]> git.proxmox.com Git - mirror_ovs.git/blob - lib/meta-flow.c
flow: Take advantage of zero-padding in struct flow and flow_wildcards.
[mirror_ovs.git] / lib / meta-flow.c
1 /*
2 * Copyright (c) 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "meta-flow.h"
20
21 #include <assert.h>
22 #include <errno.h>
23 #include <limits.h>
24 #include <netinet/icmp6.h>
25 #include <netinet/ip6.h>
26
27 #include "classifier.h"
28 #include "dynamic-string.h"
29 #include "ofp-errors.h"
30 #include "ofp-util.h"
31 #include "packets.h"
32 #include "random.h"
33 #include "shash.h"
34 #include "socket-util.h"
35 #include "unaligned.h"
36 #include "vlog.h"
37
38 VLOG_DEFINE_THIS_MODULE(meta_flow);
39
40 #define MF_FIELD_SIZES(MEMBER) \
41 sizeof ((union mf_value *)0)->MEMBER, \
42 8 * sizeof ((union mf_value *)0)->MEMBER
43
44 static const struct mf_field mf_fields[MFF_N_IDS] = {
45 /* ## -------- ## */
46 /* ## metadata ## */
47 /* ## -------- ## */
48
49 {
50 MFF_TUN_ID, "tun_id", NULL,
51 MF_FIELD_SIZES(be64),
52 MFM_FULLY,
53 MFS_HEXADECIMAL,
54 MFP_NONE,
55 true,
56 NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
57 NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
58 }, {
59 MFF_METADATA, "metadata", NULL,
60 MF_FIELD_SIZES(be64),
61 MFM_FULLY,
62 MFS_HEXADECIMAL,
63 MFP_NONE,
64 true,
65 OXM_OF_METADATA, "OXM_OF_METADATA",
66 OXM_OF_METADATA, "OXM_OF_METADATA",
67 }, {
68 MFF_IN_PORT, "in_port", NULL,
69 MF_FIELD_SIZES(be16),
70 MFM_NONE,
71 MFS_OFP_PORT,
72 MFP_NONE,
73 false,
74 NXM_OF_IN_PORT, "NXM_OF_IN_PORT",
75 OXM_OF_IN_PORT, "OXM_OF_IN_PORT",
76 },
77
78 #define REGISTER(IDX) \
79 { \
80 MFF_REG##IDX, "reg" #IDX, NULL, \
81 MF_FIELD_SIZES(be32), \
82 MFM_FULLY, \
83 MFS_HEXADECIMAL, \
84 MFP_NONE, \
85 true, \
86 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
87 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
88 }
89 #if FLOW_N_REGS > 0
90 REGISTER(0),
91 #endif
92 #if FLOW_N_REGS > 1
93 REGISTER(1),
94 #endif
95 #if FLOW_N_REGS > 2
96 REGISTER(2),
97 #endif
98 #if FLOW_N_REGS > 3
99 REGISTER(3),
100 #endif
101 #if FLOW_N_REGS > 4
102 REGISTER(4),
103 #endif
104 #if FLOW_N_REGS > 5
105 REGISTER(5),
106 #endif
107 #if FLOW_N_REGS > 6
108 REGISTER(6),
109 #endif
110 #if FLOW_N_REGS > 7
111 REGISTER(7),
112 #endif
113 #if FLOW_N_REGS > 8
114 #error
115 #endif
116
117 /* ## -- ## */
118 /* ## L2 ## */
119 /* ## -- ## */
120
121 {
122 MFF_ETH_SRC, "eth_src", "dl_src",
123 MF_FIELD_SIZES(mac),
124 MFM_FULLY,
125 MFS_ETHERNET,
126 MFP_NONE,
127 true,
128 NXM_OF_ETH_SRC, "NXM_OF_ETH_SRC",
129 OXM_OF_ETH_SRC, "OXM_OF_ETH_SRC",
130 }, {
131 MFF_ETH_DST, "eth_dst", "dl_dst",
132 MF_FIELD_SIZES(mac),
133 MFM_FULLY,
134 MFS_ETHERNET,
135 MFP_NONE,
136 true,
137 NXM_OF_ETH_DST, "NXM_OF_ETH_DST",
138 OXM_OF_ETH_DST, "OXM_OF_ETH_DST",
139 }, {
140 MFF_ETH_TYPE, "eth_type", "dl_type",
141 MF_FIELD_SIZES(be16),
142 MFM_NONE,
143 MFS_HEXADECIMAL,
144 MFP_NONE,
145 false,
146 NXM_OF_ETH_TYPE, "NXM_OF_ETH_TYPE",
147 OXM_OF_ETH_TYPE, "OXM_OF_ETH_TYPE",
148 },
149
150 {
151 MFF_VLAN_TCI, "vlan_tci", NULL,
152 MF_FIELD_SIZES(be16),
153 MFM_FULLY,
154 MFS_HEXADECIMAL,
155 MFP_NONE,
156 true,
157 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
158 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
159 }, {
160 MFF_DL_VLAN, "dl_vlan", NULL,
161 sizeof(ovs_be16), 12,
162 MFM_NONE,
163 MFS_DECIMAL,
164 MFP_NONE,
165 true,
166 0, NULL,
167 0, NULL,
168 }, {
169 MFF_VLAN_VID, "vlan_vid", NULL,
170 sizeof(ovs_be16), 12,
171 MFM_FULLY,
172 MFS_DECIMAL,
173 MFP_NONE,
174 true,
175 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
176 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
177 }, {
178 MFF_DL_VLAN_PCP, "dl_vlan_pcp", NULL,
179 1, 3,
180 MFM_NONE,
181 MFS_DECIMAL,
182 MFP_NONE,
183 true,
184 0, NULL,
185 0, NULL,
186 }, {
187 MFF_VLAN_PCP, "vlan_pcp", NULL,
188 1, 3,
189 MFM_NONE,
190 MFS_DECIMAL,
191 MFP_VLAN_VID,
192 true,
193 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
194 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
195 },
196
197 /* ## -- ## */
198 /* ## L3 ## */
199 /* ## -- ## */
200
201 {
202 MFF_IPV4_SRC, "ip_src", "nw_src",
203 MF_FIELD_SIZES(be32),
204 MFM_FULLY,
205 MFS_IPV4,
206 MFP_IPV4,
207 true,
208 NXM_OF_IP_SRC, "NXM_OF_IP_SRC",
209 OXM_OF_IPV4_SRC, "OXM_OF_IPV4_SRC",
210 }, {
211 MFF_IPV4_DST, "ip_dst", "nw_dst",
212 MF_FIELD_SIZES(be32),
213 MFM_FULLY,
214 MFS_IPV4,
215 MFP_IPV4,
216 true,
217 NXM_OF_IP_DST, "NXM_OF_IP_DST",
218 OXM_OF_IPV4_DST, "OXM_OF_IPV4_DST",
219 },
220
221 {
222 MFF_IPV6_SRC, "ipv6_src", NULL,
223 MF_FIELD_SIZES(ipv6),
224 MFM_FULLY,
225 MFS_IPV6,
226 MFP_IPV6,
227 true,
228 NXM_NX_IPV6_SRC, "NXM_NX_IPV6_SRC",
229 OXM_OF_IPV6_SRC, "OXM_OF_IPV6_SRC",
230 }, {
231 MFF_IPV6_DST, "ipv6_dst", NULL,
232 MF_FIELD_SIZES(ipv6),
233 MFM_FULLY,
234 MFS_IPV6,
235 MFP_IPV6,
236 true,
237 NXM_NX_IPV6_DST, "NXM_NX_IPV6_DST",
238 OXM_OF_IPV6_DST, "OXM_OF_IPV6_DST",
239 },
240 {
241 MFF_IPV6_LABEL, "ipv6_label", NULL,
242 4, 20,
243 MFM_FULLY,
244 MFS_HEXADECIMAL,
245 MFP_IPV6,
246 false,
247 NXM_NX_IPV6_LABEL, "NXM_NX_IPV6_LABEL",
248 OXM_OF_IPV6_FLABEL, "OXM_OF_IPV6_FLABEL",
249 },
250
251 {
252 MFF_IP_PROTO, "nw_proto", NULL,
253 MF_FIELD_SIZES(u8),
254 MFM_NONE,
255 MFS_DECIMAL,
256 MFP_IP_ANY,
257 false,
258 NXM_OF_IP_PROTO, "NXM_OF_IP_PROTO",
259 OXM_OF_IP_PROTO, "OXM_OF_IP_PROTO",
260 }, {
261 MFF_IP_DSCP, "nw_tos", NULL,
262 MF_FIELD_SIZES(u8),
263 MFM_NONE,
264 MFS_DECIMAL,
265 MFP_IP_ANY,
266 true,
267 NXM_OF_IP_TOS, "NXM_OF_IP_TOS",
268 OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP",
269 }, {
270 MFF_IP_ECN, "nw_ecn", NULL,
271 1, 2,
272 MFM_NONE,
273 MFS_DECIMAL,
274 MFP_IP_ANY,
275 true,
276 NXM_NX_IP_ECN, "NXM_NX_IP_ECN",
277 OXM_OF_IP_ECN, "OXM_OF_IP_ECN",
278 }, {
279 MFF_IP_TTL, "nw_ttl", NULL,
280 MF_FIELD_SIZES(u8),
281 MFM_NONE,
282 MFS_DECIMAL,
283 MFP_IP_ANY,
284 true,
285 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
286 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
287 }, {
288 MFF_IP_FRAG, "ip_frag", NULL,
289 1, 2,
290 MFM_FULLY,
291 MFS_FRAG,
292 MFP_IP_ANY,
293 false,
294 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
295 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
296 },
297
298 {
299 MFF_ARP_OP, "arp_op", NULL,
300 MF_FIELD_SIZES(be16),
