being inserted is adjacent to another range, then only a
4460 * single pivot needs to be inserted (as well as writing the entry). If
4461 * the new range is within a gap but does not touch any other ranges,
4462 * then two pivots need to be inserted: the start - 1, and the end. As
4463 * usual, the entry must be written. Most operations require a new node
4464 * to be allocated and replace an existing node to ensure RCU safety,
4465 * when in RCU mode. The exception to requiring a newly allocated node
4466 * is when inserting at the end of a node (appending). When done
4467 * carefully, appending can reuse the node in place.
4468 */
4469 wr_mas.content = mas_start(mas);
4470 if (wr_mas.content)
4471 goto exists;
4472
4473 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4474 mas_store_root(mas, entry);
4475 return NULL;
4476 }
4477
4478 /* spanning writes always overwrite something */
4479 if (!mas_wr_walk(&wr_mas))
4480 goto exists;
4481
4482 /* At this point, we are at the leaf node that needs to be altered. */
4483 wr_mas.offset_end = mas->offset;
4484 wr_mas.end_piv = wr_mas.r_max;
4485
4486 if (wr_mas.content || (mas->last > wr_mas.r_max))
4487 goto exists;
4488
4489 if (!entry)
4490 return NULL;
4491
4492 mas_wr_modify(&wr_mas);
4493 return wr_mas.content;
4494
4495 exists:
4496 mas_set_err(mas, -EEXIST);
4497 return wr_mas.content;
4498
4499 }
4500
4501 /*
4502 * mas_prev_node() - Find the prev non-null entry at the same level in the
4503 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4504 * @mas: The maple state
4505 * @min: The lower limit to search
4506 *
4507 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4508 * Return: 1 if the node is dead, 0 otherwise.
4509 */
4510 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4511 {
4512 enum maple_type mt;
4513 int offset, level;
4514 void __rcu **slots;
4515 struct maple_node *node;
4516 struct maple_enode *enode;
4517 unsigned long *pivots;
4518
4519 if (mas_is_none(mas))
4520 return 0;
4521
4522 level = 0;
4523 do {
4524 node = mas_mn(mas);
4525 if (ma_is_root(node))
4526 goto no_entry;
4527
4528 /* Walk up. */
4529 if (unlikely(mas_ascend(mas)))
4530 return 1;
4531 offset = mas->offset;
4532 level++;
4533 } while (!offset);
4534
4535 offset--;
4536 mt = mte_node_type(mas->node);
4537 node = mas_mn(mas);
4538 slots = ma_slots(node, mt);
4539 pivots = ma_pivots(node, mt);
4540 if (unlikely(ma_dead_node(node)))
4541 return 1;
4542
4543 mas->max = pivots[offset];
4544 if (offset)
4545 mas->min = pivots[offset - 1] + 1;
4546 if (unlikely(ma_dead_node(node)))
4547 return 1;
4548
4549 if (mas->max < min)
4550 goto no_entry_min;
4551
4552 while (level > 1) {
4553 level--;
4554 enode = mas_slot(mas, slots, offset);
4555 if (unlikely(ma_dead_node(node)))
4556 return 1;
4557
4558 mas->node = enode;
4559 mt = mte_node_type(mas->node);
4560 node = mas_mn(mas);
4561 slots = ma_slots(node, mt);
4562 pivots = ma_pivots(node, mt);
4563 offset = ma_data_end(node, mt, pivots, mas->max);
4564 if (unlikely(ma_dead_node(node)))
4565 return 1;
4566
4567 if (offset)
4568 mas->min = pivots[offset - 1] + 1;
4569
4570 if (offset < mt_pivots[mt])
4571 mas->max = pivots[offset];
4572
4573 if (mas->max < min)
4574 goto no_entry;
4575 }
4576
4577 mas->node = mas_slot(mas, slots, offset);
4578 if (unlikely(ma_dead_node(node)))
4579 return 1;
4580
4581 mas->offset = mas_data_end(mas);
4582 if (unlikely(mte_dead_node(mas->node)))
4583 return 1;
4584
4585 return 0;
4586
4587 no_entry_min:
4588 mas->offset = offset;
4589 if (offset)
4590 mas->min = pivots[offset - 1] + 1;
4591 no_entry:
4592 if (unlikely(ma_dead_node(node)))
4593 return 1;
4594
4595 mas->node = MAS_NONE;
4596 return 0;
4597 }
4598
4599 /*
4600 * mas_next_node() - Get the next node at the same level in the tree.
4601 * @mas: The maple state
4602 * @max: The maximum pivot value to check.
4603 *
4604 * The next value will be mas->node[mas->offset] or MAS_NONE.
4605 * Return: 1 on dead node, 0 otherwise.
4606 */
4607 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4608 unsigned long max)
4609 {
4610 unsigned long min, pivot;
4611 unsigned long *pivots;
4612 struct maple_enode *enode;
4613 int level = 0;
4614 unsigned char offset;
4615 unsigned char node_end;
4616 enum maple_type mt;
4617 void __rcu **slots;
4618
4619 if (mas->max >= max)
4620 goto no_entry;
4621
4622 level = 0;
4623 do {
4624 if (ma_is_root(node))
4625 goto no_entry;
4626
4627 min = mas->max + 1;
4628 if (min > max)
4629 goto no_entry;
4630
4631 if (unlikely(mas_ascend(mas)))
4632 return 1;
4633
4634 offset = mas->offset;
4635 level++;
4636 node = mas_mn(mas);
4637 mt = mte_node_type(mas->node);
4638 pivots = ma_pivots(node, mt);
4639 node_end = ma_data_end(node, mt, pivots, mas->max);
4640 if (unlikely(ma_dead_node(node)))
4641 return 1;
4642
4643 } while (unlikely(offset == node_end));
4644
4645 slots = ma_slots(node, mt);
4646 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4647 while (unlikely(level > 1)) {
4648 /* Descend, if necessary */
4649 enode = mas_slot(mas, slots, offset);
4650 if (unlikely(ma_dead_node(node)))
4651 return 1;
4652
4653 mas->node = enode;
4654 level--;
4655 node = mas_mn(mas);
4656 mt = mte_node_type(mas->node);
4657 slots = ma_slots(node, mt);
4658 pivots = ma_pivots(node, mt);
4659 if (unlikely(ma_dead_node(node)))
4660 return 1;
4661
4662 offset = 0;
4663 pivot = pivots[0];
4664 }
4665
4666 enode = mas_slot(mas, slots, offset);
4667 if (unlikely(ma_dead_node(node)))
4668 return 1;
4669
4670 mas->node = enode;
4671 mas->min = min;
4672 mas->max = pivot;
4673 return 0;
4674
4675 no_entry:
4676 if (unlikely(ma_dead_node(node)))
4677 return 1;
4678
4679 mas->node = MAS_NONE;
4680 return 0;
4681 }
4682
4683 /*
4684 * mas_next_nentry() - Get the next node entry
4685 * @mas: The maple state
4686 * @max: The maximum value to check
4687 * @*range_start: Pointer to store the start of the range.
4688 *
4689 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4690 * pivot of the entry.
4691 *
4692 * Return: The next entry, %NULL otherwise
4693 */
4694 static inline void *mas_next_nentry(struct ma_state *mas,
4695 struct maple_node *node, unsigned long max, enum maple_type type)
4696 {
4697 unsigned char count;
4698 unsigned long pivot;
4699 unsigned long *pivots;
4700 void __rcu **slots;
4701 void *entry;
4702
4703 if (mas->last == mas->max) {
4704 mas->index = mas->max;
4705 return NULL;
4706 }
4707
4708 slots = ma_slots(node, type);
4709 pivots = ma_pivots(node, type);
4710 count = ma_data_end(node, type, pivots, mas->max);
4711 if (unlikely(ma_dead_node(node)))
4712 return NULL;
4713
4714 mas->index = mas_safe_min(mas, pivots, mas->offset);
4715 if (unlikely(ma_dead_node(node)))
4716 return NULL;
4717
4718 if (mas->index > max)
4719 return NULL;
4720
4721 if (mas->offset > count)
4722 return NULL;
4723
4724 while (mas->offset < count) {
4725 pivot = pivots[mas->offset];
4726 entry = mas_slot(mas, slots, mas->offset);
4727 if (ma_dead_node(node))
4728 return NULL;
4729
4730 if (entry)
4731 goto found;
4732
4733 if (pivot >= max)
4734 return NULL;
4735
4736 mas->index = pivot + 1;
4737 mas->offset++;
4738 }
4739
4740 if (mas->index > mas->max) {
4741 mas->index = mas->last;
4742 return NULL;
4743 }
4744
4745 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4746 entry = mas_slot(mas, slots, mas->offset);
4747 if (ma_dead_node(node))
4748 return NULL;
4749
4750 if (!pivot)
4751 return NULL;
4752
4753 if (!entry)
4754 return NULL;
4755
4756 found:
4757 mas->last = pivot;
4758 return entry;
4759 }
4760
4761 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4762 {
4763 retry:
4764 mas_set(mas, index);
4765 mas_state_walk(mas);
4766 if (mas_is_start(mas))
4767 goto retry;
4768 }
4769
4770 /*
4771 * mas_next_entry() - Internal function to get the next entry.
4772 * @mas: The maple state
4773 * @limit: The maximum range start.
4774 *
4775 * Set the @mas->node to the next entry and the range_start to
4776 * the beginning value for the entry. Does not check beyond @limit.
4777 * Sets @mas->index and @mas->last to the limit if it is hit.
4778 * Restarts on dead nodes.
4779 *
4780 * Return: the next entry or %NULL.
