]> git.proxmox.com Git - ovs.git/blob - lib/meta-flow.c
meta-flow: Simplify handling of a variable number of registers.
[ovs.git] / lib / meta-flow.c
1 /*
2 * Copyright (c) 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "meta-flow.h"
20
21 #include <errno.h>
22 #include <limits.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25
26 #include "classifier.h"
27 #include "dynamic-string.h"
28 #include "ofp-errors.h"
29 #include "ofp-util.h"
30 #include "ovs-thread.h"
31 #include "packets.h"
32 #include "random.h"
33 #include "shash.h"
34 #include "socket-util.h"
35 #include "unaligned.h"
36 #include "vlog.h"
37
38 VLOG_DEFINE_THIS_MODULE(meta_flow);
39
40 #define FLOW_U32OFS(FIELD) \
41 offsetof(struct flow, FIELD) % 4 ? -1 : offsetof(struct flow, FIELD) / 4
42
43 #define MF_FIELD_SIZES(MEMBER) \
44 sizeof ((union mf_value *)0)->MEMBER, \
45 8 * sizeof ((union mf_value *)0)->MEMBER
46
47 extern const struct mf_field mf_fields[MFF_N_IDS]; /* Silence a warning. */
48
49 const struct mf_field mf_fields[MFF_N_IDS] = {
50 /* ## -------- ## */
51 /* ## metadata ## */
52 /* ## -------- ## */
53
54 {
55 MFF_DP_HASH, "dp_hash", NULL,
56 MF_FIELD_SIZES(be32),
57 MFM_FULLY,
58 MFS_HEXADECIMAL,
59 MFP_NONE,
60 false,
61 NXM_NX_DP_HASH, "NXM_NX_DP_HASH",
62 NXM_NX_DP_HASH, "NXM_NX_DP_HASH", 0,
63 OFPUTIL_P_NXM_OXM_ANY,
64 OFPUTIL_P_NXM_OXM_ANY,
65 -1,
66 }, {
67 MFF_RECIRC_ID, "recirc_id", NULL,
68 MF_FIELD_SIZES(be32),
69 MFM_NONE,
70 MFS_DECIMAL,
71 MFP_NONE,
72 false,
73 NXM_NX_RECIRC_ID, "NXM_NX_RECIRC_ID",
74 NXM_NX_RECIRC_ID, "NXM_NX_RECIRC_ID", 0,
75 OFPUTIL_P_NXM_OXM_ANY,
76 OFPUTIL_P_NXM_OXM_ANY,
77 -1,
78 }, {
79 MFF_TUN_ID, "tun_id", "tunnel_id",
80 MF_FIELD_SIZES(be64),
81 MFM_FULLY,
82 MFS_HEXADECIMAL,
83 MFP_NONE,
84 true,
85 NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
86 OXM_OF_TUNNEL_ID, "OXM_OF_TUNNEL_ID", OFP13_VERSION,
87 OFPUTIL_P_NXM_OXM_ANY,
88 OFPUTIL_P_NXM_OXM_ANY,
89 FLOW_U32OFS(tunnel.tun_id),
90 }, {
91 MFF_TUN_SRC, "tun_src", NULL,
92 MF_FIELD_SIZES(be32),
93 MFM_FULLY,
94 MFS_IPV4,
95 MFP_NONE,
96 true,
97 NXM_NX_TUN_IPV4_SRC, "NXM_NX_TUN_IPV4_SRC",
98 NXM_NX_TUN_IPV4_SRC, "NXM_NX_TUN_IPV4_SRC", 0,
99 OFPUTIL_P_NXM_OXM_ANY,
100 OFPUTIL_P_NXM_OXM_ANY,
101 FLOW_U32OFS(tunnel.ip_src),
102 }, {
103 MFF_TUN_DST, "tun_dst", NULL,
104 MF_FIELD_SIZES(be32),
105 MFM_FULLY,
106 MFS_IPV4,
107 MFP_NONE,
108 true,
109 NXM_NX_TUN_IPV4_DST, "NXM_NX_TUN_IPV4_DST",