301 MFM_NONE,
302 MFS_DECIMAL,
303 MFP_ARP,
304 false,
305 NXM_OF_ARP_OP, "NXM_OF_ARP_OP",
306 OXM_OF_ARP_OP, "OXM_OF_ARP_OP",
307 }, {
308 MFF_ARP_SPA, "arp_spa", NULL,
309 MF_FIELD_SIZES(be32),
310 MFM_FULLY,
311 MFS_IPV4,
312 MFP_ARP,
313 false,
314 NXM_OF_ARP_SPA, "NXM_OF_ARP_SPA",
315 OXM_OF_ARP_SPA, "OXM_OF_ARP_SPA",
316 }, {
317 MFF_ARP_TPA, "arp_tpa", NULL,
318 MF_FIELD_SIZES(be32),
319 MFM_FULLY,
320 MFS_IPV4,
321 MFP_ARP,
322 false,
323 NXM_OF_ARP_TPA, "NXM_OF_ARP_TPA",
324 OXM_OF_ARP_TPA, "OXM_OF_ARP_TPA",
325 }, {
326 MFF_ARP_SHA, "arp_sha", NULL,
327 MF_FIELD_SIZES(mac),
328 MFM_FULLY,
329 MFS_ETHERNET,
330 MFP_ARP,
331 false,
332 NXM_NX_ARP_SHA, "NXM_NX_ARP_SHA",
333 OXM_OF_ARP_SHA, "OXM_OF_ARP_SHA",
334 }, {
335 MFF_ARP_THA, "arp_tha", NULL,
336 MF_FIELD_SIZES(mac),
337 MFM_FULLY,
338 MFS_ETHERNET,
339 MFP_ARP,
340 false,
341 NXM_NX_ARP_THA, "NXM_NX_ARP_THA",
342 OXM_OF_ARP_THA, "OXM_OF_ARP_THA",
343 },
344
345 /* ## -- ## */
346 /* ## L4 ## */
347 /* ## -- ## */
348
349 {
350 MFF_TCP_SRC, "tcp_src", "tp_src",
351 MF_FIELD_SIZES(be16),
352 MFM_FULLY,
353 MFS_DECIMAL,
354 MFP_TCP,
355 true,
356 NXM_OF_TCP_SRC, "NXM_OF_TCP_SRC",
357 OXM_OF_TCP_SRC, "OXM_OF_TCP_SRC",
358 }, {
359 MFF_TCP_DST, "tcp_dst", "tp_dst",
360 MF_FIELD_SIZES(be16),
361 MFM_FULLY,
362 MFS_DECIMAL,
363 MFP_TCP,
364 true,
365 NXM_OF_TCP_DST, "NXM_OF_TCP_DST",
366 OXM_OF_TCP_DST, "OXM_OF_TCP_DST",
367 },
368
369 {
370 MFF_UDP_SRC, "udp_src", NULL,
371 MF_FIELD_SIZES(be16),
372 MFM_FULLY,
373 MFS_DECIMAL,
374 MFP_UDP,
375 true,
376 NXM_OF_UDP_SRC, "NXM_OF_UDP_SRC",
377 OXM_OF_UDP_SRC, "OXM_OF_UDP_SRC",
378 }, {
379 MFF_UDP_DST, "udp_dst", NULL,
380 MF_FIELD_SIZES(be16),
381 MFM_FULLY,
382 MFS_DECIMAL,
383 MFP_UDP,
384 true,
385 NXM_OF_UDP_DST, "NXM_OF_UDP_DST",
386 OXM_OF_UDP_DST, "OXM_OF_UDP_DST",
387 },
388
389 {
390 MFF_ICMPV4_TYPE, "icmp_type", NULL,
391 MF_FIELD_SIZES(u8),
392 MFM_NONE,
393 MFS_DECIMAL,
394 MFP_ICMPV4,
395 false,
396 NXM_OF_ICMP_TYPE, "NXM_OF_ICMP_TYPE",
397 OXM_OF_ICMPV4_TYPE, "OXM_OF_ICMPV4_TYPE",
398 }, {
399 MFF_ICMPV4_CODE, "icmp_code", NULL,
400 MF_FIELD_SIZES(u8),
401 MFM_NONE,
402 MFS_DECIMAL,
403 MFP_ICMPV4,
404 false,
405 NXM_OF_ICMP_CODE, "NXM_OF_ICMP_CODE",
406 OXM_OF_ICMPV4_CODE, "OXM_OF_ICMPV4_CODE",
407 },
408
409 {
410 MFF_ICMPV6_TYPE, "icmpv6_type", NULL,
411 MF_FIELD_SIZES(u8),
412 MFM_NONE,
413 MFS_DECIMAL,
414 MFP_ICMPV6,
415 false,
416 NXM_NX_ICMPV6_TYPE, "NXM_NX_ICMPV6_TYPE",
417 OXM_OF_ICMPV6_TYPE, "OXM_OF_ICMPV6_TYPE",
418 }, {
419 MFF_ICMPV6_CODE, "icmpv6_code", NULL,
420 MF_FIELD_SIZES(u8),
421 MFM_NONE,
422 MFS_DECIMAL,
423 MFP_ICMPV6,
424 false,
425 NXM_NX_ICMPV6_CODE, "NXM_NX_ICMPV6_CODE",
426 OXM_OF_ICMPV6_CODE, "OXM_OF_ICMPV6_CODE",
427 },
428
429 /* ## ---- ## */
430 /* ## L"5" ## */
431 /* ## ---- ## */
432
433 {
434 MFF_ND_TARGET, "nd_target", NULL,
435 MF_FIELD_SIZES(ipv6),
436 MFM_FULLY,
437 MFS_IPV6,
438 MFP_ND,
439 false,
440 NXM_NX_ND_TARGET, "NXM_NX_ND_TARGET",
441 OXM_OF_IPV6_ND_TARGET, "OXM_OF_IPV6_ND_TARGET",
442 }, {
443 MFF_ND_SLL, "nd_sll", NULL,
444 MF_FIELD_SIZES(mac),
445 MFM_FULLY,
446 MFS_ETHERNET,
447 MFP_ND_SOLICIT,
448 false,
449 NXM_NX_ND_SLL, "NXM_NX_ND_SLL",
450 OXM_OF_IPV6_ND_SLL, "OXM_OF_IPV6_ND_SLL",
451 }, {
452 MFF_ND_TLL, "nd_tll", NULL,
453 MF_FIELD_SIZES(mac),
454 MFM_FULLY,
455 MFS_ETHERNET,
456 MFP_ND_ADVERT,
457 false,
458 NXM_NX_ND_TLL, "NXM_NX_ND_TLL",
459 OXM_OF_IPV6_ND_TLL, "OXM_OF_IPV6_ND_TLL",
460 }
461 };
462
463 /* Maps an NXM or OXM header value to an mf_field. */
464 struct nxm_field {
465 struct hmap_node hmap_node; /* In 'all_fields' hmap. */
466 uint32_t header; /* NXM or OXM header value. */
467 const struct mf_field *mf;
468 };
469
470 /* Contains 'struct nxm_field's. */
471 static struct hmap all_fields = HMAP_INITIALIZER(&all_fields);
472
473 /* Rate limit for parse errors. These always indicate a bug in an OpenFlow
474 * controller and so there's not much point in showing a lot of them. */
475 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
476
477 const struct mf_field *mf_from_nxm_header__(uint32_t header);
478
479 /* Returns the field with the given 'id'. */
480 const struct mf_field *
481 mf_from_id(enum mf_field_id id)
482 {
483 assert((unsigned int) id < MFF_N_IDS);
484 return &mf_fields[id];
485 }
486
487 /* Returns the field with the given 'name', or a null pointer if no field has
488 * that name. */
489 const struct mf_field *
490 mf_from_name(const char *name)
491 {
492 static struct shash mf_by_name = SHASH_INITIALIZER(&mf_by_name);
493
494 if (shash_is_empty(&mf_by_name)) {
495 const struct mf_field *mf;
496
497 for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
498 shash_add_once(&mf_by_name, mf->name, mf);
499 if (mf->extra_name) {
500 shash_add_once(&mf_by_name, mf->extra_name, mf);
501 }
502 }
503 }
504
505 return shash_find_data(&mf_by_name, name);
506 }
507
508 static void
509 add_nxm_field(uint32_t header, const struct mf_field *mf)
510 {
511 struct nxm_field *f;
512
513 f = xmalloc(sizeof *f);
514 hmap_insert(&all_fields, &f->hmap_node, hash_int(header, 0));
515 f->header = header;
516 f->mf = mf;
517 }
518
519 static void
520 nxm_init_add_field(const struct mf_field *mf, uint32_t header)
521 {
522 if (header) {
523 assert(!mf_from_nxm_header__(header));
524 add_nxm_field(header, mf);
525 if (mf->maskable != MFM_NONE) {
526 add_nxm_field(NXM_MAKE_WILD_HEADER(header), mf);
527 }
528 }
529 }
530
531 static void
532 nxm_init(void)
533 {
534 const struct mf_field *mf;
535
536 for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
537 nxm_init_add_field(mf, mf->nxm_header);
538 if (mf->oxm_header != mf->nxm_header) {
539 nxm_init_add_field(mf, mf->oxm_header);
540 }
541 }
542 }
543
544 const struct mf_field *
545 mf_from_nxm_header(uint32_t header)
546 {
547 if (hmap_is_empty(&all_fields)) {
548 nxm_init();
549 }
550 return mf_from_nxm_header__(header);
551 }
552
553 const struct mf_field *
554 mf_from_nxm_header__(uint32_t header)
555 {
556 const struct nxm_field *f;
557
558 HMAP_FOR_EACH_IN_BUCKET (f, hmap_node, hash_int(header, 0), &all_fields) {
559 if (f->header == header) {
560 return f->mf;
561 }
562 }
563
564 return NULL;
565 }
566
567 /* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc'
568 * specifies at least one bit in the field.