4781 */
4782 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4783 {
4784 void *entry = NULL;
4785 struct maple_enode *prev_node;
4786 struct maple_node *node;
4787 unsigned char offset;
4788 unsigned long last;
4789 enum maple_type mt;
4790
4791 if (mas->index > limit) {
4792 mas->index = mas->last = limit;
4793 mas_pause(mas);
4794 return NULL;
4795 }
4796 last = mas->last;
4797 retry:
4798 offset = mas->offset;
4799 prev_node = mas->node;
4800 node = mas_mn(mas);
4801 mt = mte_node_type(mas->node);
4802 mas->offset++;
4803 if (unlikely(mas->offset >= mt_slots[mt])) {
4804 mas->offset = mt_slots[mt] - 1;
4805 goto next_node;
4806 }
4807
4808 while (!mas_is_none(mas)) {
4809 entry = mas_next_nentry(mas, node, limit, mt);
4810 if (unlikely(ma_dead_node(node))) {
4811 mas_rewalk(mas, last);
4812 goto retry;
4813 }
4814
4815 if (likely(entry))
4816 return entry;
4817
4818 if (unlikely((mas->index > limit)))
4819 break;
4820
4821 next_node:
4822 prev_node = mas->node;
4823 offset = mas->offset;
4824 if (unlikely(mas_next_node(mas, node, limit))) {
4825 mas_rewalk(mas, last);
4826 goto retry;
4827 }
4828 mas->offset = 0;
4829 node = mas_mn(mas);
4830 mt = mte_node_type(mas->node);
4831 }
4832
4833 mas->index = mas->last = limit;
4834 mas->offset = offset;
4835 mas->node = prev_node;
4836 return NULL;
4837 }
4838
4839 /*
4840 * mas_prev_nentry() - Get the previous node entry.
4841 * @mas: The maple state.
4842 * @limit: The lower limit to check for a value.
4843 *
4844 * Return: the entry, %NULL otherwise.
4845 */
4846 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4847 unsigned long index)
4848 {
4849 unsigned long pivot, min;
4850 unsigned char offset;
4851 struct maple_node *mn;
4852 enum maple_type mt;
4853 unsigned long *pivots;
4854 void __rcu **slots;
4855 void *entry;
4856
4857 retry:
4858 if (!mas->offset)
4859 return NULL;
4860
4861 mn = mas_mn(mas);
4862 mt = mte_node_type(mas->node);
4863 offset = mas->offset - 1;
4864 if (offset >= mt_slots[mt])
4865 offset = mt_slots[mt] - 1;
4866
4867 slots = ma_slots(mn, mt);
4868 pivots = ma_pivots(mn, mt);
4869 if (unlikely(ma_dead_node(mn))) {
4870 mas_rewalk(mas, index);
4871 goto retry;
4872 }
4873
4874 if (offset == mt_pivots[mt])
4875 pivot = mas->max;
4876 else
4877 pivot = pivots[offset];
4878
4879 if (unlikely(ma_dead_node(mn))) {
4880 mas_rewalk(mas, index);
4881 goto retry;
4882 }
4883
4884 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4885 !pivot))
4886 pivot = pivots[--offset];
4887
4888 min = mas_safe_min(mas, pivots, offset);
4889 entry = mas_slot(mas, slots, offset);
4890 if (unlikely(ma_dead_node(mn))) {
4891 mas_rewalk(mas, index);
4892 goto retry;
4893 }
4894
4895 if (likely(entry)) {
4896 mas->offset = offset;
4897 mas->last = pivot;
4898 mas->index = min;
4899 }
4900 return entry;
4901 }
4902
4903 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4904 {
4905 void *entry;
4906
4907 if (mas->index < min) {
4908 mas->index = mas->last = min;
4909 mas->node = MAS_NONE;
4910 return NULL;
4911 }
4912 retry:
4913 while (likely(!mas_is_none(mas))) {
4914 entry = mas_prev_nentry(mas, min, mas->index);
4915 if (unlikely(mas->last < min))
4916 goto not_found;
4917
4918 if (likely(entry))
4919 return entry;
4920
4921 if (unlikely(mas_prev_node(mas, min))) {
4922 mas_rewalk(mas, mas->index);
4923 goto retry;
4924 }
4925
4926 mas->offset++;
4927 }
4928
4929 mas->offset--;
4930 not_found:
4931 mas->index = mas->last = min;
4932 return NULL;
4933 }
4934
4935 /*
4936 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4937 * highest gap address of a given size in a given node and descend.
4938 * @mas: The maple state
4939 * @size: The needed size.
4940 *
4941 * Return: True if found in a leaf, false otherwise.
4942 *
4943 */
4944 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4945 unsigned long *gap_min, unsigned long *gap_max)
4946 {
4947 enum maple_type type = mte_node_type(mas->node);
4948 struct maple_node *node = mas_mn(mas);
4949 unsigned long *pivots, *gaps;
4950 void __rcu **slots;
4951 unsigned long gap = 0;
4952 unsigned long max, min;
4953 unsigned char offset;
4954
4955 if (unlikely(mas_is_err(mas)))
4956 return true;
4957
4958 if (ma_is_dense(type)) {
4959 /* dense nodes. */
4960 mas->offset = (unsigned char)(mas->index - mas->min);
4961 return true;
4962 }
4963
4964 pivots = ma_pivots(node, type);
4965 slots = ma_slots(node, type);
4966 gaps = ma_gaps(node, type);
4967 offset = mas->offset;
4968 min = mas_safe_min(mas, pivots, offset);
4969 /* Skip out of bounds. */
4970 while (mas->last < min)
4971 min = mas_safe_min(mas, pivots, --offset);
4972
4973 max = mas_safe_pivot(mas, pivots, offset, type);
4974 while (mas->index <= max) {
4975 gap = 0;
4976 if (gaps)
4977 gap = gaps[offset];
4978 else if (!mas_slot(mas, slots, offset))
4979 gap = max - min + 1;
4980
4981 if (gap) {
4982 if ((size <= gap) && (size <= mas->last - min + 1))
4983 break;
4984
4985 if (!gaps) {
4986 /* Skip the next slot, it cannot be a gap. */
4987 if (offset < 2)
4988 goto ascend;
4989
4990 offset -= 2;
4991 max = pivots[offset];
4992 min = mas_safe_min(mas, pivots, offset);
4993 continue;
4994 }
4995 }
4996
4997 if (!offset)
4998 goto ascend;
4999
5000 offset--;
5001 max = min - 1;
5002 min = mas_safe_min(mas, pivots, offset);
5003 }
5004
5005 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5006 goto no_space;
5007
5008 if (unlikely(ma_is_leaf(type))) {
5009 mas->offset = offset;
5010 *gap_min = min;
5011 *gap_max = min + gap - 1;
5012 return true;
5013 }
5014
5015 /* descend, only happens under lock. */
5016 mas->node = mas_slot(mas, slots, offset);
5017 mas->min = min;
5018 mas->max = max;
5019 mas->offset = mas_data_end(mas);
5020 return false;
5021
5022 ascend:
5023 if (!mte_is_root(mas->node))
5024 return false;
5025
5026 no_space:
5027 mas_set_err(mas, -EBUSY);
5028 return false;
5029 }
5030
5031 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5032 {
5033 enum maple_type type = mte_node_type(mas->node);
5034 unsigned long pivot, min, gap = 0;
5035 unsigned char offset, data_end;
5036 unsigned long *gaps, *pivots;
5037 void __rcu **slots;
5038 struct maple_node *node;
5039 bool found = false;
5040
5041 if (ma_is_dense(type)) {
5042 mas->offset = (unsigned char)(mas->index - mas->min);
5043 return true;
5044 }
5045
5046 node = mas_mn(mas);
5047 pivots = ma_pivots(node, type);
5048 slots = ma_slots(node, type);
5049 gaps = ma_gaps(node, type);
5050 offset = mas->offset;
5051 min = mas_safe_min(mas, pivots, offset);
5052 data_end = ma_data_end(node, type, pivots, mas->max);
5053 for (; offset <= data_end; offset++) {
5054 pivot = mas_logical_pivot(mas, pivots, offset, type);
5055
5056 /* Not within lower bounds */
5057 if (mas->index > pivot)
5058 goto next_slot;
5059
5060 if (gaps)
5061 gap = gaps[offset];
5062 else if (!mas_slot(mas, slots, offset))
5063 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5064 else
5065 goto next_slot;
5066
5067 if (gap >= size) {
5068 if (ma_is_leaf(type)) {
5069 found = true;
5070 goto done;
5071 }
5072 if (mas->index <= pivot) {
5073 mas->node = mas_slot(mas, slots, offset);
5074 mas->min = min;
5075 mas->max = pivot;
5076 offset = 0;
5077 break;
5078 }
5079 }
5080 next_slot:
5081 min = pivot + 1;
5082 if (mas->last <= pivot) {
5083 mas_set_err(mas, -EBUSY);
5084 return true;
5085 }
5086 }
5087
5088 if (mte_is_root(mas->node))
5089 found = true;
5090 done:
5091 mas->offset = offset;
5092 return found;
5093 }
5094
5095 /**
5096 * mas_walk() - Search for @mas->index in the tree.
5097 * @mas: The maple state.
5098 *
5099 * mas->index and mas->last will be set to the range if there is a value. If
5100 * mas->node is MAS_NONE, reset to MAS_START.
5101 *
5102 * Return: the entry at the location or %NULL.
5103 */
5104 void *mas_walk(struct ma_state *mas)
5105 {
5106 void *entry;
5107
5108 retry:
5109 entry = mas_state_walk(mas);
5110 if (mas_is_start(mas))
5111 goto retry;
5112
5113 if (mas_is_ptr(mas)) {
5114 if (!mas->index) {
5115 mas->last = 0;
5116 } else {
5117 mas->index = 1;
5118 mas->last = ULONG_MAX;
5119 }
5120 return entry;
5121 }
5122
5123 if (mas_is_none(mas)) {
5124 mas->index = 0;
5125 mas->last = ULONG_MAX;
5126 }
5127
5128 return entry;
5129 }
5130 EXPORT_SYMBOL_GPL(mas_walk);
5131
5132 static inline bool mas_rewind_node(struct ma_state *mas)
5133 {
5134 unsigned char slot;
5135
5136 do {
5137 if (mte_is_root(mas->node)) {
5138 slot = mas->offset;
5139 if (!slot)
5140 return false;
5141 } else {
5142 mas_ascend(mas);
5143 slot = mas->offset;
5144 }
5145 } while (!slot);
5146
5147 mas->offset = --slot;
5148 return true;
5149 }
5150
5151 /*
5152 * mas_skip_node() - Internal function. Skip over a node.
5153 * @mas: The maple state.
5154 *
5155 * Return: true if there is another node, false otherwise.