110 NXM_NX_TUN_IPV4_DST, "NXM_NX_TUN_IPV4_DST", 0,
111 OFPUTIL_P_NXM_OXM_ANY,
112 OFPUTIL_P_NXM_OXM_ANY,
113 FLOW_U32OFS(tunnel.ip_dst),
114 }, {
115 MFF_TUN_FLAGS, "tun_flags", NULL,
116 MF_FIELD_SIZES(be16),
117 MFM_NONE,
118 MFS_TNL_FLAGS,
119 MFP_NONE,
120 false,
121 0, NULL,
122 0, NULL, 0,
123 OFPUTIL_P_NONE,
124 OFPUTIL_P_NONE,
125 -1,
126 }, {
127 MFF_TUN_TTL, "tun_ttl", NULL,
128 MF_FIELD_SIZES(u8),
129 MFM_NONE,
130 MFS_DECIMAL,
131 MFP_NONE,
132 false,
133 0, NULL,
134 0, NULL, 0,
135 OFPUTIL_P_NONE,
136 OFPUTIL_P_NONE,
137 -1,
138 }, {
139 MFF_TUN_TOS, "tun_tos", NULL,
140 MF_FIELD_SIZES(u8),
141 MFM_NONE,
142 MFS_DECIMAL,
143 MFP_NONE,
144 false,
145 0, NULL,
146 0, NULL, 0,
147 OFPUTIL_P_NONE,
148 OFPUTIL_P_NONE,
149 -1,
150 }, {
151 MFF_METADATA, "metadata", NULL,
152 MF_FIELD_SIZES(be64),
153 MFM_FULLY,
154 MFS_HEXADECIMAL,
155 MFP_NONE,
156 true,
157 OXM_OF_METADATA, "OXM_OF_METADATA",
158 OXM_OF_METADATA, "OXM_OF_METADATA", OFP12_VERSION,
159 OFPUTIL_P_NXM_OF11_UP,
160 OFPUTIL_P_NXM_OF11_UP,
161 -1,
162 }, {
163 MFF_IN_PORT, "in_port", NULL,
164 MF_FIELD_SIZES(be16),
165 MFM_NONE,
166 MFS_OFP_PORT,
167 MFP_NONE,
168 true,
169 NXM_OF_IN_PORT, "NXM_OF_IN_PORT",
170 NXM_OF_IN_PORT, "NXM_OF_IN_PORT", 0,
171 OFPUTIL_P_ANY, /* OF11+ via mapping to 32 bits. */
172 OFPUTIL_P_NONE,
173 -1,
174 }, {
175 MFF_IN_PORT_OXM, "in_port_oxm", NULL,
176 MF_FIELD_SIZES(be32),
177 MFM_NONE,
178 MFS_OFP_PORT_OXM,
179 MFP_NONE,
180 true,
181 OXM_OF_IN_PORT, "OXM_OF_IN_PORT",
182 OXM_OF_IN_PORT, "OXM_OF_IN_PORT", OFP12_VERSION,
183 OFPUTIL_P_OF11_UP,
184 OFPUTIL_P_NONE,
185 -1,
186 }, {
187 MFF_SKB_PRIORITY, "skb_priority", NULL,
188 MF_FIELD_SIZES(be32),
189 MFM_NONE,
190 MFS_HEXADECIMAL,
191 MFP_NONE,
192 false,
193 0, NULL,
194 0, NULL, 0,
195 OFPUTIL_P_NONE,
196 OFPUTIL_P_NONE,
197 -1,
198 }, {
199 MFF_PKT_MARK, "pkt_mark", NULL,
200 MF_FIELD_SIZES(be32),
201 MFM_FULLY,
202 MFS_HEXADECIMAL,
203 MFP_NONE,
204 true,
205 NXM_NX_PKT_MARK, "NXM_NX_PKT_MARK",
206 NXM_NX_PKT_MARK, "NXM_NX_PKT_MARK", 0,
207 OFPUTIL_P_NXM_OXM_ANY,
208 OFPUTIL_P_NXM_OXM_ANY,
209 -1,
210 },
211
212 #define REGISTER(IDX) \
213 { \
214 MFF_REG##IDX, "reg" #IDX, NULL, \
215 MF_FIELD_SIZES(be32), \
216 MFM_FULLY, \
217 MFS_HEXADECIMAL, \
218 MFP_NONE, \
219 true, \
220 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
221 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, 0, \
222 OFPUTIL_P_NXM_OXM_ANY, \