569 *
570 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
571 * meets 'mf''s prerequisites. */
572 bool
573 mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc)
574 {
575 switch (mf->id) {
576 case MFF_TUN_ID:
577 return !wc->tun_id_mask;
578 case MFF_METADATA:
579 return !wc->metadata_mask;
580 case MFF_IN_PORT:
581 return !wc->in_port_mask;
582 CASE_MFF_REGS:
583 return !wc->reg_masks[mf->id - MFF_REG0];
584
585 case MFF_ETH_SRC:
586 return eth_addr_is_zero(wc->dl_src_mask);
587 case MFF_ETH_DST:
588 return eth_addr_is_zero(wc->dl_dst_mask);
589 case MFF_ETH_TYPE:
590 return !wc->dl_type_mask;
591
592 case MFF_ARP_SHA:
593 case MFF_ND_SLL:
594 return eth_addr_is_zero(wc->arp_sha_mask);
595
596 case MFF_ARP_THA:
597 case MFF_ND_TLL:
598 return eth_addr_is_zero(wc->arp_tha_mask);
599
600 case MFF_VLAN_TCI:
601 return !wc->vlan_tci_mask;
602 case MFF_DL_VLAN:
603 return !(wc->vlan_tci_mask & htons(VLAN_VID_MASK));
604 case MFF_VLAN_VID:
605 return !(wc->vlan_tci_mask & htons(VLAN_VID_MASK | VLAN_CFI));
606 case MFF_DL_VLAN_PCP:
607 case MFF_VLAN_PCP:
608 return !(wc->vlan_tci_mask & htons(VLAN_PCP_MASK));
609
610 case MFF_IPV4_SRC:
611 return !wc->nw_src_mask;
612 case MFF_IPV4_DST:
613 return !wc->nw_dst_mask;
614
615 case MFF_IPV6_SRC:
616 return ipv6_mask_is_any(&wc->ipv6_src_mask);
617 case MFF_IPV6_DST:
618 return ipv6_mask_is_any(&wc->ipv6_dst_mask);
619
620 case MFF_IPV6_LABEL:
621 return !wc->ipv6_label_mask;
622
623 case MFF_IP_PROTO:
624 return !wc->nw_proto_mask;
625 case MFF_IP_DSCP:
626 return !(wc->nw_tos_mask & IP_DSCP_MASK);
627 case MFF_IP_ECN:
628 return !(wc->nw_tos_mask & IP_ECN_MASK);
629 case MFF_IP_TTL:
630 return !wc->nw_ttl_mask;
631
632 case MFF_ND_TARGET:
633 return ipv6_mask_is_any(&wc->nd_target_mask);
634
635 case MFF_IP_FRAG:
636 return !(wc->nw_frag_mask & FLOW_NW_FRAG_MASK);
637
638 case MFF_ARP_OP:
639 return !wc->nw_proto_mask;
640 case MFF_ARP_SPA:
641 return !wc->nw_src_mask;
642 case MFF_ARP_TPA:
643 return !wc->nw_dst_mask;
644
645 case MFF_TCP_SRC:
646 case MFF_UDP_SRC:
647 case MFF_ICMPV4_TYPE:
648 case MFF_ICMPV6_TYPE:
649 return !wc->tp_src_mask;
650 case MFF_TCP_DST:
651 case MFF_UDP_DST:
652 case MFF_ICMPV4_CODE:
653 case MFF_ICMPV6_CODE:
654 return !wc->tp_dst_mask;
655
656 case MFF_N_IDS:
657 default:
658 NOT_REACHED();
659 }
660 }
661
662 /* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'.
663 * Each bit in 'mask' will be set to 1 if the bit is significant for matching
664 * purposes, or to 0 if it is wildcarded.
665 *
666 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
667 * meets 'mf''s prerequisites. */
668 void
669 mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc,
670 union mf_value *mask)
671 {
672 switch (mf->id) {
673 case MFF_TUN_ID:
674 mask->be64 = wc->tun_id_mask;
675 break;
676 case MFF_METADATA:
677 mask->be64 = wc->metadata_mask;
678 break;
679 case MFF_IN_PORT:
680 mask->be16 = htons(wc->in_port_mask);
681 break;
682 CASE_MFF_REGS:
683 mask->be32 = htonl(wc->reg_masks[mf->id - MFF_REG0]);
684 break;
685
686 case MFF_ETH_DST:
687 memcpy(mask->mac, wc->dl_dst_mask, ETH_ADDR_LEN);
688 break;
689 case MFF_ETH_SRC:
690 memcpy(mask->mac, wc->dl_src_mask, ETH_ADDR_LEN);
691 break;
692 case MFF_ETH_TYPE:
693 mask->be16 = wc->dl_type_mask;
694 break;
695
696 case MFF_VLAN_TCI:
697 mask->be16 = wc->vlan_tci_mask;
698 break;
699 case MFF_DL_VLAN:
700 mask->be16 = wc->vlan_tci_mask & htons(VLAN_VID_MASK);
701 break;
702 case MFF_VLAN_VID:
703 mask->be16 = wc->vlan_tci_mask & htons(VLAN_VID_MASK | VLAN_CFI);
704 break;
705 case MFF_DL_VLAN_PCP:
706 case MFF_VLAN_PCP:
707 mask->u8 = vlan_tci_to_pcp(wc->vlan_tci_mask);
708 break;
709
710 case MFF_IPV4_SRC:
711 mask->be32 = wc->nw_src_mask;
712 break;
713 case MFF_IPV4_DST:
714 mask->be32 = wc->nw_dst_mask;
715 break;
716
717 case MFF_IPV6_SRC:
718 mask->ipv6 = wc->ipv6_src_mask;
719 break;
720 case MFF_IPV6_DST:
721 mask->ipv6 = wc->ipv6_dst_mask;
722 break;
723 case MFF_IPV6_LABEL:
724 mask->be32 = wc->ipv6_label_mask;
725 break;
726
727 case MFF_IP_PROTO:
728 mask->u8 = wc->nw_proto_mask;
729 break;
730 case MFF_IP_DSCP:
731 mask->u8 = wc->nw_tos_mask & IP_DSCP_MASK;
732 break;
733 case MFF_IP_ECN:
734 mask->u8 = wc->nw_tos_mask & IP_ECN_MASK;
735 break;
736
737 case MFF_ND_TARGET:
738 mask->ipv6 = wc->nd_target_mask;
739 break;
740
741 case MFF_IP_TTL:
742 mask->u8 = wc->nw_ttl_mask;
743 break;
744 case MFF_IP_FRAG:
745 mask->u8 = wc->nw_frag_mask & FLOW_NW_FRAG_MASK;
746 break;
747
748 case MFF_ARP_OP:
749 mask->u8 = wc->nw_proto_mask;
750 break;
751 case MFF_ARP_SPA:
752 mask->be32 = wc->nw_src_mask;
753 break;
754 case MFF_ARP_TPA:
755 mask->be32 = wc->nw_dst_mask;
756 break;
757 case MFF_ARP_SHA:
758 case MFF_ND_SLL:
759 memcpy(mask->mac, wc->arp_sha_mask, ETH_ADDR_LEN);
760 break;
761 case MFF_ARP_THA:
762 case MFF_ND_TLL:
763 memcpy(mask->mac, wc->arp_tha_mask, ETH_ADDR_LEN);
764 break;
765
766 case MFF_TCP_SRC:
767 case MFF_UDP_SRC:
768 mask->be16 = wc->tp_src_mask;
769 break;
770 case MFF_TCP_DST:
771 case MFF_UDP_DST:
772 mask->be16 = wc->tp_dst_mask;
773 break;
774
775 case MFF_ICMPV4_TYPE:
776 case MFF_ICMPV6_TYPE:
777 mask->u8 = ntohs(wc->tp_src_mask);
778 break;
779 case MFF_ICMPV4_CODE:
780 case MFF_ICMPV6_CODE:
781 mask->u8 = ntohs(wc->tp_dst_mask);
782 break;
783
784 case MFF_N_IDS:
785 default:
786 NOT_REACHED();
787 }
788 }
789
790 /* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true
791 * if the mask is valid, false otherwise. */
792 bool
793 mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask)
794 {
795 switch (mf->maskable) {
796 case MFM_NONE:
797 return (is_all_zeros((const uint8_t *) mask, mf->n_bytes) ||
798 is_all_ones((const uint8_t *) mask, mf->n_bytes));
799
800 case MFM_FULLY:
801 return true;
802 }
803
804 NOT_REACHED();
805 }
806
807 static bool
808 is_ip_any(const struct flow *flow)
809 {
810 return (flow->dl_type == htons(ETH_TYPE_IP) ||
811 flow->dl_type == htons(ETH_TYPE_IPV6));
812 }
813
814 static bool
815 is_icmpv4(const struct flow *flow)
816 {
817 return (flow->dl_type == htons(ETH_TYPE_IP)
818 && flow->nw_proto == IPPROTO_ICMP);
819 }
820
821 static bool
822 is_icmpv6(const struct flow *flow)
823 {
824 return (flow->dl_type == htons(ETH_TYPE_IPV6)
825 && flow->nw_proto == IPPROTO_ICMPV6);
826 }
827
828 /* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. */
829 bool
830 mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow)
831 {
832 switch (mf->prereqs) {
833 case MFP_NONE:
834 return true;
835
836 case MFP_ARP:
837 return flow->dl_type == htons(ETH_TYPE_ARP);
838 case MFP_IPV4:
839 return flow->dl_type == htons(ETH_TYPE_IP);
840 case MFP_IPV6:
841 return flow->dl_type == htons(ETH_TYPE_IPV6);
842 case MFP_VLAN_VID:
843 return (flow->vlan_tci & htons(VLAN_CFI)) != 0;
844 case MFP_IP_ANY:
845 return is_ip_any(flow);
846
847 case MFP_TCP:
848 return is_ip_any(flow) && flow->nw_proto == IPPROTO_TCP;
849 case MFP_UDP:
850 return is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP;
851 case MFP_ICMPV4:
852 return is_icmpv4(flow);
853 case MFP_ICMPV6:
854 return is_icmpv6(flow);
855
856 case MFP_ND:
857 return (is_icmpv6(flow)
858 && flow->tp_dst == htons(0)
859 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
860 flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
861 case MFP_ND_SOLICIT:
862 return (is_icmpv6(flow)
863 && flow->tp_dst == htons(0)
864 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)));
865 case MFP_ND_ADVERT:
866 return (is_icmpv6(flow)
867 && flow->tp_dst == htons(0)
868 && (flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
869 }
870
871 NOT_REACHED();
872 }
873
874 /* Returns true if 'value' may be a valid value *as part of a masked match*,
875 * false otherwise.