5156 */
5157 static inline bool mas_skip_node(struct ma_state *mas)
5158 {
5159 if (mas_is_err(mas))
5160 return false;
5161
5162 do {
5163 if (mte_is_root(mas->node)) {
5164 if (mas->offset >= mas_data_end(mas)) {
5165 mas_set_err(mas, -EBUSY);
5166 return false;
5167 }
5168 } else {
5169 mas_ascend(mas);
5170 }
5171 } while (mas->offset >= mas_data_end(mas));
5172
5173 mas->offset++;
5174 return true;
5175 }
5176
5177 /*
5178 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5179 * @size
5180 * @mas: The maple state
5181 * @size: The size of the gap required
5182 *
5183 * Search between @mas->index and @mas->last for a gap of @size.
5184 */
5185 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5186 {
5187 struct maple_enode *last = NULL;
5188
5189 /*
5190 * There are 4 options:
5191 * go to child (descend)
5192 * go back to parent (ascend)
5193 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5194 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5195 */
5196 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5197 if (last == mas->node)
5198 mas_skip_node(mas);
5199 else
5200 last = mas->node;
5201 }
5202 }
5203
5204 /*
5205 * mas_fill_gap() - Fill a located gap with @entry.
5206 * @mas: The maple state
5207 * @entry: The value to store
5208 * @slot: The offset into the node to store the @entry
5209 * @size: The size of the entry
5210 * @index: The start location
5211 */
5212 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5213 unsigned char slot, unsigned long size, unsigned long *index)
5214 {
5215 MA_WR_STATE(wr_mas, mas, entry);
5216 unsigned char pslot = mte_parent_slot(mas->node);
5217 struct maple_enode *mn = mas->node;
5218 unsigned long *pivots;
5219 enum maple_type ptype;
5220 /*
5221 * mas->index is the start address for the search
5222 * which may no longer be needed.
5223 * mas->last is the end address for the search
5224 */
5225
5226 *index = mas->index;
5227 mas->last = mas->index + size - 1;
5228
5229 /*
5230 * It is possible that using mas->max and mas->min to correctly
5231 * calculate the index and last will cause an issue in the gap
5232 * calculation, so fix the ma_state here
5233 */
5234 mas_ascend(mas);
5235 ptype = mte_node_type(mas->node);
5236 pivots = ma_pivots(mas_mn(mas), ptype);
5237 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5238 mas->min = mas_safe_min(mas, pivots, pslot);
5239 mas->node = mn;
5240 mas->offset = slot;
5241 mas_wr_store_entry(&wr_mas);
5242 }
5243
5244 /*
5245 * mas_sparse_area() - Internal function. Return upper or lower limit when
5246 * searching for a gap in an empty tree.
5247 * @mas: The maple state
5248 * @min: the minimum range
5249 * @max: The maximum range
5250 * @size: The size of the gap
5251 * @fwd: Searching forward or back
5252 */
5253 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5254 unsigned long max, unsigned long size, bool fwd)
5255 {
5256 if (!unlikely(mas_is_none(mas)) && min == 0) {
5257 min++;
5258 /*
5259 * At this time, min is increased, we need to recheck whether
5260 * the size is satisfied.
5261 */
5262 if (min > max || max - min + 1 < size)
5263 return -EBUSY;
5264 }
5265 /* mas_is_ptr */
5266
5267 if (fwd) {
5268 mas->index = min;
5269 mas->last = min + size - 1;
5270 } else {
5271 mas->last = max;
5272 mas->index = max - size + 1;
5273 }
5274 return 0;
5275 }
5276
5277 /*
5278 * mas_empty_area() - Get the lowest address within the range that is
5279 * sufficient for the size requested.
5280 * @mas: The maple state
5281 * @min: The lowest value of the range
5282 * @max: The highest value of the range
5283 * @size: The size needed
5284 */
5285 int mas_empty_area(struct ma_state *mas, unsigned long min,
5286 unsigned long max, unsigned long size)
5287 {
5288 unsigned char offset;
5289 unsigned long *pivots;
5290 enum maple_type mt;
5291
5292 if (min >= max)
5293 return -EINVAL;
5294
5295 if (mas_is_start(mas))
5296 mas_start(mas);
5297 else if (mas->offset >= 2)
5298 mas->offset -= 2;
5299 else if (!mas_skip_node(mas))
5300 return -EBUSY;
5301
5302 /* Empty set */
5303 if (mas_is_none(mas) || mas_is_ptr(mas))
5304 return mas_sparse_area(mas, min, max, size, true);
5305
5306 /* The start of the window can only be within these values */
5307 mas->index = min;
5308 mas->last = max;
5309 mas_awalk(mas, size);
5310
5311 if (unlikely(mas_is_err(mas)))
5312 return xa_err(mas->node);
5313
5314 offset = mas->offset;
5315 if (unlikely(offset == MAPLE_NODE_SLOTS))
5316 return -EBUSY;
5317
5318 mt = mte_node_type(mas->node);
5319 pivots = ma_pivots(mas_mn(mas), mt);
5320 min = mas_safe_min(mas, pivots, offset);
5321 if (mas->index < min)
5322 mas->index = min;
5323 mas->last = mas->index + size - 1;
5324 return 0;
5325 }
5326 EXPORT_SYMBOL_GPL(mas_empty_area);
5327
5328 /*
5329 * mas_empty_area_rev() - Get the highest address within the range that is
5330 * sufficient for the size requested.
5331 * @mas: The maple state
5332 * @min: The lowest value of the range
5333 * @max: The highest value of the range
5334 * @size: The size needed
5335 */
5336 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5337 unsigned long max, unsigned long size)
5338 {
5339 struct maple_enode *last = mas->node;
5340
5341 if (min >= max)
5342 return -EINVAL;
5343
5344 if (mas_is_start(mas)) {
5345 mas_start(mas);
5346 mas->offset = mas_data_end(mas);
5347 } else if (mas->offset >= 2) {
5348 mas->offset -= 2;
5349 } else if (!mas_rewind_node(mas)) {
5350 return -EBUSY;
5351 }
5352
5353 /* Empty set. */
5354 if (mas_is_none(mas) || mas_is_ptr(mas))
5355 return mas_sparse_area(mas, min, max, size, false);
5356
5357 /* The start of the window can only be within these values. */
5358 mas->index = min;
5359 mas->last = max;
5360
5361 while (!mas_rev_awalk(mas, size, &min, &max)) {
5362 if (last == mas->node) {
5363 if (!mas_rewind_node(mas))
5364 return -EBUSY;
5365 } else {
5366 last = mas->node;
5367 }
5368 }
5369
5370 if (mas_is_err(mas))
5371 return xa_err(mas->node);
5372
5373 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5374 return -EBUSY;
5375
5376 /* Trim the upper limit to the max. */
5377 if (max <= mas->last)
5378 mas->last = max;
5379
5380 mas->index = mas->last - size + 1;
5381 return 0;
5382 }
5383 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5384
5385 static inline int mas_alloc(struct ma_state *mas, void *entry,
5386 unsigned long size, unsigned long *index)
5387 {
5388 unsigned long min;
5389
5390 mas_start(mas);
5391 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5392 mas_root_expand(mas, entry);
5393 if (mas_is_err(mas))
5394 return xa_err(mas->node);
5395
5396 if (!mas->index)
5397 return mte_pivot(mas->node, 0);
5398 return mte_pivot(mas->node, 1);
5399 }
5400
5401 /* Must be walking a tree. */
5402 mas_awalk(mas, size);
5403 if (mas_is_err(mas))
5404 return xa_err(mas->node);
5405
5406 if (mas->offset == MAPLE_NODE_SLOTS)
5407 goto no_gap;
5408
5409 /*
5410 * At this point, mas->node points to the right node and we have an
5411 * offset that has a sufficient gap.
5412 */
5413 min = mas->min;
5414 if (mas->offset)
5415 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5416
5417 if (mas->index < min)
5418 mas->index = min;
5419
5420 mas_fill_gap(mas, entry, mas->offset, size, index);
5421 return 0;
5422
5423 no_gap:
5424 return -EBUSY;
5425 }
5426
5427 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5428 unsigned long max, void *entry,
5429 unsigned long size, unsigned long *index)
5430 {
5431 int ret = 0;
5432
5433 ret = mas_empty_area_rev(mas, min, max, size);
5434 if (ret)
5435 return ret;
5436
5437 if (mas_is_err(mas))
5438 return xa_err(mas->node);
5439
5440 if (mas->offset == MAPLE_NODE_SLOTS)
5441 goto no_gap;
5442
5443 mas_fill_gap(mas, entry, mas->offset, size, index);
5444 return 0;
5445
5446 no_gap:
5447 return -EBUSY;
5448 }
5449
5450 /*
5451 * mte_dead_leaves() - Mark all leaves of a node as dead.
5452 * @mas: The maple state
5453 * @slots: Pointer to the slot array
5454 * @type: The maple node type
5455 *
5456 * Must hold the write lock.
5457 *
5458 * Return: The number of leaves marked as dead.
5459 */
5460 static inline
5461 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5462 void __rcu **slots)
5463 {
5464 struct maple_node *node;
5465 enum maple_type type;
5466 void *entry;
5467 int offset;
5468
5469 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5470 entry = mt_slot(mt, slots, offset);
5471 type = mte_node_type(entry);
5472 node = mte_to_node(entry);
5473 /* Use both node and type to catch LE & BE metadata */
5474 if (!node || !type)
5475 break;
5476
5477 mte_set_node_dead(entry);
5478 node->type = type;
5479 rcu_assign_pointer(slots[offset], node);
5480 }
5481
5482 return offset;
5483 }
5484
5485 /**
5486 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5487 * @enode: The maple encoded node
5488 * @offset: The starting offset
5489 *
5490 * Note: This can only be used from the RCU callback context.
5491 */
5492 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5493 {
5494 struct maple_node *node, *next;
5495 void __rcu **slots = NULL;
5496
5497 next = mte_to_node(*enode);
5498 do {
5499 *enode = ma_enode_ptr(next);
5500 node = mte_to_node(*enode);
5501 slots = ma_slots(node, node->type);
5502 next = rcu_dereference_protected(slots[offset],
5503 lock_is_held(&rcu_callback_map));
5504 offset = 0;
5505 } while (!ma_is_leaf(next->type));
5506
5507 return slots;
5508 }
5509
5510 /**
5511 * mt_free_walk() - Walk & free a tree in the RCU callback context
5512 * @head: The RCU head that's within the node.