223 OFPUTIL_P_NXM_OXM_ANY, \
224 -1, \
225 }
226 #if FLOW_N_REGS == 8
227 REGISTER(0),
228 REGISTER(1),
229 REGISTER(2),
230 REGISTER(3),
231 REGISTER(4),
232 REGISTER(5),
233 REGISTER(6),
234 REGISTER(7),
235 #else
236 #error "Need to update mf_fields[] to match FLOW_N_REGS"
237 #endif
238
239 /* ## -- ## */
240 /* ## L2 ## */
241 /* ## -- ## */
242
243 {
244 MFF_ETH_SRC, "eth_src", "dl_src",
245 MF_FIELD_SIZES(mac),
246 MFM_FULLY,
247 MFS_ETHERNET,
248 MFP_NONE,
249 true,
250 NXM_OF_ETH_SRC, "NXM_OF_ETH_SRC",
251 OXM_OF_ETH_SRC, "OXM_OF_ETH_SRC", OFP12_VERSION,
252 OFPUTIL_P_ANY,
253 OFPUTIL_P_NXM_OF11_UP, /* Bitwise masking only with NXM and OF11+! */
254 -1,
255 }, {
256 MFF_ETH_DST, "eth_dst", "dl_dst",
257 MF_FIELD_SIZES(mac),
258 MFM_FULLY,
259 MFS_ETHERNET,
260 MFP_NONE,
261 true,
262 NXM_OF_ETH_DST, "NXM_OF_ETH_DST",
263 OXM_OF_ETH_DST, "OXM_OF_ETH_DST", OFP12_VERSION,
264 OFPUTIL_P_ANY,
265 OFPUTIL_P_NXM_OF11_UP, /* Bitwise masking only with NXM and OF11+! */
266 -1,
267 }, {
268 MFF_ETH_TYPE, "eth_type", "dl_type",
269 MF_FIELD_SIZES(be16),
270 MFM_NONE,
271 MFS_HEXADECIMAL,
272 MFP_NONE,
273 false,
274 NXM_OF_ETH_TYPE, "NXM_OF_ETH_TYPE",
275 OXM_OF_ETH_TYPE, "OXM_OF_ETH_TYPE", OFP12_VERSION,
276 OFPUTIL_P_ANY,
277 OFPUTIL_P_NONE,
278 -1,
279 },
280
281 {
282 MFF_VLAN_TCI, "vlan_tci", NULL,
283 MF_FIELD_SIZES(be16),
284 MFM_FULLY,
285 MFS_HEXADECIMAL,
286 MFP_NONE,
287 true,
288 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
289 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI", 0,
290 OFPUTIL_P_ANY,
291 OFPUTIL_P_NXM_OXM_ANY,
292 -1,
293 }, {
294 MFF_DL_VLAN, "dl_vlan", NULL,
295 sizeof(ovs_be16), 12,
296 MFM_NONE,
297 MFS_DECIMAL,
298 MFP_NONE,
299 true,
300 0, NULL,
301 0, NULL, 0,
302 OFPUTIL_P_ANY,
303 OFPUTIL_P_NXM_OXM_ANY,
304 -1,
305 }, {
306 MFF_VLAN_VID, "vlan_vid", NULL,
307 sizeof(ovs_be16), 12,
308 MFM_FULLY,
309 MFS_DECIMAL,
310 MFP_NONE,
311 true,
312 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
313 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID", OFP12_VERSION,
314 OFPUTIL_P_ANY,
315 OFPUTIL_P_NXM_OXM_ANY,
316 -1,
317 }, {
318 MFF_DL_VLAN_PCP, "dl_vlan_pcp", NULL,
319 1, 3,
320 MFM_NONE,
321 MFS_DECIMAL,
322 MFP_NONE,
323 true,
324 0, NULL,
325 0, NULL, 0,
326 OFPUTIL_P_ANY, /* Will be mapped to NXM and OXM. */
327 OFPUTIL_P_NONE,
328 -1,
329 }, {
330 MFF_VLAN_PCP, "vlan_pcp", NULL,
331 1, 3,
332 MFM_NONE,
333 MFS_DECIMAL,