876 *
877 * A value is not rejected just because it is not valid for the field in
878 * question, but only if it doesn't make sense to test the bits in question at
879 * all. For example, the MFF_VLAN_TCI field will never have a nonzero value
880 * without the VLAN_CFI bit being set, but we can't reject those values because
881 * it is still legitimate to test just for those bits (see the documentation
882 * for NXM_OF_VLAN_TCI in nicira-ext.h). On the other hand, there is never a
883 * reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */
884 bool
885 mf_is_value_valid(const struct mf_field *mf, const union mf_value *value)
886 {
887 switch (mf->id) {
888 case MFF_TUN_ID:
889 case MFF_METADATA:
890 case MFF_IN_PORT:
891 CASE_MFF_REGS:
892 case MFF_ETH_SRC:
893 case MFF_ETH_DST:
894 case MFF_ETH_TYPE:
895 case MFF_VLAN_TCI:
896 case MFF_IPV4_SRC:
897 case MFF_IPV4_DST:
898 case MFF_IPV6_SRC:
899 case MFF_IPV6_DST:
900 case MFF_IP_PROTO:
901 case MFF_IP_TTL:
902 case MFF_ARP_SPA:
903 case MFF_ARP_TPA:
904 case MFF_ARP_SHA:
905 case MFF_ARP_THA:
906 case MFF_TCP_SRC:
907 case MFF_TCP_DST:
908 case MFF_UDP_SRC:
909 case MFF_UDP_DST:
910 case MFF_ICMPV4_TYPE:
911 case MFF_ICMPV4_CODE:
912 case MFF_ICMPV6_TYPE:
913 case MFF_ICMPV6_CODE:
914 case MFF_ND_TARGET:
915 case MFF_ND_SLL:
916 case MFF_ND_TLL:
917 return true;
918
919 case MFF_IP_DSCP:
920 return !(value->u8 & ~IP_DSCP_MASK);
921 case MFF_IP_ECN:
922 return !(value->u8 & ~IP_ECN_MASK);
923 case MFF_IP_FRAG:
924 return !(value->u8 & ~FLOW_NW_FRAG_MASK);
925
926 case MFF_ARP_OP:
927 return !(value->be16 & htons(0xff00));
928
929 case MFF_DL_VLAN:
930 return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK));
931 case MFF_VLAN_VID:
932 return !(value->be16 & htons(VLAN_PCP_MASK));
933
934 case MFF_DL_VLAN_PCP:
935 case MFF_VLAN_PCP:
936 return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT));
937
938 case MFF_IPV6_LABEL:
939 return !(value->be32 & ~htonl(IPV6_LABEL_MASK));
940
941 case MFF_N_IDS:
942 default:
943 NOT_REACHED();
944 }
945 }
946
947 /* Copies the value of field 'mf' from 'flow' into 'value'. The caller is
948 * responsible for ensuring that 'flow' meets 'mf''s prerequisites. */
949 void
950 mf_get_value(const struct mf_field *mf, const struct flow *flow,
951 union mf_value *value)
952 {
953 switch (mf->id) {
954 case MFF_TUN_ID:
955 value->be64 = flow->tun_id;
956 break;
957 case MFF_METADATA:
958 value->be64 = flow->metadata;
959 break;
960
961 case MFF_IN_PORT:
962 value->be16 = htons(flow->in_port);
963 break;
964
965 CASE_MFF_REGS:
966 value->be32 = htonl(flow->regs[mf->id - MFF_REG0]);
967 break;
968
969 case MFF_ETH_SRC:
970 memcpy(value->mac, flow->dl_src, ETH_ADDR_LEN);
971 break;
972
973 case MFF_ETH_DST:
974 memcpy(value->mac, flow->dl_dst, ETH_ADDR_LEN);
975 break;
976
977 case MFF_ETH_TYPE:
978 value->be16 = flow->dl_type;
979 break;
980
981 case MFF_VLAN_TCI:
982 value->be16 = flow->vlan_tci;
983 break;
984
985 case MFF_DL_VLAN:
986 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK);
987 break;
988 case MFF_VLAN_VID:
989 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI);
990 break;
991
992 case MFF_DL_VLAN_PCP:
993 case MFF_VLAN_PCP:
994 value->u8 = vlan_tci_to_pcp(flow->vlan_tci);
995 break;
996
997 case MFF_IPV4_SRC:
998 value->be32 = flow->nw_src;
999 break;
1000
1001 case MFF_IPV4_DST:
1002 value->be32 = flow->nw_dst;
1003 break;
1004
1005 case MFF_IPV6_SRC:
1006 value->ipv6 = flow->ipv6_src;
1007 break;
1008
1009 case MFF_IPV6_DST:
1010 value->ipv6 = flow->ipv6_dst;
1011 break;
1012
1013 case MFF_IPV6_LABEL:
1014 value->be32 = flow->ipv6_label;
1015 break;
1016
1017 case MFF_IP_PROTO:
1018 value->u8 = flow->nw_proto;
1019 break;
1020
1021 case MFF_IP_DSCP:
1022 value->u8 = flow->nw_tos & IP_DSCP_MASK;
1023 break;
1024
1025 case MFF_IP_ECN:
1026 value->u8 = flow->nw_tos & IP_ECN_MASK;
1027 break;
1028
1029 case MFF_IP_TTL:
1030 value->u8 = flow->nw_ttl;
1031 break;
1032
1033 case MFF_IP_FRAG:
1034 value->u8 = flow->nw_frag;
1035 break;
1036
1037 case MFF_ARP_OP:
1038 value->be16 = htons(flow->nw_proto);
1039 break;
1040
1041 case MFF_ARP_SPA:
1042 value->be32 = flow->nw_src;
1043 break;
1044
1045 case MFF_ARP_TPA:
1046 value->be32 = flow->nw_dst;
1047 break;
1048
1049 case MFF_ARP_SHA:
1050 case MFF_ND_SLL:
1051 memcpy(value->mac, flow->arp_sha, ETH_ADDR_LEN);
1052 break;
1053
1054 case MFF_ARP_THA:
1055 case MFF_ND_TLL:
1056 memcpy(value->mac, flow->arp_tha, ETH_ADDR_LEN);
1057 break;
1058
1059 case MFF_TCP_SRC:
1060 case MFF_UDP_SRC:
1061 value->be16 = flow->tp_src;
1062 break;
1063
1064 case MFF_TCP_DST:
1065 case MFF_UDP_DST:
1066 value->be16 = flow->tp_dst;
1067 break;
1068
1069 case MFF_ICMPV4_TYPE:
1070 case MFF_ICMPV6_TYPE:
1071 value->u8 = ntohs(flow->tp_src);
1072 break;
1073
1074 case MFF_ICMPV4_CODE:
1075 case MFF_ICMPV6_CODE:
1076 value->u8 = ntohs(flow->tp_dst);
1077 break;
1078
1079 case MFF_ND_TARGET:
1080 value->ipv6 = flow->nd_target;
1081 break;
1082
1083 case MFF_N_IDS:
1084 default:
1085 NOT_REACHED();
1086 }
1087 }
1088
1089 /* Makes 'rule' match field 'mf' exactly, with the value matched taken from
1090 * 'value'. The caller is responsible for ensuring that 'rule' meets 'mf''s
1091 * prerequisites. */
1092 void
1093 mf_set_value(const struct mf_field *mf,
1094 const union mf_value *value, struct cls_rule *rule)
1095 {
1096 switch (mf->id) {
1097 case MFF_TUN_ID:
1098 cls_rule_set_tun_id(rule, value->be64);
1099 break;
1100 case MFF_METADATA:
1101 cls_rule_set_metadata(rule, value->be64);
1102 break;
1103
1104 case MFF_IN_PORT:
1105 cls_rule_set_in_port(rule, ntohs(value->be16));
1106 break;
1107
1108 CASE_MFF_REGS:
1109 cls_rule_set_reg(rule, mf->id - MFF_REG0, ntohl(value->be32));
1110 break;
1111
1112 case MFF_ETH_SRC:
1113 cls_rule_set_dl_src(rule, value->mac);
1114 break;
1115
1116 case MFF_ETH_DST:
1117 cls_rule_set_dl_dst(rule, value->mac);
1118 break;
1119
1120 case MFF_ETH_TYPE:
1121 cls_rule_set_dl_type(rule, value->be16);
1122 break;
1123
1124 case MFF_VLAN_TCI:
1125 cls_rule_set_dl_tci(rule, value->be16);
1126 break;
1127
1128 case MFF_DL_VLAN:
1129 cls_rule_set_dl_vlan(rule, value->be16);
1130 break;
1131 case MFF_VLAN_VID:
1132 cls_rule_set_vlan_vid(rule, value->be16);
1133 break;
1134
1135 case MFF_DL_VLAN_PCP:
1136 case MFF_VLAN_PCP:
1137 cls_rule_set_dl_vlan_pcp(rule, value->u8);
1138 break;
1139
1140 case MFF_IPV4_SRC:
1141 cls_rule_set_nw_src(rule, value->be32);
1142 break;
1143
1144 case MFF_IPV4_DST:
1145 cls_rule_set_nw_dst(rule, value->be32);
1146 break;
1147
1148 case MFF_IPV6_SRC:
1149 cls_rule_set_ipv6_src(rule, &value->ipv6);
1150 break;
1151
1152 case MFF_IPV6_DST:
1153 cls_rule_set_ipv6_dst(rule, &value->ipv6);
1154 break;
1155
1156 case MFF_IPV6_LABEL:
1157 cls_rule_set_ipv6_label(rule, value->be32);
1158 break;
1159
1160 case MFF_IP_PROTO:
1161 cls_rule_set_nw_proto(rule, value->u8);
1162 break;
1163
1164 case MFF_IP_DSCP:
1165 cls_rule_set_nw_dscp(rule, value->u8);
1166 break;
1167
1168 case MFF_IP_ECN:
1169 cls_rule_set_nw_ecn(rule, value->u8);
1170 break;
1171
1172 case MFF_IP_TTL:
1173 cls_rule_set_nw_ttl(rule, value->u8);
1174 break;
1175
1176 case MFF_IP_FRAG:
1177 cls_rule_set_nw_frag(rule, value->u8);
1178 break;
1179
1180 case MFF_ARP_OP:
1181 cls_rule_set_nw_proto(rule, ntohs(value->be16));
1182 break;
1183
1184 case MFF_ARP_SPA:
1185 cls_rule_set_nw_src(rule, value->be32);
1186 break;
1187
1188 case MFF_ARP_TPA:
1189 cls_rule_set_nw_dst(rule, value->be32);
1190 break;
1191
1192 case MFF_ARP_SHA:
1193 case MFF_ND_SLL:
1194 cls_rule_set_arp_sha(rule, value->mac);
1195 break;
1196
1197 case MFF_ARP_THA:
1198 case MFF_ND_TLL:
1199 cls_rule_set_arp_tha(rule, value->mac);
1200 break;
1201
1202 case MFF_TCP_SRC:
1203 case MFF_UDP_SRC:
1204 cls_rule_set_tp_src(rule, value->be16);
1205 break;
1206
1207 case MFF_TCP_DST:
1208 case MFF_UDP_DST:
1209 cls_rule_set_tp_dst(rule, value->be16);
1210 break;
1211
1212 case MFF_ICMPV4_TYPE:
1213 case MFF_ICMPV6_TYPE:
1214 cls_rule_set_icmp_type(rule, value->u8);
1215 break;
1216
1217 case MFF_ICMPV4_CODE:
1218 case MFF_ICMPV6_CODE:
1219 cls_rule_set_icmp_code(rule, value->u8);
1220 break;
1221
1222 case MFF_ND_TARGET:
1223 cls_rule_set_nd_target(rule, &value->ipv6);
1224 break;
1225
1226 case MFF_N_IDS:
1227 default:
1228 NOT_REACHED();
1229 }
1230 }
1231
1232 /* Makes 'rule' match field 'mf' exactly, with the value matched taken from
1233 * 'value'. The caller is responsible for ensuring that 'rule' meets 'mf''s
1234 * prerequisites. */
1235 void
1236 mf_set_flow_value(const struct mf_field *mf,
1237 const union mf_value *value, struct flow *flow)
1238 {
1239 switch (mf->id) {
1240 case MFF_TUN_ID:
1241 flow->tun_id = value->be64;
1242 break;
1243 case MFF_METADATA:
1244 flow->metadata = value->be64;
1245 break;
1246
1247 case MFF_IN_PORT:
1248 flow->in_port = ntohs(value->be16);
1249 break;
1250
1251 CASE_MFF_REGS:
1252 flow->regs[mf->id - MFF_REG0] = ntohl(value->be32);
1253 break;
1254
1255 case MFF_ETH_SRC:
1256 memcpy(flow->dl_src, value->mac, ETH_ADDR_LEN);
1257 break;
1258
1259 case MFF_ETH_DST:
1260 memcpy(flow->dl_dst, value->mac, ETH_ADDR_LEN);
1261 break;
1262
1263 case MFF_ETH_TYPE:
1264 flow->dl_type = value->be16;
1265 break;
1266
1267 case MFF_VLAN_TCI:
1268 flow->vlan_tci = value->be16;
1269 break;
1270
1271 case MFF_DL_VLAN:
1272 flow_set_dl_vlan(flow, value->be16);
1273 break;
1274 case MFF_VLAN_VID:
1275 flow_set_vlan_vid(flow, value->be16);
1276 break;
1277
1278 case MFF_DL_VLAN_PCP:
1279 case MFF_VLAN_PCP:
1280 flow_set_vlan_pcp(flow, value->u8);
1281 break;
1282
1283 case MFF_IPV4_SRC:
1284 flow->nw_src = value->be32;
1285 break;
1286
1287 case MFF_IPV4_DST:
1288 flow->nw_dst = value->be32;
1289 break;
1290
1291 case MFF_IPV6_SRC:
1292 flow->ipv6_src = value->ipv6;
1293 break;
1294
1295 case MFF_IPV6_DST:
1296 flow->ipv6_dst = value->ipv6;
1297 break;
1298
1299 case MFF_IPV6_LABEL:
1300 flow->ipv6_label = value->be32 & ~htonl(IPV6_LABEL_MASK);
1301 break;
1302
1303 case MFF_IP_PROTO:
1304 flow->nw_proto = value->u8;
1305 break;
1306
1307 case MFF_IP_DSCP:
1308 flow->nw_tos &= ~IP_DSCP_MASK;
1309 flow->nw_tos |= value->u8 & IP_DSCP_MASK;
1310 break;
1311
1312 case MFF_IP_ECN:
1313 flow->nw_tos &= ~IP_ECN_MASK;
1314 flow->nw_tos |= value->u8 & IP_ECN_MASK;
1315 break;
1316
1317 case MFF_IP_TTL:
1318 flow->nw_ttl = value->u8;
1319 break;
1320
1321 case MFF_IP_FRAG:
1322 flow->nw_frag &= value->u8;
1323 break;
1324
1325 case MFF_ARP_OP:
1326 flow->nw_proto = ntohs(value->be16);
1327 break;
1328
1329 case MFF_ARP_SPA:
1330 flow->nw_src = value->be32;
1331 break;
1332
1333 case MFF_ARP_TPA:
1334 flow->nw_dst = value->be32;
1335 break;
1336
1337 case MFF_ARP_SHA:
1338 case MFF_ND_SLL:
1339 memcpy(flow->arp_sha, value->mac, ETH_ADDR_LEN);
1340 break;
1341
1342 case MFF_ARP_THA:
1343 case MFF_ND_TLL:
1344 memcpy(flow->arp_tha, value->mac, ETH_ADDR_LEN);
1345 break;
1346
1347 case MFF_TCP_SRC:
1348 case MFF_UDP_SRC:
1349 flow->tp_src = value->be16;
1350 break;
1351
1352 case MFF_TCP_DST:
1353 case MFF_UDP_DST:
1354 flow->tp_dst = value->be16;
1355 break;
1356
1357 case MFF_ICMPV4_TYPE:
1358 case MFF_ICMPV6_TYPE:
1359 flow->tp_src = htons(value->u8);
1360 break;
1361
1362 case MFF_ICMPV4_CODE:
1363 case MFF_ICMPV6_CODE:
1364 flow->tp_dst = htons(value->u8);
1365 break;
1366
1367 case MFF_ND_TARGET:
1368 flow->nd_target = value->ipv6;
1369 break;
1370
1371 case MFF_N_IDS:
1372 default:
1373 NOT_REACHED();
1374 }
1375 }
1376
1377 /* Returns true if 'mf' has a zero value in 'flow', false if it is nonzero.
1378 *
1379 * The caller is responsible for ensuring that 'flow' meets 'mf''s
1380 * prerequisites. */
1381 bool
1382 mf_is_zero(const struct mf_field *mf, const struct flow *flow)
1383 {
1384 union mf_value value;
1385
1386 mf_get_value(mf, flow, &value);
1387 return is_all_zeros((const uint8_t *) &value, mf->n_bytes);
1388 }
1389
1390 /* Makes 'rule' wildcard field 'mf'.
1391 *
1392 * The caller is responsible for ensuring that 'rule' meets 'mf''s
1393 * prerequisites. */
1394 void
1395 mf_set_wild(const struct mf_field *mf, struct cls_rule *rule)
1396 {
1397 switch (mf->id) {
1398 case MFF_TUN_ID:
1399 cls_rule_set_tun_id_masked(rule, htonll(0), htonll(0));
1400 break;
1401 case MFF_METADATA:
1402 cls_rule_set_metadata_masked(rule, htonll(0), htonll(0));
1403
1404 case MFF_IN_PORT:
1405 rule->flow.in_port = 0;
1406 rule->wc.in_port_mask = 0;
1407 break;
1408
1409 CASE_MFF_REGS:
1410 cls_rule_set_reg_masked(rule, mf->id - MFF_REG0, 0, 0);
1411 break;
1412
1413 case MFF_ETH_SRC:
1414 memset(rule->flow.dl_src, 0, ETH_ADDR_LEN);
1415 memset(rule->wc.dl_src_mask, 0, ETH_ADDR_LEN);
1416 break;
1417
1418 case MFF_ETH_DST:
1419 memset(rule->flow.dl_dst, 0, ETH_ADDR_LEN);
1420 memset(rule->wc.dl_dst_mask, 0, ETH_ADDR_LEN);
1421 break;
1422
1423 case MFF_ETH_TYPE:
1424 rule->flow.dl_type = htons(0);
1425 rule->wc.dl_type_mask = htons(0);
1426 break;
1427
1428 case MFF_VLAN_TCI:
1429 cls_rule_set_dl_tci_masked(rule, htons(0), htons(0));
1430 break;
1431
1432 case MFF_DL_VLAN:
1433 case MFF_VLAN_VID:
1434 cls_rule_set_any_vid(rule);
1435 break;
1436
1437 case MFF_DL_VLAN_PCP:
1438 case MFF_VLAN_PCP:
1439 cls_rule_set_any_pcp(rule);
1440 break;
1441
1442 case MFF_IPV4_SRC:
1443 case MFF_ARP_SPA:
1444 cls_rule_set_nw_src_masked(rule, htonl(0), htonl(0));
1445 break;
1446
1447 case MFF_IPV4_DST:
1448 case MFF_ARP_TPA:
1449 cls_rule_set_nw_dst_masked(rule, htonl(0), htonl(0));
1450 break;
1451
1452 case MFF_IPV6_SRC:
1453 memset(&rule->wc.ipv6_src_mask, 0, sizeof rule->wc.ipv6_src_mask);
1454 memset(&rule->flow.ipv6_src, 0, sizeof rule->flow.ipv6_src);
1455 break;
1456
1457 case MFF_IPV6_DST:
1458 memset(&rule->wc.ipv6_dst_mask, 0, sizeof rule->wc.ipv6_dst_mask);
1459 memset(&rule->flow.ipv6_dst, 0, sizeof rule->flow.ipv6_dst);
1460 break;
1461
1462 case MFF_IPV6_LABEL:
1463 rule->wc.ipv6_label_mask = 0;
1464 rule->flow.ipv6_label = 0;
1465 break;
1466
1467 case MFF_IP_PROTO:
1468 rule->wc.nw_proto_mask = 0;
1469 rule->flow.nw_proto = 0;
1470 break;
1471
1472 case MFF_IP_DSCP:
1473 rule->wc.nw_tos_mask &= ~IP_DSCP_MASK;
1474 rule->flow.nw_tos &= ~IP_DSCP_MASK;
1475 break;
1476
1477 case MFF_IP_ECN:
1478 rule->wc.nw_tos_mask &= ~IP_ECN_MASK;
1479 rule->flow.nw_tos &= ~IP_ECN_MASK;
1480 break;
1481
1482 case MFF_IP_TTL:
1483 rule->wc.nw_ttl_mask = 0;
1484 rule->flow.nw_ttl = 0;
1485 break;
1486
1487 case MFF_IP_FRAG:
1488 rule->wc.nw_frag_mask |= FLOW_NW_FRAG_MASK;
1489 rule->flow.nw_frag &= ~FLOW_NW_FRAG_MASK;
1490 break;
1491
1492 case MFF_ARP_OP:
1493 rule->wc.nw_proto_mask = 0;
1494 rule->flow.nw_proto = 0;
1495 break;
1496
1497 case MFF_ARP_SHA:
1498 case MFF_ND_SLL:
1499 memset(rule->flow.arp_sha, 0, ETH_ADDR_LEN);
1500 memset(rule->wc.arp_sha_mask, 0, ETH_ADDR_LEN);
1501 break;
1502
1503 case MFF_ARP_THA:
1504 case MFF_ND_TLL:
1505 memset(rule->flow.arp_tha, 0, ETH_ADDR_LEN);
1506 memset(rule->wc.arp_tha_mask, 0, ETH_ADDR_LEN);
1507 break;
1508
1509 case MFF_TCP_SRC:
1510 case MFF_UDP_SRC:
1511 case MFF_ICMPV4_TYPE:
1512 case MFF_ICMPV6_TYPE:
1513 rule->wc.tp_src_mask = htons(0);
1514 rule->flow.tp_src = htons(0);
1515 break;
1516
1517 case MFF_TCP_DST:
1518 case MFF_UDP_DST:
1519 case MFF_ICMPV4_CODE:
1520 case MFF_ICMPV6_CODE:
1521 rule->wc.tp_dst_mask = htons(0);
1522 rule->flow.tp_dst = htons(0);
1523 break;
1524
1525 case MFF_ND_TARGET:
1526 memset(&rule->wc.nd_target_mask, 0, sizeof rule->wc.nd_target_mask);
1527 memset(&rule->flow.nd_target, 0, sizeof rule->flow.nd_target);
1528 break;
1529
1530 case MFF_N_IDS:
1531 default:
1532 NOT_REACHED();
1533 }
1534 }
1535
1536 /* Makes 'rule' match field 'mf' with the specified 'value' and 'mask'.