5513 *
5514 * Note: This can only be used from the RCU callback context.
5515 */
5516 static void mt_free_walk(struct rcu_head *head)
5517 {
5518 void __rcu **slots;
5519 struct maple_node *node, *start;
5520 struct maple_enode *enode;
5521 unsigned char offset;
5522 enum maple_type type;
5523
5524 node = container_of(head, struct maple_node, rcu);
5525
5526 if (ma_is_leaf(node->type))
5527 goto free_leaf;
5528
5529 start = node;
5530 enode = mt_mk_node(node, node->type);
5531 slots = mte_dead_walk(&enode, 0);
5532 node = mte_to_node(enode);
5533 do {
5534 mt_free_bulk(node->slot_len, slots);
5535 offset = node->parent_slot + 1;
5536 enode = node->piv_parent;
5537 if (mte_to_node(enode) == node)
5538 goto free_leaf;
5539
5540 type = mte_node_type(enode);
5541 slots = ma_slots(mte_to_node(enode), type);
5542 if ((offset < mt_slots[type]) &&
5543 rcu_dereference_protected(slots[offset],
5544 lock_is_held(&rcu_callback_map)))
5545 slots = mte_dead_walk(&enode, offset);
5546 node = mte_to_node(enode);
5547 } while ((node != start) || (node->slot_len < offset));
5548
5549 slots = ma_slots(node, node->type);
5550 mt_free_bulk(node->slot_len, slots);
5551
5552 free_leaf:
5553 mt_free_rcu(&node->rcu);
5554 }
5555
5556 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5557 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5558 {
5559 struct maple_node *node;
5560 struct maple_enode *next = *enode;
5561 void __rcu **slots = NULL;
5562 enum maple_type type;
5563 unsigned char next_offset = 0;
5564
5565 do {
5566 *enode = next;
5567 node = mte_to_node(*enode);
5568 type = mte_node_type(*enode);
5569 slots = ma_slots(node, type);
5570 next = mt_slot_locked(mt, slots, next_offset);
5571 if ((mte_dead_node(next)))
5572 next = mt_slot_locked(mt, slots, ++next_offset);
5573
5574 mte_set_node_dead(*enode);
5575 node->type = type;
5576 node->piv_parent = prev;
5577 node->parent_slot = offset;
5578 offset = next_offset;
5579 next_offset = 0;
5580 prev = *enode;
5581 } while (!mte_is_leaf(next));
5582
5583 return slots;
5584 }
5585
5586 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5587 bool free)
5588 {
5589 void __rcu **slots;
5590 struct maple_node *node = mte_to_node(enode);
5591 struct maple_enode *start;
5592
5593 if (mte_is_leaf(enode)) {
5594 node->type = mte_node_type(enode);
5595 goto free_leaf;
5596 }
5597
5598 start = enode;
5599 slots = mte_destroy_descend(&enode, mt, start, 0);
5600 node = mte_to_node(enode); // Updated in the above call.
5601 do {
5602 enum maple_type type;
5603 unsigned char offset;
5604 struct maple_enode *parent, *tmp;
5605
5606 node->slot_len = mte_dead_leaves(enode, mt, slots);
5607 if (free)
5608 mt_free_bulk(node->slot_len, slots);
5609 offset = node->parent_slot + 1;
5610 enode = node->piv_parent;
5611 if (mte_to_node(enode) == node)
5612 goto free_leaf;
5613
5614 type = mte_node_type(enode);
5615 slots = ma_slots(mte_to_node(enode), type);
5616 if (offset >= mt_slots[type])
5617 goto next;
5618
5619 tmp = mt_slot_locked(mt, slots, offset);
5620 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5621 parent = enode;
5622 enode = tmp;
5623 slots = mte_destroy_descend(&enode, mt, parent, offset);
5624 }
5625 next:
5626 node = mte_to_node(enode);
5627 } while (start != enode);
5628
5629 node = mte_to_node(enode);
5630 node->slot_len = mte_dead_leaves(enode, mt, slots);
5631 if (free)
5632 mt_free_bulk(node->slot_len, slots);
5633
5634 free_leaf:
5635 if (free)
5636 mt_free_rcu(&node->rcu);
5637 else
5638 mt_clear_meta(mt, node, node->type);
5639 }
5640
5641 /*
5642 * mte_destroy_walk() - Free a tree or sub-tree.
5643 * @enode: the encoded maple node (maple_enode) to start
5644 * @mt: the tree to free - needed for node types.
5645 *
5646 * Must hold the write lock.
5647 */
5648 static inline void mte_destroy_walk(struct maple_enode *enode,
5649 struct maple_tree *mt)
5650 {
5651 struct maple_node *node = mte_to_node(enode);
5652
5653 if (mt_in_rcu(mt)) {
5654 mt_destroy_walk(enode, mt, false);
5655 call_rcu(&node->rcu, mt_free_walk);
5656 } else {
5657 mt_destroy_walk(enode, mt, true);
5658 }
5659 }
5660
5661 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5662 {
5663 if (unlikely(mas_is_paused(wr_mas->mas)))
5664 mas_reset(wr_mas->mas);
5665
5666 if (!mas_is_start(wr_mas->mas)) {
5667 if (mas_is_none(wr_mas->mas)) {
5668 mas_reset(wr_mas->mas);
5669 } else {
5670 wr_mas->r_max = wr_mas->mas->max;
5671 wr_mas->type = mte_node_type(wr_mas->mas->node);
5672 if (mas_is_span_wr(wr_mas))
5673 mas_reset(wr_mas->mas);
5674 }
5675 }
5676 }
5677
5678 /* Interface */
5679
5680 /**
5681 * mas_store() - Store an @entry.
5682 * @mas: The maple state.
5683 * @entry: The entry to store.
5684 *
5685 * The @mas->index and @mas->last is used to set the range for the @entry.
5686 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5687 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5688 *
5689 * Return: the first entry between mas->index and mas->last or %NULL.
5690 */
5691 void *mas_store(struct ma_state *mas, void *entry)
5692 {
5693 MA_WR_STATE(wr_mas, mas, entry);
5694
5695 trace_ma_write(__func__, mas, 0, entry);
5696 #ifdef CONFIG_DEBUG_MAPLE_TREE
5697 if (mas->index > mas->last)
5698 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5699 MT_BUG_ON(mas->tree, mas->index > mas->last);
5700 if (mas->index > mas->last) {
5701 mas_set_err(mas, -EINVAL);
5702 return NULL;
5703 }
5704
5705 #endif
5706
5707 /*
5708 * Storing is the same operation as insert with the added caveat that it
5709 * can overwrite entries. Although this seems simple enough, one may
5710 * want to examine what happens if a single store operation was to
5711 * overwrite multiple entries within a self-balancing B-Tree.
5712 */
5713 mas_wr_store_setup(&wr_mas);
5714 mas_wr_store_entry(&wr_mas);
5715 return wr_mas.content;
5716 }
5717 EXPORT_SYMBOL_GPL(mas_store);
5718
5719 /**
5720 * mas_store_gfp() - Store a value into the tree.
5721 * @mas: The maple state
5722 * @entry: The entry to store
5723 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5724 *
5725 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5726 * be allocated.
5727 */
5728 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5729 {
5730 MA_WR_STATE(wr_mas, mas, entry);
5731
5732 mas_wr_store_setup(&wr_mas);
5733 trace_ma_write(__func__, mas, 0, entry);
5734 retry:
5735 mas_wr_store_entry(&wr_mas);
5736 if (unlikely(mas_nomem(mas, gfp)))
5737 goto retry;
5738
5739 if (unlikely(mas_is_err(mas)))
5740 return xa_err(mas->node);
5741
5742 return 0;
5743 }
5744 EXPORT_SYMBOL_GPL(mas_store_gfp);
5745
5746 /**
5747 * mas_store_prealloc() - Store a value into the tree using memory
5748 * preallocated in the maple state.
5749 * @mas: The maple state
5750 * @entry: The entry to store.
5751 */
5752 void mas_store_prealloc(struct ma_state *mas, void *entry)
5753 {
5754 MA_WR_STATE(wr_mas, mas, entry);
5755
5756 mas_wr_store_setup(&wr_mas);
5757 trace_ma_write(__func__, mas, 0, entry);
5758 mas_wr_store_entry(&wr_mas);
5759 BUG_ON(mas_is_err(mas));
5760 mas_destroy(mas);
5761 }
5762 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5763
5764 /**
5765 * mas_preallocate() - Preallocate enough nodes for a store operation
5766 * @mas: The maple state
5767 * @gfp: The GFP_FLAGS to use for allocations.
5768 *
5769 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5770 */
5771 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5772 {
5773 int ret;
5774
5775 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5776 mas->mas_flags |= MA_STATE_PREALLOC;
5777 if (likely(!mas_is_err(mas)))
5778 return 0;
5779
5780 mas_set_alloc_req(mas, 0);
5781 ret = xa_err(mas->node);
5782 mas_reset(mas);
5783 mas_destroy(mas);
5784 mas_reset(mas);
5785 return ret;
5786 }
5787 EXPORT_SYMBOL_GPL(mas_preallocate);
5788
5789 /*
5790 * mas_destroy() - destroy a maple state.
5791 * @mas: The maple state
5792 *
5793 * Upon completion, check the left-most node and rebalance against the node to
5794 * the right if necessary. Frees any allocated nodes associated with this maple
5795 * state.
5796 */
5797 void mas_destroy(struct ma_state *mas)
5798 {
5799 struct maple_alloc *node;
5800 unsigned long total;
5801
5802 /*
5803 * When using mas_for_each() to insert an expected number of elements,
5804 * it is possible that the number inserted is less than the expected
5805 * number. To fix an invalid final node, a check is performed here to
5806 * rebalance the previous node with the final node.