334 MFP_VLAN_VID,
335 true,
336 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
337 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP", OFP12_VERSION,
338 OFPUTIL_P_ANY, /* Will be mapped to OF10 and NXM. */
339 OFPUTIL_P_NONE,
340 -1,
341 },
342
343 /* ## ---- ## */
344 /* ## L2.5 ## */
345 /* ## ---- ## */
346 {
347 MFF_MPLS_LABEL, "mpls_label", NULL,
348 4, 20,
349 MFM_NONE,
350 MFS_DECIMAL,
351 MFP_MPLS,
352 true,
353 OXM_OF_MPLS_LABEL, "OXM_OF_MPLS_LABEL",
354 OXM_OF_MPLS_LABEL, "OXM_OF_MPLS_LABEL", OFP12_VERSION,
355 OFPUTIL_P_NXM_OF11_UP,
356 OFPUTIL_P_NONE,
357 -1,
358 }, {
359 MFF_MPLS_TC, "mpls_tc", NULL,
360 1, 3,
361 MFM_NONE,
362 MFS_DECIMAL,
363 MFP_MPLS,
364 true,
365 OXM_OF_MPLS_TC, "OXM_OF_MPLS_TC",
366 OXM_OF_MPLS_TC, "OXM_OF_MPLS_TC", OFP12_VERSION,
367 OFPUTIL_P_NXM_OF11_UP,
368 OFPUTIL_P_NONE,
369 -1,
370 }, {
371 MFF_MPLS_BOS, "mpls_bos", NULL,
372 1, 1,
373 MFM_NONE,
374 MFS_DECIMAL,
375 MFP_MPLS,
376 false,
377 OXM_OF_MPLS_BOS, "OXM_OF_MPLS_BOS",
378 OXM_OF_MPLS_BOS, "OXM_OF_MPLS_BOS", OFP13_VERSION,
379 OFPUTIL_P_NXM_OXM_ANY,
380 OFPUTIL_P_NONE,
381 -1,
382 },
383
384 /* ## -- ## */
385 /* ## L3 ## */
386 /* ## -- ## */
387
388 {
389 MFF_IPV4_SRC, "ip_src", "nw_src",
390 MF_FIELD_SIZES(be32),
391 MFM_FULLY,
392 MFS_IPV4,
393 MFP_IPV4,
394 true,
395 NXM_OF_IP_SRC, "NXM_OF_IP_SRC",
396 OXM_OF_IPV4_SRC, "OXM_OF_IPV4_SRC", OFP12_VERSION,
397 OFPUTIL_P_ANY,
398 OFPUTIL_P_NXM_OF11_UP,
399 FLOW_U32OFS(nw_src),
400 }, {
401 MFF_IPV4_DST, "ip_dst", "nw_dst",
402 MF_FIELD_SIZES(be32),
403 MFM_FULLY,
404 MFS_IPV4,
405 MFP_IPV4,
406 true,
407 NXM_OF_IP_DST, "NXM_OF_IP_DST",
408 OXM_OF_IPV4_DST, "OXM_OF_IPV4_DST", OFP12_VERSION,
409 OFPUTIL_P_ANY,
410 OFPUTIL_P_NXM_OF11_UP,
411 FLOW_U32OFS(nw_dst),
412 },
413
414 {
415 MFF_IPV6_SRC, "ipv6_src", NULL,
416 MF_FIELD_SIZES(ipv6),
417 MFM_FULLY,
418 MFS_IPV6,
419 MFP_IPV6,
420 true,
421 NXM_NX_IPV6_SRC, "NXM_NX_IPV6_SRC",
422 OXM_OF_IPV6_SRC, "OXM_OF_IPV6_SRC", OFP12_VERSION,
423 OFPUTIL_P_NXM_OXM_ANY,
424 OFPUTIL_P_NXM_OXM_ANY,
425 FLOW_U32OFS(ipv6_src),
426 }, {
427 MFF_IPV6_DST, "ipv6_dst", NULL,
428 MF_FIELD_SIZES(ipv6),
429 MFM_FULLY,
430 MFS_IPV6,
431 MFP_IPV6,
432 true,
433 NXM_NX_IPV6_DST, "NXM_NX_IPV6_DST",
434 OXM_OF_IPV6_DST, "OXM_OF_IPV6_DST", OFP12_VERSION,
435 OFPUTIL_P_NXM_OXM_ANY,
436 OFPUTIL_P_NXM_OXM_ANY,
437 FLOW_U32OFS(ipv6_dst),
438 },
439 {
440 MFF_IPV6_LABEL, "ipv6_label", NULL,
441 4, 20,
442 MFM_FULLY,