1537 * 'value' specifies a value to match and 'mask' specifies a wildcard pattern,
1538 * with a 1-bit indicating that the corresponding value bit must match and a
1539 * 0-bit indicating a don't-care.
1540 *
1541 * If 'mask' is NULL or points to all-1-bits, then this call is equivalent to
1542 * mf_set_value(mf, value, rule). If 'mask' points to all-0-bits, then this
1543 * call is equivalent to mf_set_wild(mf, rule).
1544 *
1545 * 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller
1546 * is responsible for ensuring that 'rule' meets 'mf''s prerequisites. */
1547 void
1548 mf_set(const struct mf_field *mf,
1549 const union mf_value *value, const union mf_value *mask,
1550 struct cls_rule *rule)
1551 {
1552 if (!mask || is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
1553 mf_set_value(mf, value, rule);
1554 return;
1555 } else if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
1556 mf_set_wild(mf, rule);
1557 return;
1558 }
1559
1560 switch (mf->id) {
1561 case MFF_IN_PORT:
1562 case MFF_ETH_TYPE:
1563 case MFF_DL_VLAN:
1564 case MFF_DL_VLAN_PCP:
1565 case MFF_VLAN_PCP:
1566 case MFF_IP_PROTO:
1567 case MFF_IP_TTL:
1568 case MFF_IP_DSCP:
1569 case MFF_IP_ECN:
1570 case MFF_ARP_OP:
1571 case MFF_ICMPV4_TYPE:
1572 case MFF_ICMPV4_CODE:
1573 case MFF_ICMPV6_TYPE:
1574 case MFF_ICMPV6_CODE:
1575 NOT_REACHED();
1576
1577 case MFF_TUN_ID:
1578 cls_rule_set_tun_id_masked(rule, value->be64, mask->be64);
1579 break;
1580 case MFF_METADATA:
1581 cls_rule_set_metadata_masked(rule, value->be64, mask->be64);
1582 break;
1583
1584 CASE_MFF_REGS:
1585 cls_rule_set_reg_masked(rule, mf->id - MFF_REG0,
1586 ntohl(value->be32), ntohl(mask->be32));
1587 break;
1588
1589 case MFF_ETH_DST:
1590 cls_rule_set_dl_dst_masked(rule, value->mac, mask->mac);
1591 break;
1592
1593 case MFF_ETH_SRC:
1594 cls_rule_set_dl_src_masked(rule, value->mac, mask->mac);
1595 break;
1596
1597 case MFF_ARP_SHA:
1598 case MFF_ND_SLL:
1599 cls_rule_set_arp_sha_masked(rule, value->mac, mask->mac);
1600 break;
1601
1602 case MFF_ARP_THA:
1603 case MFF_ND_TLL:
1604 cls_rule_set_arp_tha_masked(rule, value->mac, mask->mac);
1605 break;
1606
1607 case MFF_VLAN_TCI:
1608 cls_rule_set_dl_tci_masked(rule, value->be16, mask->be16);
1609 break;
1610
1611 case MFF_VLAN_VID:
1612 cls_rule_set_vlan_vid_masked(rule, value->be16, mask->be16);
1613 break;
1614
1615 case MFF_IPV4_SRC:
1616 cls_rule_set_nw_src_masked(rule, value->be32, mask->be32);
1617 break;
1618
1619 case MFF_IPV4_DST:
1620 cls_rule_set_nw_dst_masked(rule, value->be32, mask->be32);
1621 break;
1622
1623 case MFF_IPV6_SRC:
1624 cls_rule_set_ipv6_src_masked(rule, &value->ipv6, &mask->ipv6);
1625 break;
1626
1627 case MFF_IPV6_DST:
1628 cls_rule_set_ipv6_dst_masked(rule, &value->ipv6, &mask->ipv6);
1629 break;
1630
1631 case MFF_IPV6_LABEL:
1632 if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) {
1633 mf_set_value(mf, value, rule);
1634 } else {
1635 cls_rule_set_ipv6_label_masked(rule, value->be32, mask->be32);
1636 }
1637 break;
1638
1639 case MFF_ND_TARGET:
1640 cls_rule_set_nd_target_masked(rule, &value->ipv6, &mask->ipv6);
1641 break;
1642
1643 case MFF_IP_FRAG:
1644 cls_rule_set_nw_frag_masked(rule, value->u8, mask->u8);
1645 break;
1646
1647 case MFF_ARP_SPA:
1648 cls_rule_set_nw_src_masked(rule, value->be32, mask->be32);
1649 break;
1650
1651 case MFF_ARP_TPA:
1652 cls_rule_set_nw_dst_masked(rule, value->be32, mask->be32);
1653 break;
1654
1655 case MFF_TCP_SRC:
1656 case MFF_UDP_SRC:
1657 cls_rule_set_tp_src_masked(rule, value->be16, mask->be16);
1658 break;
1659
1660 case MFF_TCP_DST:
1661 case MFF_UDP_DST:
1662 cls_rule_set_tp_dst_masked(rule, value->be16, mask->be16);
1663 break;
1664
1665 case MFF_N_IDS:
1666 default:
1667 NOT_REACHED();
1668 }
1669 }
1670
1671 static enum ofperr
1672 mf_check__(const struct mf_subfield *sf, const struct flow *flow,
1673 const char *type)
1674 {
1675 if (!sf->field) {
1676 VLOG_WARN_RL(&rl, "unknown %s field", type);
1677 } else if (!sf->n_bits) {
1678 VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name);
1679 } else if (sf->ofs >= sf->field->n_bits) {
1680 VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s",
1681 sf->ofs, sf->field->n_bits, type, sf->field->name);
1682 } else if (sf->ofs + sf->n_bits > sf->field->n_bits) {
1683 VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width "
1684 "of %s field %s", sf->ofs, sf->n_bits,
1685 sf->field->n_bits, type, sf->field->name);
1686 } else if (flow && !mf_are_prereqs_ok(sf->field, flow)) {
1687 VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites",
1688 type, sf->field->name);
1689 } else {
1690 return 0;
1691 }
1692
1693 return OFPERR_OFPBAC_BAD_ARGUMENT;
1694 }
1695
1696 /* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns
1697 * 0 if so, otherwise an OpenFlow error code (e.g. as returned by
1698 * ofp_mkerr()). */
1699 enum ofperr
1700 mf_check_src(const struct mf_subfield *sf, const struct flow *flow)
1701 {
1702 return mf_check__(sf, flow, "source");
1703 }
1704
1705 /* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0
1706 * if so, otherwise an OpenFlow error code (e.g. as returned by
1707 * ofp_mkerr()). */
1708 enum ofperr
1709 mf_check_dst(const struct mf_subfield *sf, const struct flow *flow)
1710 {
1711 int error = mf_check__(sf, flow, "destination");
1712 if (!error && !sf->field->writable) {
1713 VLOG_WARN_RL(&rl, "destination field %s is not writable",
1714 sf->field->name);
1715 return OFPERR_OFPBAC_BAD_ARGUMENT;
1716 }
1717 return error;
1718 }
1719
1720 /* Copies the value and wildcard bit pattern for 'mf' from 'rule' into the
1721 * 'value' and 'mask', respectively. */
1722 void
1723 mf_get(const struct mf_field *mf, const struct cls_rule *rule,
1724 union mf_value *value, union mf_value *mask)
1725 {
1726 mf_get_value(mf, &rule->flow, value);
1727 mf_get_mask(mf, &rule->wc, mask);
1728 }
1729
1730 /* Assigns a random value for field 'mf' to 'value'. */
1731 void
1732 mf_random_value(const struct mf_field *mf, union mf_value *value)
1733 {
1734 random_bytes(value, mf->n_bytes);
1735
1736 switch (mf->id) {
1737 case MFF_TUN_ID:
1738 case MFF_METADATA:
1739 case MFF_IN_PORT:
1740 CASE_MFF_REGS:
1741 case MFF_ETH_SRC:
1742 case MFF_ETH_DST:
1743 case MFF_ETH_TYPE:
1744 case MFF_VLAN_TCI:
1745 case MFF_IPV4_SRC:
1746 case MFF_IPV4_DST:
1747 case MFF_IPV6_SRC:
1748 case MFF_IPV6_DST:
1749 case MFF_IP_PROTO:
1750 case MFF_IP_TTL:
1751 case MFF_ARP_SPA:
1752 case MFF_ARP_TPA:
1753 case MFF_ARP_SHA:
1754 case MFF_ARP_THA:
1755 case MFF_TCP_SRC:
1756 case MFF_TCP_DST:
1757 case MFF_UDP_SRC:
1758 case MFF_UDP_DST:
1759 case MFF_ICMPV4_TYPE:
1760 case MFF_ICMPV4_CODE:
1761 case MFF_ICMPV6_TYPE:
1762 case MFF_ICMPV6_CODE:
1763 case MFF_ND_TARGET:
1764 case MFF_ND_SLL:
1765 case MFF_ND_TLL:
1766 break;
1767
1768 case MFF_IPV6_LABEL:
1769 value->be32 &= ~htonl(IPV6_LABEL_MASK);
1770 break;
1771
1772 case MFF_IP_DSCP:
1773 value->u8 &= IP_DSCP_MASK;
1774 break;
1775
1776 case MFF_IP_ECN:
1777 value->u8 &= IP_ECN_MASK;
1778 break;
1779
1780 case MFF_IP_FRAG:
1781 value->u8 &= FLOW_NW_FRAG_MASK;
1782 break;
1783
1784 case MFF_ARP_OP:
1785 value->be16 &= htons(0xff);
1786 break;
1787
1788 case MFF_DL_VLAN:
1789 value->be16 &= htons(VLAN_VID_MASK);
1790 break;
1791 case MFF_VLAN_VID:
1792 value->be16 &= htons(VLAN_VID_MASK | VLAN_CFI);
1793 break;
1794
1795 case MFF_DL_VLAN_PCP:
1796 case MFF_VLAN_PCP:
1797 value->u8 &= 0x07;
1798 break;
1799
1800 case MFF_N_IDS:
1801 default:
1802 NOT_REACHED();
1803 }
1804 }
1805