5807 */
5808 if (mas->mas_flags & MA_STATE_REBALANCE) {
5809 unsigned char end;
5810
5811 if (mas_is_start(mas))
5812 mas_start(mas);
5813
5814 mtree_range_walk(mas);
5815 end = mas_data_end(mas) + 1;
5816 if (end < mt_min_slot_count(mas->node) - 1)
5817 mas_destroy_rebalance(mas, end);
5818
5819 mas->mas_flags &= ~MA_STATE_REBALANCE;
5820 }
5821 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5822
5823 total = mas_allocated(mas);
5824 while (total) {
5825 node = mas->alloc;
5826 mas->alloc = node->slot[0];
5827 if (node->node_count > 1) {
5828 size_t count = node->node_count - 1;
5829
5830 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5831 total -= count;
5832 }
5833 kmem_cache_free(maple_node_cache, node);
5834 total--;
5835 }
5836
5837 mas->alloc = NULL;
5838 }
5839 EXPORT_SYMBOL_GPL(mas_destroy);
5840
5841 /*
5842 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5843 * @mas: The maple state
5844 * @nr_entries: The number of expected entries.
5845 *
5846 * This will attempt to pre-allocate enough nodes to store the expected number
5847 * of entries. The allocations will occur using the bulk allocator interface
5848 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5849 * to ensure any unused nodes are freed.
5850 *
5851 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5852 */
5853 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5854 {
5855 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5856 struct maple_enode *enode = mas->node;
5857 int nr_nodes;
5858 int ret;
5859
5860 /*
5861 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5862 * forking a process and duplicating the VMAs from one tree to a new
5863 * tree. When such a situation arises, it is known that the new tree is
5864 * not going to be used until the entire tree is populated. For
5865 * performance reasons, it is best to use a bulk load with RCU disabled.
5866 * This allows for optimistic splitting that favours the left and reuse
5867 * of nodes during the operation.
5868 */
5869
5870 /* Optimize splitting for bulk insert in-order */
5871 mas->mas_flags |= MA_STATE_BULK;
5872
5873 /*
5874 * Avoid overflow, assume a gap between each entry and a trailing null.
5875 * If this is wrong, it just means allocation can happen during
5876 * insertion of entries.
5877 */
5878 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5879 if (!mt_is_alloc(mas->tree))
5880 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5881
5882 /* Leaves; reduce slots to keep space for expansion */
5883 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5884 /* Internal nodes */
5885 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5886 /* Add working room for split (2 nodes) + new parents */
5887 mas_node_count(mas, nr_nodes + 3);
5888
5889 /* Detect if allocations run out */
5890 mas->mas_flags |= MA_STATE_PREALLOC;
5891
5892 if (!mas_is_err(mas))
5893 return 0;
5894
5895 ret = xa_err(mas->node);
5896 mas->node = enode;
5897 mas_destroy(mas);
5898 return ret;
5899
5900 }
5901 EXPORT_SYMBOL_GPL(mas_expected_entries);
5902
5903 /**
5904 * mas_next() - Get the next entry.
5905 * @mas: The maple state
5906 * @max: The maximum index to check.
5907 *
5908 * Returns the next entry after @mas->index.
5909 * Must hold rcu_read_lock or the write lock.
5910 * Can return the zero entry.
5911 *
5912 * Return: The next entry or %NULL
5913 */
5914 void *mas_next(struct ma_state *mas, unsigned long max)
5915 {
5916 if (mas_is_none(mas) || mas_is_paused(mas))
5917 mas->node = MAS_START;
5918
5919 if (mas_is_start(mas))
5920 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5921
5922 if (mas_is_ptr(mas)) {
5923 if (!mas->index) {
5924 mas->index = 1;
5925 mas->last = ULONG_MAX;
5926 }
5927 return NULL;
5928 }
5929
5930 if (mas->last == ULONG_MAX)
5931 return NULL;
5932
5933 /* Retries on dead nodes handled by mas_next_entry */
5934 return mas_next_entry(mas, max);
5935 }
5936 EXPORT_SYMBOL_GPL(mas_next);
5937
5938 /**
5939 * mt_next() - get the next value in the maple tree
5940 * @mt: The maple tree
5941 * @index: The start index
5942 * @max: The maximum index to check
5943 *
5944 * Return: The entry at @index or higher, or %NULL if nothing is found.
5945 */
5946 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5947 {
5948 void *entry = NULL;
5949 MA_STATE(mas, mt, index, index);
5950
5951 rcu_read_lock();
5952 entry = mas_next(&mas, max);
5953 rcu_read_unlock();
5954 return entry;
5955 }
5956 EXPORT_SYMBOL_GPL(mt_next);
5957
5958 /**
5959 * mas_prev() - Get the previous entry
5960 * @mas: The maple state
5961 * @min: The minimum value to check.
5962 *
5963 * Must hold rcu_read_lock or the write lock.
5964 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5965 * searchable nodes.
5966 *
5967 * Return: the previous value or %NULL.
5968 */
5969 void *mas_prev(struct ma_state *mas, unsigned long min)
5970 {
5971 if (!mas->index) {
5972 /* Nothing comes before 0 */
5973 mas->last = 0;
5974 mas->node = MAS_NONE;
5975 return NULL;
5976 }
5977
5978 if (unlikely(mas_is_ptr(mas)))
5979 return NULL;
5980
5981 if (mas_is_none(mas) || mas_is_paused(mas))
5982 mas->node = MAS_START;
5983
5984 if (mas_is_start(mas)) {
5985 mas_walk(mas);
5986 if (!mas->index)
5987 return NULL;
5988 }
5989
5990 if (mas_is_ptr(mas)) {
5991 if (!mas->index) {
5992 mas->last = 0;
5993 return NULL;
5994 }
5995
5996 mas->index = mas->last = 0;
5997 return mas_root_locked(mas);
5998 }
5999 return mas_prev_entry(mas, min);
6000 }
6001 EXPORT_SYMBOL_GPL(mas_prev);
6002
6003 /**
6004 * mt_prev() - get the previous value in the maple tree
6005 * @mt: The maple tree
6006 * @index: The start index
6007 * @min: The minimum index to check
6008 *
6009 * Return: The entry at @index or lower, or %NULL if nothing is found.
6010 */
6011 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6012 {
6013 void *entry = NULL;
6014 MA_STATE(mas, mt, index, index);
6015
6016 rcu_read_lock();
6017 entry = mas_prev(&mas, min);
6018 rcu_read_unlock();
6019 return entry;
6020 }
6021 EXPORT_SYMBOL_GPL(mt_prev);
6022
6023 /**
6024 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6025 * @mas: The maple state to pause
6026 *
6027 * Some users need to pause a walk and drop the lock they're holding in
6028 * order to yield to a higher priority thread or carry out an operation
6029 * on an entry. Those users should call this function before they drop
6030 * the lock. It resets the @mas to be suitable for the next iteration
6031 * of the loop after the user has reacquired the lock. If most entries
6032 * found during a walk require you to call mas_pause(), the mt_for_each()
6033 * iterator may be more appropriate.
6034 *
6035 */
6036 void mas_pause(struct ma_state *mas)
6037 {
6038 mas->node = MAS_PAUSE;
6039 }
6040 EXPORT_SYMBOL_GPL(mas_pause);
6041
6042 /**
6043 * mas_find() - On the first call, find the entry at or after mas->index up to
6044 * %max. Otherwise, find the entry after mas->index.
6045 * @mas: The maple state
6046 * @max: The maximum value to check.
6047 *
6048 * Must hold rcu_read_lock or the write lock.
6049 * If an entry exists, last and index are updated accordingly.
6050 * May set @mas->node to MAS_NONE.
6051 *
6052 * Return: The entry or %NULL.
6053 */
6054 void *mas_find(struct ma_state *mas, unsigned long max)
6055 {
6056 if (unlikely(mas_is_paused(mas))) {
6057 if (unlikely(mas->last == ULONG_MAX)) {
6058 mas->node = MAS_NONE;
6059 return NULL;
6060 }
6061 mas->node = MAS_START;
6062 mas->index = ++mas->last;
6063 }
6064
6065 if (unlikely(mas_is_none(mas)))
6066 mas->node = MAS_START;
6067
6068 if (unlikely(mas_is_start(mas))) {
6069 /* First run or continue */
6070 void *entry;
6071
6072 if (mas->index > max)
6073 return NULL;
6074
6075 entry = mas_walk(mas);
6076 if (entry)
6077 return entry;
6078 }
6079
6080 if (unlikely(!mas_searchable(mas)))
6081 return NULL;
6082
6083 /* Retries on dead nodes handled by mas_next_entry */
6084 return mas_next_entry(mas, max);
6085 }
6086 EXPORT_SYMBOL_GPL(mas_find);
6087
6088 /**
6089 * mas_find_rev: On the first call, find the first non-null entry at or below
6090 * mas->index down to %min. Otherwise find the first non-null entry below
6091 * mas->index down to %min.
6092 * @mas: The maple state
6093 * @min: The minimum value to check.
6094 *
6095 * Must hold rcu_read_lock or the write lock.
6096 * If an entry exists, last and index are updated accordingly.
6097 * May set @mas->node to MAS_NONE.
6098 *
6099 * Return: The entry or %NULL.
6100 */
6101 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6102 {
6103 if (unlikely(mas_is_paused(mas))) {
6104 if (unlikely(mas->last == ULONG_MAX)) {
6105 mas->node = MAS_NONE;
6106 return NULL;
6107 }
6108 mas->node = MAS_START;
6109 mas->last = --mas->index;
6110 }
6111
6112 if (unlikely(mas_is_start(mas))) {
6113 /* First run or continue */
6114 void *entry;
6115
6116 if (mas->index < min)
6117 return NULL;
6118
6119 entry = mas_walk(mas);
6120 if (entry)
6121 return entry;
6122 }
6123
6124 if (unlikely(!mas_searchable(mas)))
6125 return NULL;
6126
6127 if (mas->index < min)
6128 return NULL;
6129
6130 /* Retries on dead nodes handled by mas_prev_entry */
6131 return mas_prev_entry(mas, min);
6132 }
6133 EXPORT_SYMBOL_GPL(mas_find_rev);
6134
6135 /**
6136 * mas_erase() - Find the range in which index resides and erase the entire
6137 * range.
6138 * @mas: The maple state
6139 *
6140 * Must hold the write lock.
6141 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6142 * erases that range.