443 MFS_HEXADECIMAL,
444 MFP_IPV6,
445 false,
446 NXM_NX_IPV6_LABEL, "NXM_NX_IPV6_LABEL",
447 OXM_OF_IPV6_FLABEL, "OXM_OF_IPV6_FLABEL", OFP12_VERSION,
448 OFPUTIL_P_NXM_OXM_ANY,
449 OFPUTIL_P_NXM_OXM_ANY,
450 -1,
451 },
452
453 {
454 MFF_IP_PROTO, "nw_proto", "ip_proto",
455 MF_FIELD_SIZES(u8),
456 MFM_NONE,
457 MFS_DECIMAL,
458 MFP_IP_ANY,
459 false,
460 NXM_OF_IP_PROTO, "NXM_OF_IP_PROTO",
461 OXM_OF_IP_PROTO, "OXM_OF_IP_PROTO", OFP12_VERSION,
462 OFPUTIL_P_ANY,
463 OFPUTIL_P_NONE,
464 -1,
465 }, {
466 MFF_IP_DSCP, "nw_tos", NULL,
467 MF_FIELD_SIZES(u8),
468 MFM_NONE,
469 MFS_DECIMAL,
470 MFP_IP_ANY,
471 true,
472 NXM_OF_IP_TOS, "NXM_OF_IP_TOS",
473 NXM_OF_IP_TOS, "NXM_OF_IP_TOS", 0,
474 OFPUTIL_P_ANY, /* Will be shifted for OXM. */
475 OFPUTIL_P_NONE,
476 -1,
477 }, {
478 MFF_IP_DSCP_SHIFTED, "ip_dscp", NULL,
479 1, 6,
480 MFM_NONE,
481 MFS_DECIMAL,
482 MFP_IP_ANY,
483 true,
484 OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP",
485 OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP", OFP12_VERSION,
486 OFPUTIL_P_ANY, /* Will be shifted for non-OXM. */
487 OFPUTIL_P_NONE,
488 -1,
489 }, {
490 MFF_IP_ECN, "nw_ecn", "ip_ecn",
491 1, 2,
492 MFM_NONE,
493 MFS_DECIMAL,
494 MFP_IP_ANY,
495 true,
496 NXM_NX_IP_ECN, "NXM_NX_IP_ECN",
497 OXM_OF_IP_ECN, "OXM_OF_IP_ECN", OFP12_VERSION,
498 OFPUTIL_P_NXM_OXM_ANY,
499 OFPUTIL_P_NONE,
500 -1,
501 }, {
502 MFF_IP_TTL, "nw_ttl", NULL,
503 MF_FIELD_SIZES(u8),
504 MFM_NONE,
505 MFS_DECIMAL,
506 MFP_IP_ANY,
507 true,
508 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
509 NXM_NX_IP_TTL, "NXM_NX_IP_TTL", 0,
510 OFPUTIL_P_NXM_OXM_ANY,
511 OFPUTIL_P_NONE,
512 -1,
513 }, {
514 MFF_IP_FRAG, "ip_frag", NULL,
515 1, 2,
516 MFM_FULLY,
517 MFS_FRAG,
518 MFP_IP_ANY,
519 false,
520 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
521 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG", 0,
522 OFPUTIL_P_NXM_OXM_ANY,
523 OFPUTIL_P_NXM_OXM_ANY,
524 -1,
525 },
526
527 {
528 MFF_ARP_OP, "arp_op", NULL,
529 MF_FIELD_SIZES(be16),
530 MFM_NONE,
531 MFS_DECIMAL,
532 MFP_ARP,
533 true,
534 NXM_OF_ARP_OP, "NXM_OF_ARP_OP",
535 OXM_OF_ARP_OP, "OXM_OF_ARP_OP", OFP12_VERSION,
536 OFPUTIL_P_ANY,
537 OFPUTIL_P_NONE,
538 -1,
539 }, {
540 MFF_ARP_SPA, "arp_spa", NULL,
541 MF_FIELD_SIZES(be32),
542 MFM_FULLY,
543 MFS_IPV4,
544 MFP_ARP,
545 true,
546 NXM_OF_ARP_SPA, "NXM_OF_ARP_SPA",
547 OXM_OF_ARP_SPA, "OXM_OF_ARP_SPA", OFP12_VERSION,
548 OFPUTIL_P_ANY,