1806 static char *
1807 mf_from_integer_string(const struct mf_field *mf, const char *s,
1808 uint8_t *valuep, uint8_t *maskp)
1809 {
1810 unsigned long long int integer, mask;
1811 char *tail;
1812 int i;
1813
1814 errno = 0;
1815 integer = strtoull(s, &tail, 0);
1816 if (errno || (*tail != '\0' && *tail != '/')) {
1817 goto syntax_error;
1818 }
1819
1820 if (*tail == '/') {
1821 mask = strtoull(tail + 1, &tail, 0);
1822 if (errno || *tail != '\0') {
1823 goto syntax_error;
1824 }
1825 } else {
1826 mask = ULLONG_MAX;
1827 }
1828
1829 for (i = mf->n_bytes - 1; i >= 0; i--) {
1830 valuep[i] = integer;
1831 maskp[i] = mask;
1832 integer >>= 8;
1833 mask >>= 8;
1834 }
1835 if (integer) {
1836 return xasprintf("%s: value too large for %u-byte field %s",
1837 s, mf->n_bytes, mf->name);
1838 }
1839 return NULL;
1840
1841 syntax_error:
1842 return xasprintf("%s: bad syntax for %s", s, mf->name);
1843 }
1844
1845 static char *
1846 mf_from_ethernet_string(const struct mf_field *mf, const char *s,
1847 uint8_t mac[ETH_ADDR_LEN],
1848 uint8_t mask[ETH_ADDR_LEN])
1849 {
1850 assert(mf->n_bytes == ETH_ADDR_LEN);
1851
1852 switch (sscanf(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT,
1853 ETH_ADDR_SCAN_ARGS(mac), ETH_ADDR_SCAN_ARGS(mask))){
1854 case ETH_ADDR_SCAN_COUNT * 2:
1855 return NULL;
1856
1857 case ETH_ADDR_SCAN_COUNT:
1858 memset(mask, 0xff, ETH_ADDR_LEN);
1859 return NULL;
1860
1861 default:
1862 return xasprintf("%s: invalid Ethernet address", s);
1863 }
1864 }
1865
1866 static char *
1867 mf_from_ipv4_string(const struct mf_field *mf, const char *s,
1868 ovs_be32 *ip, ovs_be32 *mask)
1869 {
1870 int prefix;
1871
1872 assert(mf->n_bytes == sizeof *ip);
1873
1874 if (sscanf(s, IP_SCAN_FMT"/"IP_SCAN_FMT,
1875 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask)) == IP_SCAN_COUNT * 2) {
1876 /* OK. */
1877 } else if (sscanf(s, IP_SCAN_FMT"/%d",
1878 IP_SCAN_ARGS(ip), &prefix) == IP_SCAN_COUNT + 1) {
1879 if (prefix <= 0 || prefix > 32) {
1880 return xasprintf("%s: network prefix bits not between 1 and "
1881 "32", s);
1882 } else if (prefix == 32) {
1883 *mask = htonl(UINT32_MAX);
1884 } else {
1885 *mask = htonl(((1u << prefix) - 1) << (32 - prefix));
1886 }
1887 } else if (sscanf(s, IP_SCAN_FMT, IP_SCAN_ARGS(ip)) == IP_SCAN_COUNT) {
1888 *mask = htonl(UINT32_MAX);
1889 } else {
1890 return xasprintf("%s: invalid IP address", s);
1891 }
1892 return NULL;
1893 }
1894
1895 static char *
1896 mf_from_ipv6_string(const struct mf_field *mf, const char *s,
1897 struct in6_addr *value, struct in6_addr *mask)
1898 {
1899 char *str = xstrdup(s);
1900 char *save_ptr = NULL;
1901 const char *name, *netmask;
1902 int retval;
1903
1904 assert(mf->n_bytes == sizeof *value);
1905
1906 name = strtok_r(str, "/", &save_ptr);
1907 retval = name ? lookup_ipv6(name, value) : EINVAL;
1908 if (retval) {
1909 char *err;
1910
1911 err = xasprintf("%s: could not convert to IPv6 address", str);
1912 free(str);
1913
1914 return err;
1915 }
1916
1917 netmask = strtok_r(NULL, "/", &save_ptr);
1918 if (netmask) {
1919 if (inet_pton(AF_INET6, netmask, mask) != 1) {
1920 int prefix = atoi(netmask);
1921 if (prefix <= 0 || prefix > 128) {
1922 free(str);
1923 return xasprintf("%s: prefix bits not between 1 and 128", s);
1924 } else {
1925 *mask = ipv6_create_mask(prefix);
1926 }
1927 }
1928 } else {
1929 *mask = in6addr_exact;
1930 }
1931 free(str);
1932
1933 return NULL;
1934 }
1935
1936 static char *
1937 mf_from_ofp_port_string(const struct mf_field *mf, const char *s,
1938 ovs_be16 *valuep, ovs_be16 *maskp)
1939 {
1940 uint16_t port;
1941
1942 assert(mf->n_bytes == sizeof(ovs_be16));
1943 if (ofputil_port_from_string(s, &port)) {
1944 *valuep = htons(port);
1945 *maskp = htons(UINT16_MAX);
1946 return NULL;
1947 } else {
1948 return mf_from_integer_string(mf, s,
1949 (uint8_t *) valuep, (uint8_t *) maskp);
1950 }
1951 }
1952
1953 struct frag_handling {
1954 const char *name;
1955 uint8_t mask;
1956 uint8_t value;
1957 };
1958
1959 static const struct frag_handling all_frags[] = {
1960 #define A FLOW_NW_FRAG_ANY
1961 #define L FLOW_NW_FRAG_LATER
1962 /* name mask value */
1963
1964 { "no", A|L, 0 },
1965 { "first", A|L, A },
1966 { "later", A|L, A|L },
1967
1968 { "no", A, 0 },
1969 { "yes", A, A },
1970
1971 { "not_later", L, 0 },
1972 { "later", L, L },
1973 #undef A
1974 #undef L
1975 };
1976
1977 static char *
1978 mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp)
1979 {
1980 const struct frag_handling *h;
1981
1982 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
1983 if (!strcasecmp(s, h->name)) {
1984 /* We force the upper bits of the mask on to make mf_parse_value()
1985 * happy (otherwise it will never think it's an exact match.) */
1986 *maskp = h->mask | ~FLOW_NW_FRAG_MASK;
1987 *valuep = h->value;
1988 return NULL;
1989 }
1990 }
1991
1992 return xasprintf("%s: unknown fragment type (valid types are \"no\", "
1993 "\"yes\", \"first\", \"later\", \"not_first\"", s);
1994 }
1995
1996 /* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns
1997 * NULL if successful, otherwise a malloc()'d string describing the error. */
1998 char *
1999 mf_parse(const struct mf_field *mf, const char *s,
2000 union mf_value *value, union mf_value *mask)
2001 {
2002 if (!strcasecmp(s, "any") || !strcmp(s, "*")) {
2003 memset(value, 0, mf->n_bytes);
2004 memset(mask, 0, mf->n_bytes);
2005 return NULL;
2006 }
2007
2008 switch (mf->string) {
2009 case MFS_DECIMAL:
2010 case MFS_HEXADECIMAL:
2011 return mf_from_integer_string(mf, s,
2012 (uint8_t *) value, (uint8_t *) mask);
2013
2014 case MFS_ETHERNET:
2015 return mf_from_ethernet_string(mf, s, value->mac, mask->mac);
2016
2017 case MFS_IPV4:
2018 return mf_from_ipv4_string(mf, s, &value->be32, &mask->be32);
2019
2020 case MFS_IPV6:
2021 return mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6);
2022
2023 case MFS_OFP_PORT:
2024 return mf_from_ofp_port_string(mf, s, &value->be16, &mask->be16);
2025
2026 case MFS_FRAG:
2027 return mf_from_frag_string(s, &value->u8, &mask->u8);
2028 }
2029 NOT_REACHED();
2030 }
2031
2032 /* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if
2033 * successful, otherwise a malloc()'d string describing the error. */
2034 char *
2035 mf_parse_value(const struct mf_field *mf, const char *s, union mf_value *value)
2036 {
2037 union mf_value mask;
2038 char *error;
2039
2040 error = mf_parse(mf, s, value, &mask);
2041 if (error) {
2042 return error;
2043 }
2044
2045 if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) {
2046 return xasprintf("%s: wildcards not allowed here", s);
2047 }
2048 return NULL;
2049 }
2050
2051 static void
2052 mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep,
2053 const uint8_t *maskp, struct ds *s)
2054 {
2055 unsigned long long int integer;
2056 int i;
2057
2058 assert(mf->n_bytes <= 8);
2059
2060 integer = 0;
2061 for (i = 0; i < mf->n_bytes; i++) {
2062 integer = (integer << 8) | valuep[i];
2063 }
2064 if (mf->string == MFS_HEXADECIMAL) {
2065 ds_put_format(s, "%#llx", integer);
2066 } else {
2067 ds_put_format(s, "%lld", integer);
2068 }
2069
2070 if (maskp) {
2071 unsigned long long int mask;
2072
2073 mask = 0;
2074 for (i = 0; i < mf->n_bytes; i++) {
2075 mask = (mask << 8) | maskp[i];
2076 }
2077
2078 /* I guess we could write the mask in decimal for MFS_DECIMAL but I'm
2079 * not sure that that a bit-mask written in decimal is ever easier to
2080 * understand than the same bit-mask written in hexadecimal. */
2081 ds_put_format(s, "/%#llx", mask);
2082 }
2083 }
2084