6143 *
6144 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6145 */
6146 void *mas_erase(struct ma_state *mas)
6147 {
6148 void *entry;
6149 MA_WR_STATE(wr_mas, mas, NULL);
6150
6151 if (mas_is_none(mas) || mas_is_paused(mas))
6152 mas->node = MAS_START;
6153
6154 /* Retry unnecessary when holding the write lock. */
6155 entry = mas_state_walk(mas);
6156 if (!entry)
6157 return NULL;
6158
6159 write_retry:
6160 /* Must reset to ensure spanning writes of last slot are detected */
6161 mas_reset(mas);
6162 mas_wr_store_setup(&wr_mas);
6163 mas_wr_store_entry(&wr_mas);
6164 if (mas_nomem(mas, GFP_KERNEL))
6165 goto write_retry;
6166
6167 return entry;
6168 }
6169 EXPORT_SYMBOL_GPL(mas_erase);
6170
6171 /**
6172 * mas_nomem() - Check if there was an error allocating and do the allocation
6173 * if necessary If there are allocations, then free them.
6174 * @mas: The maple state
6175 * @gfp: The GFP_FLAGS to use for allocations
6176 * Return: true on allocation, false otherwise.
6177 */
6178 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6179 __must_hold(mas->tree->lock)
6180 {
6181 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6182 mas_destroy(mas);
6183 return false;
6184 }
6185
6186 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6187 mtree_unlock(mas->tree);
6188 mas_alloc_nodes(mas, gfp);
6189 mtree_lock(mas->tree);
6190 } else {
6191 mas_alloc_nodes(mas, gfp);
6192 }
6193
6194 if (!mas_allocated(mas))
6195 return false;
6196
6197 mas->node = MAS_START;
6198 return true;
6199 }
6200
6201 void __init maple_tree_init(void)
6202 {
6203 maple_node_cache = kmem_cache_create("maple_node",
6204 sizeof(struct maple_node), sizeof(struct maple_node),
6205 SLAB_PANIC, NULL);
6206 }
6207
6208 /**
6209 * mtree_load() - Load a value stored in a maple tree
6210 * @mt: The maple tree
6211 * @index: The index to load
6212 *
6213 * Return: the entry or %NULL
6214 */
6215 void *mtree_load(struct maple_tree *mt, unsigned long index)
6216 {
6217 MA_STATE(mas, mt, index, index);
6218 void *entry;
6219
6220 trace_ma_read(__func__, &mas);
6221 rcu_read_lock();
6222 retry:
6223 entry = mas_start(&mas);
6224 if (unlikely(mas_is_none(&mas)))
6225 goto unlock;
6226
6227 if (unlikely(mas_is_ptr(&mas))) {
6228 if (index)
6229 entry = NULL;
6230
6231 goto unlock;
6232 }
6233
6234 entry = mtree_lookup_walk(&mas);
6235 if (!entry && unlikely(mas_is_start(&mas)))
6236 goto retry;
6237 unlock:
6238 rcu_read_unlock();
6239 if (xa_is_zero(entry))
6240 return NULL;
6241
6242 return entry;
6243 }
6244 EXPORT_SYMBOL(mtree_load);
6245
6246 /**
6247 * mtree_store_range() - Store an entry at a given range.
6248 * @mt: The maple tree
6249 * @index: The start of the range
6250 * @last: The end of the range
6251 * @entry: The entry to store
6252 * @gfp: The GFP_FLAGS to use for allocations
6253 *
6254 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6255 * be allocated.
6256 */
6257 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6258 unsigned long last, void *entry, gfp_t gfp)
6259 {
6260 MA_STATE(mas, mt, index, last);
6261 MA_WR_STATE(wr_mas, &mas, entry);
6262
6263 trace_ma_write(__func__, &mas, 0, entry);
6264 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6265 return -EINVAL;
6266
6267 if (index > last)
6268 return -EINVAL;
6269
6270 mtree_lock(mt);
6271 retry:
6272 mas_wr_store_entry(&wr_mas);
6273 if (mas_nomem(&mas, gfp))
6274 goto retry;
6275
6276 mtree_unlock(mt);
6277 if (mas_is_err(&mas))
6278 return xa_err(mas.node);
6279
6280 return 0;
6281 }
6282 EXPORT_SYMBOL(mtree_store_range);
6283
6284 /**
6285 * mtree_store() - Store an entry at a given index.
6286 * @mt: The maple tree
6287 * @index: The index to store the value
6288 * @entry: The entry to store
6289 * @gfp: The GFP_FLAGS to use for allocations
6290 *
6291 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6292 * be allocated.
6293 */
6294 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6295 gfp_t gfp)
6296 {
6297 return mtree_store_range(mt, index, index, entry, gfp);
6298 }
6299 EXPORT_SYMBOL(mtree_store);
6300
6301 /**
6302 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6303 * @mt: The maple tree
6304 * @first: The start of the range
6305 * @last: The end of the range
6306 * @entry: The entry to store
6307 * @gfp: The GFP_FLAGS to use for allocations.
6308 *
6309 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6310 * request, -ENOMEM if memory could not be allocated.
6311 */
6312 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6313 unsigned long last, void *entry, gfp_t gfp)
6314 {
6315 MA_STATE(ms, mt, first, last);
6316
6317 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6318 return -EINVAL;
6319
6320 if (first > last)
6321 return -EINVAL;
6322
6323 mtree_lock(mt);
6324 retry:
6325 mas_insert(&ms, entry);
6326 if (mas_nomem(&ms, gfp))
6327 goto retry;
6328
6329 mtree_unlock(mt);
6330 if (mas_is_err(&ms))
6331 return xa_err(ms.node);
6332
6333 return 0;
6334 }
6335 EXPORT_SYMBOL(mtree_insert_range);
6336
6337 /**
6338 * mtree_insert() - Insert an entry at a give index if there is no value.
6339 * @mt: The maple tree
6340 * @index : The index to store the value
6341 * @entry: The entry to store
6342 * @gfp: The FGP_FLAGS to use for allocations.
6343 *
6344 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6345 * request, -ENOMEM if memory could not be allocated.
6346 */
6347 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6348 gfp_t gfp)
6349 {
6350 return mtree_insert_range(mt, index, index, entry, gfp);
6351 }
6352 EXPORT_SYMBOL(mtree_insert);
6353
6354 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6355 void *entry, unsigned long size, unsigned long min,
6356 unsigned long max, gfp_t gfp)
6357 {
6358 int ret = 0;
6359
6360 MA_STATE(mas, mt, min, max - size);
6361 if (!mt_is_alloc(mt))
6362 return -EINVAL;
6363
6364 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6365 return -EINVAL;
6366
6367 if (min > max)
6368 return -EINVAL;
6369
6370 if (max < size)
6371 return -EINVAL;
6372
6373 if (!size)
6374 return -EINVAL;
6375
6376 mtree_lock(mt);
6377 retry:
6378 mas.offset = 0;
6379 mas.index = min;
6380 mas.last = max - size;
6381 ret = mas_alloc(&mas, entry, size, startp);
6382 if (mas_nomem(&mas, gfp))
6383 goto retry;
6384
6385 mtree_unlock(mt);
6386 return ret;
6387 }
6388 EXPORT_SYMBOL(mtree_alloc_range);
6389
6390 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6391 void *entry, unsigned long size, unsigned long min,
6392 unsigned long max, gfp_t gfp)
6393 {
6394 int ret = 0;
6395
6396 MA_STATE(mas, mt, min, max - size);
6397 if (!mt_is_alloc(mt))
6398 return -EINVAL;
6399
6400 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6401 return -EINVAL;
6402
6403 if (min >= max)
6404 return -EINVAL;
6405
6406 if (max < size - 1)
6407 return -EINVAL;
6408
6409 if (!size)
6410 return -EINVAL;
6411
6412 mtree_lock(mt);
6413 retry:
6414 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6415 if (mas_nomem(&mas, gfp))
6416 goto retry;
6417
6418 mtree_unlock(mt);
6419 return ret;
6420 }
6421 EXPORT_SYMBOL(mtree_alloc_rrange);
6422
6423 /**
6424 * mtree_erase() - Find an index and erase the entire range.
6425 * @mt: The maple tree
6426 * @index: The index to erase
6427 *
6428 * Erasing is the same as a walk to an entry then a store of a NULL to that
6429 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6430 *
6431 * Return: The entry stored at the @index or %NULL
6432 */
6433 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6434 {
6435 void *entry = NULL;
6436
6437 MA_STATE(mas, mt, index, index);
6438 trace_ma_op(__func__, &mas);
6439
6440 mtree_lock(mt);
6441 entry = mas_erase(&mas);
6442 mtree_unlock(mt);
6443
6444 return entry;
6445 }
6446 EXPORT_SYMBOL(mtree_erase);
6447
6448 /**
6449 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6450 * @mt: The maple tree
6451 *
6452 * Note: Does not handle locking.
6453 */
6454 void __mt_destroy(struct maple_tree *mt)
6455 {
6456 void *root = mt_root_locked(mt);
6457
6458 rcu_assign_pointer(mt->ma_root, NULL);
6459 if (xa_is_node(root))
6460 mte_destroy_walk(root, mt);
6461
6462 mt->ma_flags = 0;
6463 }
6464 EXPORT_SYMBOL_GPL(__mt_destroy);
6465
6466 /**
6467 * mtree_destroy() - Destroy a maple tree
6468 * @mt: The maple tree
6469 *
6470 * Frees all resources used by the tree. Handles locking.
6471 */
6472 void mtree_destroy(struct maple_tree *mt)
6473 {
6474 mtree_lock(mt);
6475 __mt_destroy(mt);
6476 mtree_unlock(mt);
6477 }
6478 EXPORT_SYMBOL(mtree_destroy);
6479
6480 /**
6481 * mt_find() - Search from the start up until an entry is found.
6482 * @mt: The maple tree
6483 * @index: Pointer which contains the start location of the search
6484 * @max: The maximum value to check
6485 *
6486 * Handles locking. @index will be incremented to one beyond the range.