549 OFPUTIL_P_NXM_OF11_UP,
550 -1,
551 }, {
552 MFF_ARP_TPA, "arp_tpa", NULL,
553 MF_FIELD_SIZES(be32),
554 MFM_FULLY,
555 MFS_IPV4,
556 MFP_ARP,
557 true,
558 NXM_OF_ARP_TPA, "NXM_OF_ARP_TPA",
559 OXM_OF_ARP_TPA, "OXM_OF_ARP_TPA", OFP12_VERSION,
560 OFPUTIL_P_ANY,
561 OFPUTIL_P_NXM_OF11_UP,
562 -1,
563 }, {
564 MFF_ARP_SHA, "arp_sha", NULL,
565 MF_FIELD_SIZES(mac),
566 MFM_FULLY,
567 MFS_ETHERNET,
568 MFP_ARP,
569 true,
570 NXM_NX_ARP_SHA, "NXM_NX_ARP_SHA",
571 OXM_OF_ARP_SHA, "OXM_OF_ARP_SHA", OFP12_VERSION,
572 OFPUTIL_P_NXM_OXM_ANY,
573 OFPUTIL_P_NXM_OXM_ANY,
574 -1,
575 }, {
576 MFF_ARP_THA, "arp_tha", NULL,
577 MF_FIELD_SIZES(mac),
578 MFM_FULLY,
579 MFS_ETHERNET,
580 MFP_ARP,
581 true,
582 NXM_NX_ARP_THA, "NXM_NX_ARP_THA",
583 OXM_OF_ARP_THA, "OXM_OF_ARP_THA", OFP12_VERSION,
584 OFPUTIL_P_NXM_OXM_ANY,
585 OFPUTIL_P_NXM_OXM_ANY,
586 -1,
587 },
588
589 /* ## -- ## */
590 /* ## L4 ## */
591 /* ## -- ## */
592
593 {
594 MFF_TCP_SRC, "tcp_src", "tp_src",
595 MF_FIELD_SIZES(be16),
596 MFM_FULLY,
597 MFS_DECIMAL,
598 MFP_TCP,
599 true,
600 NXM_OF_TCP_SRC, "NXM_OF_TCP_SRC",
601 OXM_OF_TCP_SRC, "OXM_OF_TCP_SRC", OFP12_VERSION,
602 OFPUTIL_P_ANY,
603 OFPUTIL_P_NXM_OXM_ANY,
604 -1,
605 }, {
606 MFF_TCP_DST, "tcp_dst", "tp_dst",
607 MF_FIELD_SIZES(be16),
608 MFM_FULLY,
609 MFS_DECIMAL,
610 MFP_TCP,
611 true,
612 NXM_OF_TCP_DST, "NXM_OF_TCP_DST",
613 OXM_OF_TCP_DST, "OXM_OF_TCP_DST", OFP12_VERSION,
614 OFPUTIL_P_ANY,
615 OFPUTIL_P_NXM_OXM_ANY,
616 -1,
617 }, {
618 MFF_TCP_FLAGS, "tcp_flags", NULL,
619 2, 12,
620 MFM_FULLY,
621 MFS_TCP_FLAGS,
622 MFP_TCP,
623 false,
624 NXM_NX_TCP_FLAGS, "NXM_NX_TCP_FLAGS",
625 OXM_OF_TCP_FLAGS, "OXM_OF_TCP_FLAGS", OFP15_VERSION,
626 OFPUTIL_P_NXM_OXM_ANY,
627 OFPUTIL_P_NXM_OXM_ANY,
628 -1,
629 },
630
631 {
632 MFF_UDP_SRC, "udp_src", NULL,
633 MF_FIELD_SIZES(be16),
634 MFM_FULLY,
635 MFS_DECIMAL,
636 MFP_UDP,
637 true,
638 NXM_OF_UDP_SRC, "NXM_OF_UDP_SRC",
639 OXM_OF_UDP_SRC, "OXM_OF_UDP_SRC", OFP12_VERSION,
640 OFPUTIL_P_ANY,
641 OFPUTIL_P_NXM_OXM_ANY,
642 -1,
643 }, {
644 MFF_UDP_DST, "udp_dst", NULL,
645 MF_FIELD_SIZES(be16),
646 MFM_FULLY,
647 MFS_DECIMAL,
648 MFP_UDP,
649 true,
650 NXM_OF_UDP_DST, "NXM_OF_UDP_DST",
651 OXM_OF_UDP_DST, "OXM_OF_UDP_DST", OFP12_VERSION,
652 OFPUTIL_P_ANY,
653 OFPUTIL_P_NXM_OXM_ANY,
654 -1,
655 },
656
657 {
658 MFF_SCTP_SRC, "sctp_src", NULL,
659 MF_FIELD_SIZES(be16),
660 MFM_FULLY,
661 MFS_DECIMAL,
662 MFP_SCTP,