2085 static void
2086 mf_format_frag_string(const uint8_t *valuep, const uint8_t *maskp,
2087 struct ds *s)
2088 {
2089 const struct frag_handling *h;
2090 uint8_t value = *valuep;
2091 uint8_t mask = *maskp;
2092
2093 value &= mask;
2094 mask &= FLOW_NW_FRAG_MASK;
2095
2096 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
2097 if (value == h->value && mask == h->mask) {
2098 ds_put_cstr(s, h->name);
2099 return;
2100 }
2101 }
2102 ds_put_cstr(s, "<error>");
2103 }
2104
2105 /* Appends to 's' a string representation of field 'mf' whose value is in
2106 * 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */
2107 void
2108 mf_format(const struct mf_field *mf,
2109 const union mf_value *value, const union mf_value *mask,
2110 struct ds *s)
2111 {
2112 if (mask) {
2113 if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
2114 ds_put_cstr(s, "ANY");
2115 return;
2116 } else if (is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
2117 mask = NULL;
2118 }
2119 }
2120
2121 switch (mf->string) {
2122 case MFS_OFP_PORT:
2123 if (!mask) {
2124 ofputil_format_port(ntohs(value->be16), s);
2125 break;
2126 }
2127 /* fall through */
2128 case MFS_DECIMAL:
2129 case MFS_HEXADECIMAL:
2130 mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s);
2131 break;
2132
2133 case MFS_ETHERNET:
2134 eth_format_masked(value->mac, mask->mac, s);
2135 break;
2136
2137 case MFS_IPV4:
2138 ip_format_masked(value->be32, mask ? mask->be32 : htonl(UINT32_MAX),
2139 s);
2140 break;
2141
2142 case MFS_IPV6:
2143 print_ipv6_masked(s, &value->ipv6, mask ? &mask->ipv6 : NULL);
2144 break;
2145
2146 case MFS_FRAG:
2147 mf_format_frag_string(&value->u8, &mask->u8, s);
2148 break;
2149
2150 default:
2151 NOT_REACHED();
2152 }
2153 }
2154 \f
2155 /* Makes subfield 'sf' within 'rule' exactly match the 'sf->n_bits'
2156 * least-significant bits in 'x'.
2157 */
2158 void
2159 mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x,
2160 struct cls_rule *rule)
2161 {
2162 const struct mf_field *field = sf->field;
2163 union mf_value value, mask;
2164
2165 mf_get(field, rule, &value, &mask);
2166 bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits);
2167 bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits);
2168 mf_set(field, &value, &mask, rule);
2169 }
2170
2171 /* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for
2172 * reading 'flow', e.g. as checked by mf_check_src(). */
2173 void
2174 mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow,
2175 union mf_subvalue *x)
2176 {
2177 union mf_value value;
2178
2179 mf_get_value(sf->field, flow, &value);
2180
2181 memset(x, 0, sizeof *x);
2182 bitwise_copy(&value, sf->field->n_bytes, sf->ofs,
2183 x, sizeof *x, 0,
2184 sf->n_bits);
2185 }
2186
2187 /* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading
2188 * 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or
2189 * less. */
2190 uint64_t
2191 mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow)
2192 {
2193 union mf_value value;
2194
2195 mf_get_value(sf->field, flow, &value);
2196 return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits);
2197 }
2198
2199 /* Formats 'sf' into 's' in a format normally acceptable to
2200 * mf_parse_subfield(). (It won't be acceptable if sf->field is NULL or if
2201 * sf->field has no NXM name.) */
2202 void
2203 mf_format_subfield(const struct mf_subfield *sf, struct ds *s)
2204 {
2205 if (!sf->field) {
2206 ds_put_cstr(s, "<unknown>");
2207 } else if (sf->field->nxm_name) {
2208 ds_put_cstr(s, sf->field->nxm_name);
2209 } else if (sf->field->nxm_header) {
2210 uint32_t header = sf->field->nxm_header;
2211 ds_put_format(s, "%d:%d", NXM_VENDOR(header), NXM_FIELD(header));
2212 } else {
2213 ds_put_cstr(s, sf->field->name);
2214 }
2215
2216 if (sf->field && sf->ofs == 0 && sf->n_bits == sf->field->n_bits) {
2217 ds_put_cstr(s, "[]");
2218 } else if (sf->n_bits == 1) {
2219 ds_put_format(s, "[%d]", sf->ofs);
2220 } else {
2221 ds_put_format(s, "[%d..%d]", sf->ofs, sf->ofs + sf->n_bits - 1);
2222 }
2223 }
2224
2225 static const struct mf_field *
2226 mf_parse_subfield_name(const char *name, int name_len, bool *wild)
2227 {
2228 int i;
2229
2230 *wild = name_len > 2 && !memcmp(&name[name_len - 2], "_W", 2);
2231 if (*wild) {
2232 name_len -= 2;
2233 }
2234
2235 for (i = 0; i < MFF_N_IDS; i++) {
2236 const struct mf_field *mf = mf_from_id(i);
2237
2238 if (mf->nxm_name
2239 && !strncmp(mf->nxm_name, name, name_len)
2240 && mf->nxm_name[name_len] == '\0') {
2241 return mf;
2242 }
2243 if (mf->oxm_name
2244 && !strncmp(mf->oxm_name, name, name_len)
2245 && mf->oxm_name[name_len] == '\0') {
2246 return mf;
2247 }
2248 }
2249
2250 return NULL;
2251 }
2252
2253 /* Parses a subfield from the beginning of '*sp' into 'sf'. If successful,
2254 * returns NULL and advances '*sp' to the first byte following the parsed
2255 * string. On failure, returns a malloc()'d error message, does not modify
2256 * '*sp', and does not properly initialize 'sf'.
2257 *
2258 * The syntax parsed from '*sp' takes the form "header[start..end]" where
2259 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2260 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2261 * may both be omitted (the [] are still required) to indicate an entire
2262 * field. */
2263 char *
2264 mf_parse_subfield__(struct mf_subfield *sf, const char **sp)
2265 {
2266 const struct mf_field *field;
2267 const char *name;
2268 int start, end;
2269 const char *s;
2270 int name_len;
2271 bool wild;
2272
2273 s = *sp;
2274 name = s;
2275 name_len = strcspn(s, "[");
2276 if (s[name_len] != '[') {
2277 return xasprintf("%s: missing [ looking for field name", *sp);
2278 }
2279
2280 field = mf_parse_subfield_name(name, name_len, &wild);
2281 if (!field) {
2282 return xasprintf("%s: unknown field `%.*s'", *sp, name_len, s);
2283 }
2284
2285 s += name_len;
2286 if (sscanf(s, "[%d..%d]", &start, &end) == 2) {
2287 /* Nothing to do. */
2288 } else if (sscanf(s, "[%d]", &start) == 1) {
2289 end = start;
2290 } else if (!strncmp(s, "[]", 2)) {
2291 start = 0;
2292 end = field->n_bits - 1;
2293 } else {
2294 return xasprintf("%s: syntax error expecting [] or [<bit>] or "
2295 "[<start>..<end>]", *sp);
2296 }
2297 s = strchr(s, ']') + 1;
2298
2299 if (start > end) {
2300 return xasprintf("%s: starting bit %d is after ending bit %d",
2301 *sp, start, end);
2302 } else if (start >= field->n_bits) {
2303 return xasprintf("%s: starting bit %d is not valid because field is "
2304 "only %d bits wide", *sp, start, field->n_bits);
2305 } else if (end >= field->n_bits){
2306 return xasprintf("%s: ending bit %d is not valid because field is "
2307 "only %d bits wide", *sp, end, field->n_bits);
2308 }
2309
2310 sf->field = field;
2311 sf->ofs = start;
2312 sf->n_bits = end - start + 1;
2313
2314 *sp = s;
2315 return NULL;
2316 }
2317
2318 /* Parses a subfield from the beginning of 's' into 'sf'. Returns the first
2319 * byte in 's' following the parsed string.
2320 *
2321 * Exits with an error message if 's' has incorrect syntax.
2322 *
2323 * The syntax parsed from 's' takes the form "header[start..end]" where
2324 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2325 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2326 * may both be omitted (the [] are still required) to indicate an entire
2327 * field. */
2328 const char *
2329 mf_parse_subfield(struct mf_subfield *sf, const char *s)
2330 {
2331 char *msg = mf_parse_subfield__(sf, &s);
2332 if (msg) {
2333 ovs_fatal(0, "%s", msg);
2334 }
2335 return s;
2336 }