6487 *
6488 * Return: The entry at or after the @index or %NULL
6489 */
6490 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6491 {
6492 MA_STATE(mas, mt, *index, *index);
6493 void *entry;
6494 #ifdef CONFIG_DEBUG_MAPLE_TREE
6495 unsigned long copy = *index;
6496 #endif
6497
6498 trace_ma_read(__func__, &mas);
6499
6500 if ((*index) > max)
6501 return NULL;
6502
6503 rcu_read_lock();
6504 retry:
6505 entry = mas_state_walk(&mas);
6506 if (mas_is_start(&mas))
6507 goto retry;
6508
6509 if (unlikely(xa_is_zero(entry)))
6510 entry = NULL;
6511
6512 if (entry)
6513 goto unlock;
6514
6515 while (mas_searchable(&mas) && (mas.index < max)) {
6516 entry = mas_next_entry(&mas, max);
6517 if (likely(entry && !xa_is_zero(entry)))
6518 break;
6519 }
6520
6521 if (unlikely(xa_is_zero(entry)))
6522 entry = NULL;
6523 unlock:
6524 rcu_read_unlock();
6525 if (likely(entry)) {
6526 *index = mas.last + 1;
6527 #ifdef CONFIG_DEBUG_MAPLE_TREE
6528 if ((*index) && (*index) <= copy)
6529 pr_err("index not increased! %lx <= %lx\n",
6530 *index, copy);
6531 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6532 #endif
6533 }
6534
6535 return entry;
6536 }
6537 EXPORT_SYMBOL(mt_find);
6538
6539 /**
6540 * mt_find_after() - Search from the start up until an entry is found.
6541 * @mt: The maple tree
6542 * @index: Pointer which contains the start location of the search
6543 * @max: The maximum value to check
6544 *
6545 * Handles locking, detects wrapping on index == 0
6546 *
6547 * Return: The entry at or after the @index or %NULL
6548 */
6549 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6550 unsigned long max)
6551 {
6552 if (!(*index))
6553 return NULL;
6554
6555 return mt_find(mt, index, max);
6556 }
6557 EXPORT_SYMBOL(mt_find_after);
6558
6559 #ifdef CONFIG_DEBUG_MAPLE_TREE
6560 atomic_t maple_tree_tests_run;
6561 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6562 atomic_t maple_tree_tests_passed;
6563 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6564
6565 #ifndef __KERNEL__
6566 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6567 void mt_set_non_kernel(unsigned int val)
6568 {
6569 kmem_cache_set_non_kernel(maple_node_cache, val);
6570 }
6571
6572 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6573 unsigned long mt_get_alloc_size(void)
6574 {
6575 return kmem_cache_get_alloc(maple_node_cache);
6576 }
6577
6578 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6579 void mt_zero_nr_tallocated(void)
6580 {
6581 kmem_cache_zero_nr_tallocated(maple_node_cache);
6582 }
6583
6584 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6585 unsigned int mt_nr_tallocated(void)
6586 {
6587 return kmem_cache_nr_tallocated(maple_node_cache);
6588 }
6589
6590 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6591 unsigned int mt_nr_allocated(void)
6592 {
6593 return kmem_cache_nr_allocated(maple_node_cache);
6594 }
6595
6596 /*
6597 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6598 * @mas: The maple state
6599 * @index: The index to restore in @mas.
6600 *
6601 * Used in test code.
6602 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6603 */
6604 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6605 {
6606 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6607 return 0;
6608
6609 if (likely(!mte_dead_node(mas->node)))
6610 return 0;
6611
6612 mas_rewalk(mas, index);
6613 return 1;
6614 }
6615
6616 void mt_cache_shrink(void)
6617 {
6618 }
6619 #else
6620 /*
6621 * mt_cache_shrink() - For testing, don't use this.
6622 *
6623 * Certain testcases can trigger an OOM when combined with other memory
6624 * debugging configuration options. This function is used to reduce the
6625 * possibility of an out of memory even due to kmem_cache objects remaining
6626 * around for longer than usual.
6627 */
6628 void mt_cache_shrink(void)
6629 {
6630 kmem_cache_shrink(maple_node_cache);
6631
6632 }
6633 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6634
6635 #endif /* not defined __KERNEL__ */
6636 /*
6637 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6638 * @mas: The maple state
6639 * @offset: The offset into the slot array to fetch.
6640 *
6641 * Return: The entry stored at @offset.
6642 */
6643 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6644 unsigned char offset)
6645 {
6646 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6647 offset);
6648 }
6649
6650
6651 /*
6652 * mas_first_entry() - Go the first leaf and find the first entry.
6653 * @mas: the maple state.
6654 * @limit: the maximum index to check.
6655 * @*r_start: Pointer to set to the range start.
6656 *
6657 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6658 *
6659 * Return: The first entry or MAS_NONE.
6660 */
6661 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6662 unsigned long limit, enum maple_type mt)
6663
6664 {
6665 unsigned long max;
6666 unsigned long *pivots;
6667 void __rcu **slots;
6668 void *entry = NULL;
6669
6670 mas->index = mas->min;
6671 if (mas->index > limit)
6672 goto none;
6673
6674 max = mas->max;
6675 mas->offset = 0;
6676 while (likely(!ma_is_leaf(mt))) {
6677 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6678 slots = ma_slots(mn, mt);
6679 entry = mas_slot(mas, slots, 0);
6680 pivots = ma_pivots(mn, mt);
6681 if (unlikely(ma_dead_node(mn)))
6682 return NULL;
6683 max = pivots[0];
6684 mas->node = entry;
6685 mn = mas_mn(mas);
6686 mt = mte_node_type(mas->node);
6687 }
6688 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6689
6690 mas->max = max;
6691 slots = ma_slots(mn, mt);
6692 entry = mas_slot(mas, slots, 0);
6693 if (unlikely(ma_dead_node(mn)))
6694 return NULL;
6695
6696 /* Slot 0 or 1 must be set */
6697 if (mas->index > limit)
6698 goto none;
6699
6700 if (likely(entry))
6701 return entry;
6702
6703 mas->offset = 1;
6704 entry = mas_slot(mas, slots, 1);
6705 pivots = ma_pivots(mn, mt);
6706 if (unlikely(ma_dead_node(mn)))
6707 return NULL;
6708
6709 mas->index = pivots[0] + 1;
6710 if (mas->index > limit)
6711 goto none;
6712
6713 if (likely(entry))
6714 return entry;
6715
6716 none:
6717 if (likely(!ma_dead_node(mn)))
6718 mas->node = MAS_NONE;
6719 return NULL;
6720 }
6721
6722 /* Depth first search, post-order */
6723 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6724 {
6725
6726 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6727 unsigned long p_min, p_max;
6728
6729 mas_next_node(mas, mas_mn(mas), max);
6730 if (!mas_is_none(mas))
6731 return;
6732
6733 if (mte_is_root(mn))
6734 return;
6735
6736 mas->node = mn;
6737 mas_ascend(mas);
6738 while (mas->node != MAS_NONE) {
6739 p = mas->node;
6740 p_min = mas->min;
6741 p_max = mas->max;
6742 mas_prev_node(mas, 0);
6743 }
6744
6745 if (p == MAS_NONE)
6746 return;
6747
6748 mas->node = p;
6749 mas->max = p_max;
6750 mas->min = p_min;
6751 }
6752
6753 /* Tree validations */
6754 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6755 unsigned long min, unsigned long max, unsigned int depth);
6756 static void mt_dump_range(unsigned long min, unsigned long max,
6757 unsigned int depth)
6758 {
6759 static const char spaces[] = " ";
6760
6761 if (min == max)
6762 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6763 else
6764 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6765 }
6766
6767 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6768 unsigned int depth)
6769 {
6770 mt_dump_range(min, max, depth);
6771
6772 if (xa_is_value(entry))
6773 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6774 xa_to_value(entry), entry);
6775 else if (xa_is_zero(entry))
6776 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6777 else if (mt_is_reserved(entry))
6778 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6779 else
6780 pr_cont("%p\n", entry);
6781 }
6782
6783 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6784 unsigned long min, unsigned long max, unsigned int depth)
6785 {
6786 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6787 bool leaf = mte_is_leaf(entry);
6788 unsigned long first = min;
6789 int i;
6790
6791 pr_cont(" contents: ");
6792 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6793 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6794 pr_cont("%p\n", node->slot[i]);
6795 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6796 unsigned long last = max;
6797
6798 if (i < (MAPLE_RANGE64_SLOTS - 1))
6799 last = node->pivot[i];
6800 else if (!node->slot[i] && max != mt_node_max(entry))
6801 break;
6802 if (last == 0 && i > 0)
6803 break;
6804 if (leaf)
6805 mt_dump_entry(mt_slot(mt, node->slot, i),
6806 first, last, depth + 1);
6807 else if (node->slot[i])
6808 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6809 first, last, depth + 1);
6810
6811 if (last == max)
6812 break;
6813 if (last > max) {
6814 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6815 node, last, max, i);
6816 break;
6817 }
6818 first = last + 1;
6819 }
6820 }
6821
6822 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6823 unsigned long min, unsigned long max, unsigned int depth)
6824 {
6825 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6826 bool leaf = mte_is_leaf(entry);
6827 unsigned long first = min;
6828 int i;
6829
6830 pr_cont(" contents: ");
6831 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6832 pr_cont("%lu ", node->gap[i]);
6833 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6834 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6835 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6836 pr_cont("%p\n", node->slot[i]);
6837 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6838 unsigned long last = max;
6839
6840 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6841 last = node->pivot[i];
6842 else if (!node->slot[i])
6843 break;
6844 if (last == 0 && i > 0)
6845 break;
6846 if (leaf)
6847 mt_dump_entry(mt_slot(mt, node->slot, i),
6848 first, last, depth + 1);
6849 else if (node->slot[i])
6850 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6851 first, last, depth + 1);
6852
6853 if (last == max)
6854 break;
6855 if (last > max) {
6856 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6857 node, last, max, i);
6858 break;
6859 }
6860 first = last + 1;
6861 }
6862 }
6863
6864 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6865 unsigned long min, unsigned long max, unsigned int depth)
6866 {
6867 struct maple_node *node = mte_to_node(entry);
6868 unsigned int type = mte_node_type(entry);
6869 unsigned int i;
6870
6871 mt_dump_range(min, max, depth);
6872
6873 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6874 node ? node->parent : NULL);
6875 switch (type) {
6876 case maple_dense:
6877 pr_cont("\n");
6878 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6879 if (min + i > max)
6880 pr_cont("OUT OF RANGE: ");
6881 mt_dump_entry(mt_slot(mt, node->slot, i),
6882 min + i, min + i, depth);
6883 }
6884 break;
6885 case maple_leaf_64:
6886 case maple_range_64:
6887 mt_dump_range64(mt, entry, min, max, depth);
6888 break;
6889 case maple_arange_64:
6890 mt_dump_arange64(mt, entry, min, max, depth);
6891 break;
6892
6893 default:
6894 pr_cont(" UNKNOWN TYPE\n");
6895 }
6896 }
6897
6898 void mt_dump(const struct maple_tree *mt)
6899 {
6900 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6901
6902 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6903 mt, mt->ma_flags, mt_height(mt), entry);
6904 if (!xa_is_node(entry))
6905 mt_dump_entry(entry, 0, 0, 0);
6906 else if (entry)
6907 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6908 }
6909 EXPORT_SYMBOL_GPL(mt_dump);
6910
6911 /*
6912 * Calculate the maximum gap in a node and check if that's what is reported in
6913 * the parent (unless root).