663 true,
664 OXM_OF_SCTP_SRC, "OXM_OF_SCTP_SRC",
665 OXM_OF_SCTP_SRC, "OXM_OF_SCTP_SRC", OFP12_VERSION,
666 OFPUTIL_P_NXM_OF11_UP,
667 OFPUTIL_P_NXM_OXM_ANY,
668 -1,
669 }, {
670 MFF_SCTP_DST, "sctp_dst", NULL,
671 MF_FIELD_SIZES(be16),
672 MFM_FULLY,
673 MFS_DECIMAL,
674 MFP_SCTP,
675 true,
676 OXM_OF_SCTP_DST, "OXM_OF_SCTP_DST",
677 OXM_OF_SCTP_DST, "OXM_OF_SCTP_DST", OFP12_VERSION,
678 OFPUTIL_P_NXM_OF11_UP,
679 OFPUTIL_P_NXM_OXM_ANY,
680 -1,
681 },
682
683 {
684 MFF_ICMPV4_TYPE, "icmp_type", NULL,
685 MF_FIELD_SIZES(u8),
686 MFM_NONE,
687 MFS_DECIMAL,
688 MFP_ICMPV4,
689 false,
690 NXM_OF_ICMP_TYPE, "NXM_OF_ICMP_TYPE",
691 OXM_OF_ICMPV4_TYPE, "OXM_OF_ICMPV4_TYPE", OFP12_VERSION,
692 OFPUTIL_P_ANY,
693 OFPUTIL_P_NONE,
694 -1,
695 }, {
696 MFF_ICMPV4_CODE, "icmp_code", NULL,
697 MF_FIELD_SIZES(u8),
698 MFM_NONE,
699 MFS_DECIMAL,
700 MFP_ICMPV4,
701 false,
702 NXM_OF_ICMP_CODE, "NXM_OF_ICMP_CODE",
703 OXM_OF_ICMPV4_CODE, "OXM_OF_ICMPV4_CODE", OFP12_VERSION,
704 OFPUTIL_P_ANY,
705 OFPUTIL_P_NONE,
706 -1,
707 },
708
709 {
710 MFF_ICMPV6_TYPE, "icmpv6_type", NULL,
711 MF_FIELD_SIZES(u8),
712 MFM_NONE,
713 MFS_DECIMAL,
714 MFP_ICMPV6,
715 false,
716 NXM_NX_ICMPV6_TYPE, "NXM_NX_ICMPV6_TYPE",
717 OXM_OF_ICMPV6_TYPE, "OXM_OF_ICMPV6_TYPE", OFP12_VERSION,
718 OFPUTIL_P_NXM_OXM_ANY,
719 OFPUTIL_P_NONE,
720 -1,
721 }, {
722 MFF_ICMPV6_CODE, "icmpv6_code", NULL,
723 MF_FIELD_SIZES(u8),
724 MFM_NONE,
725 MFS_DECIMAL,
726 MFP_ICMPV6,
727 false,
728 NXM_NX_ICMPV6_CODE, "NXM_NX_ICMPV6_CODE",
729 OXM_OF_ICMPV6_CODE, "OXM_OF_ICMPV6_CODE", OFP12_VERSION,
730 OFPUTIL_P_NXM_OXM_ANY,
731 OFPUTIL_P_NONE,
732 -1,
733 },
734
735 /* ## ---- ## */
736 /* ## L"5" ## */
737 /* ## ---- ## */
738
739 {
740 MFF_ND_TARGET, "nd_target", NULL,
741 MF_FIELD_SIZES(ipv6),
742 MFM_FULLY,
743 MFS_IPV6,
744 MFP_ND,
745 false,
746 NXM_NX_ND_TARGET, "NXM_NX_ND_TARGET",
747 OXM_OF_IPV6_ND_TARGET, "OXM_OF_IPV6_ND_TARGET", OFP12_VERSION,
748 OFPUTIL_P_NXM_OXM_ANY,
749 OFPUTIL_P_NXM_OXM_ANY,
750 -1,
751 }, {
752 MFF_ND_SLL, "nd_sll", NULL,
753 MF_FIELD_SIZES(mac),
754 MFM_FULLY,
755 MFS_ETHERNET,
756 MFP_ND_SOLICIT,
757 false,
758 NXM_NX_ND_SLL, "NXM_NX_ND_SLL",
759 OXM_OF_IPV6_ND_SLL, "OXM_OF_IPV6_ND_SLL", OFP12_VERSION,
760 OFPUTIL_P_NXM_OXM_ANY,
761 OFPUTIL_P_NXM_OXM_ANY,
762 -1,
763 }, {
764 MFF_ND_TLL, "nd_tll", NULL,
765 MF_FIELD_SIZES(mac),
766 MFM_FULLY,
767 MFS_ETHERNET,
768 MFP_ND_ADVERT,
769 false,
770 NXM_NX_ND_TLL, "NXM_NX_ND_TLL",