6914 */
6915 static void mas_validate_gaps(struct ma_state *mas)
6916 {
6917 struct maple_enode *mte = mas->node;
6918 struct maple_node *p_mn;
6919 unsigned long gap = 0, max_gap = 0;
6920 unsigned long p_end, p_start = mas->min;
6921 unsigned char p_slot;
6922 unsigned long *gaps = NULL;
6923 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6924 int i;
6925
6926 if (ma_is_dense(mte_node_type(mte))) {
6927 for (i = 0; i < mt_slot_count(mte); i++) {
6928 if (mas_get_slot(mas, i)) {
6929 if (gap > max_gap)
6930 max_gap = gap;
6931 gap = 0;
6932 continue;
6933 }
6934 gap++;
6935 }
6936 goto counted;
6937 }
6938
6939 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6940 for (i = 0; i < mt_slot_count(mte); i++) {
6941 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6942
6943 if (!gaps) {
6944 if (mas_get_slot(mas, i)) {
6945 gap = 0;
6946 goto not_empty;
6947 }
6948
6949 gap += p_end - p_start + 1;
6950 } else {
6951 void *entry = mas_get_slot(mas, i);
6952
6953 gap = gaps[i];
6954 if (!entry) {
6955 if (gap != p_end - p_start + 1) {
6956 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6957 mas_mn(mas), i,
6958 mas_get_slot(mas, i), gap,
6959 p_end, p_start);
6960 mt_dump(mas->tree);
6961
6962 MT_BUG_ON(mas->tree,
6963 gap != p_end - p_start + 1);
6964 }
6965 } else {
6966 if (gap > p_end - p_start + 1) {
6967 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6968 mas_mn(mas), i, gap, p_end, p_start,
6969 p_end - p_start + 1);
6970 MT_BUG_ON(mas->tree,
6971 gap > p_end - p_start + 1);
6972 }
6973 }
6974 }
6975
6976 if (gap > max_gap)
6977 max_gap = gap;
6978 not_empty:
6979 p_start = p_end + 1;
6980 if (p_end >= mas->max)
6981 break;
6982 }
6983
6984 counted:
6985 if (mte_is_root(mte))
6986 return;
6987
6988 p_slot = mte_parent_slot(mas->node);
6989 p_mn = mte_parent(mte);
6990 MT_BUG_ON(mas->tree, max_gap > mas->max);
6991 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6992 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6993 mt_dump(mas->tree);
6994 }
6995
6996 MT_BUG_ON(mas->tree,
6997 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6998 }
6999
7000 static void mas_validate_parent_slot(struct ma_state *mas)
7001 {
7002 struct maple_node *parent;
7003 struct maple_enode *node;
7004 enum maple_type p_type = mas_parent_enum(mas, mas->node);
7005 unsigned char p_slot = mte_parent_slot(mas->node);
7006 void __rcu **slots;
7007 int i;
7008
7009 if (mte_is_root(mas->node))
7010 return;
7011
7012 parent = mte_parent(mas->node);
7013 slots = ma_slots(parent, p_type);
7014 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7015
7016 /* Check prev/next parent slot for duplicate node entry */
7017
7018 for (i = 0; i < mt_slots[p_type]; i++) {
7019 node = mas_slot(mas, slots, i);
7020 if (i == p_slot) {
7021 if (node != mas->node)
7022 pr_err("parent %p[%u] does not have %p\n",
7023 parent, i, mas_mn(mas));
7024 MT_BUG_ON(mas->tree, node != mas->node);
7025 } else if (node == mas->node) {
7026 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7027 mas_mn(mas), parent, i, p_slot);
7028 MT_BUG_ON(mas->tree, node == mas->node);
7029 }
7030 }
7031 }
7032
7033 static void mas_validate_child_slot(struct ma_state *mas)
7034 {
7035 enum maple_type type = mte_node_type(mas->node);
7036 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7037 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7038 struct maple_enode *child;
7039 unsigned char i;
7040
7041 if (mte_is_leaf(mas->node))
7042 return;
7043
7044 for (i = 0; i < mt_slots[type]; i++) {
7045 child = mas_slot(mas, slots, i);
7046 if (!pivots[i] || pivots[i] == mas->max)
7047 break;
7048
7049 if (!child)
7050 break;
7051
7052 if (mte_parent_slot(child) != i) {
7053 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7054 mas_mn(mas), i, mte_to_node(child),
7055 mte_parent_slot(child));
7056 MT_BUG_ON(mas->tree, 1);
7057 }
7058
7059 if (mte_parent(child) != mte_to_node(mas->node)) {
7060 pr_err("child %p has parent %p not %p\n",
7061 mte_to_node(child), mte_parent(child),
7062 mte_to_node(mas->node));
7063 MT_BUG_ON(mas->tree, 1);
7064 }
7065 }
7066 }
7067
7068 /*
7069 * Validate all pivots are within mas->min and mas->max.
7070 */
7071 static void mas_validate_limits(struct ma_state *mas)
7072 {
7073 int i;
7074 unsigned long prev_piv = 0;
7075 enum maple_type type = mte_node_type(mas->node);
7076 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7077 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7078
7079 /* all limits are fine here. */
7080 if (mte_is_root(mas->node))
7081 return;
7082
7083 for (i = 0; i < mt_slots[type]; i++) {
7084 unsigned long piv;
7085
7086 piv = mas_safe_pivot(mas, pivots, i, type);
7087
7088 if (!piv && (i != 0))
7089 break;
7090
7091 if (!mte_is_leaf(mas->node)) {
7092 void *entry = mas_slot(mas, slots, i);
7093
7094 if (!entry)
7095 pr_err("%p[%u] cannot be null\n",
7096 mas_mn(mas), i);
7097
7098 MT_BUG_ON(mas->tree, !entry);
7099 }
7100
7101 if (prev_piv > piv) {
7102 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7103 mas_mn(mas), i, piv, prev_piv);
7104 MT_BUG_ON(mas->tree, piv < prev_piv);
7105 }
7106
7107 if (piv < mas->min) {
7108 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7109 piv, mas->min);
7110 MT_BUG_ON(mas->tree, piv < mas->min);
7111 }
7112 if (piv > mas->max) {
7113 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7114 piv, mas->max);
7115 MT_BUG_ON(mas->tree, piv > mas->max);
7116 }
7117 prev_piv = piv;
7118 if (piv == mas->max)
7119 break;
7120 }
7121 for (i += 1; i < mt_slots[type]; i++) {
7122 void *entry = mas_slot(mas, slots, i);
7123
7124 if (entry && (i != mt_slots[type] - 1)) {
7125 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7126 i, entry);
7127 MT_BUG_ON(mas->tree, entry != NULL);
7128 }
7129
7130 if (i < mt_pivots[type]) {
7131 unsigned long piv = pivots[i];
7132
7133 if (!piv)
7134 continue;
7135
7136 pr_err("%p[%u] should not have piv %lu\n",
7137 mas_mn(mas), i, piv);
7138 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7139 }
7140 }
7141 }
7142
7143 static void mt_validate_nulls(struct maple_tree *mt)
7144 {
7145 void *entry, *last = (void *)1;
7146 unsigned char offset = 0;
7147 void __rcu **slots;
7148 MA_STATE(mas, mt, 0, 0);
7149
7150 mas_start(&mas);
7151 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7152 return;
7153
7154 while (!mte_is_leaf(mas.node))
7155 mas_descend(&mas);
7156
7157 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7158 do {
7159 entry = mas_slot(&mas, slots, offset);
7160 if (!last && !entry) {
7161 pr_err("Sequential nulls end at %p[%u]\n",
7162 mas_mn(&mas), offset);
7163 }
7164 MT_BUG_ON(mt, !last && !entry);
7165 last = entry;
7166 if (offset == mas_data_end(&mas)) {
7167 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7168 if (mas_is_none(&mas))
7169 return;
7170 offset = 0;
7171 slots = ma_slots(mte_to_node(mas.node),
7172 mte_node_type(mas.node));
7173 } else {
7174 offset++;
7175 }
7176
7177 } while (!mas_is_none(&mas));
7178 }
7179
7180 /*
7181 * validate a maple tree by checking:
7182 * 1. The limits (pivots are within mas->min to mas->max)
7183 * 2. The gap is correctly set in the parents
7184 */
7185 void mt_validate(struct maple_tree *mt)
7186 {
7187 unsigned char end;
7188
7189 MA_STATE(mas, mt, 0, 0);
7190 rcu_read_lock();
7191 mas_start(&mas);
7192 if (!mas_searchable(&mas))
7193 goto done;
7194
7195 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7196 while (!mas_is_none(&mas)) {
7197 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7198 if (!mte_is_root(mas.node)) {
7199 end = mas_data_end(&mas);
7200 if ((end < mt_min_slot_count(mas.node)) &&
7201 (mas.max != ULONG_MAX)) {
7202 pr_err("Invalid size %u of %p\n", end,
7203 mas_mn(&mas));
7204 MT_BUG_ON(mas.tree, 1);
7205 }
7206
7207 }
7208 mas_validate_parent_slot(&mas);
7209 mas_validate_child_slot(&mas);
7210 mas_validate_limits(&mas);
7211 if (mt_is_alloc(mt))
7212 mas_validate_gaps(&mas);
7213 mas_dfs_postorder(&mas, ULONG_MAX);
7214 }
7215 mt_validate_nulls(mt);
7216 done:
7217 rcu_read_unlock();
7218
7219 }
7220 EXPORT_SYMBOL_GPL(mt_validate);
7221
7222 #endif /* CONFIG_DEBUG_MAPLE_TREE */