771 OXM_OF_IPV6_ND_TLL, "OXM_OF_IPV6_ND_TLL", OFP12_VERSION,
772 OFPUTIL_P_NXM_OXM_ANY,
773 OFPUTIL_P_NXM_OXM_ANY,
774 -1,
775 }
776 };
777
778 /* Maps an NXM or OXM header value to an mf_field. */
779 struct nxm_field {
780 struct hmap_node hmap_node; /* In 'all_fields' hmap. */
781 uint32_t header; /* NXM or OXM header value. */
782 const struct mf_field *mf;
783 };
784
785 /* Contains 'struct nxm_field's. */
786 static struct hmap all_fields;
787
788 /* Maps from an mf_field's 'name' or 'extra_name' to the mf_field. */
789 static struct shash mf_by_name;
790
791 /* Rate limit for parse errors. These always indicate a bug in an OpenFlow
792 * controller and so there's not much point in showing a lot of them. */
793 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
794
795 const struct mf_field *mf_from_nxm_header__(uint32_t header);
796 static void nxm_init(void);
797
798 /* Returns the field with the given 'name', or a null pointer if no field has
799 * that name. */
800 const struct mf_field *
801 mf_from_name(const char *name)
802 {
803 nxm_init();
804 return shash_find_data(&mf_by_name, name);
805 }
806
807 static void
808 add_nxm_field(uint32_t header, const struct mf_field *mf)
809 {
810 struct nxm_field *f;
811
812 f = xmalloc(sizeof *f);
813 hmap_insert(&all_fields, &f->hmap_node, hash_int(header, 0));
814 f->header = header;
815 f->mf = mf;
816 }
817
818 static void
819 nxm_init_add_field(const struct mf_field *mf, uint32_t header)
820 {
821 if (header) {
822 ovs_assert(!mf_from_nxm_header__(header));
823 add_nxm_field(header, mf);
824 if (mf->maskable != MFM_NONE) {
825 add_nxm_field(NXM_MAKE_WILD_HEADER(header), mf);
826 }
827 }
828 }
829
830 static void
831 nxm_do_init(void)
832 {
833 int i;
834
835 hmap_init(&all_fields);
836 shash_init(&mf_by_name);
837 for (i = 0; i < MFF_N_IDS; i++) {
838 const struct mf_field *mf = &mf_fields[i];
839
840 ovs_assert(mf->id == i); /* Fields must be in the enum order. */
841
842 nxm_init_add_field(mf, mf->nxm_header);
843 if (mf->oxm_header != mf->nxm_header) {
844 nxm_init_add_field(mf, mf->oxm_header);
845 }
846
847 shash_add_once(&mf_by_name, mf->name, mf);
848 if (mf->extra_name) {
849 shash_add_once(&mf_by_name, mf->extra_name, mf);
850 }
851 }
852 }
853
854 static void
855 nxm_init(void)
856 {
857 static pthread_once_t once = PTHREAD_ONCE_INIT;
858 pthread_once(&once, nxm_do_init);
859 }
860
861 const struct mf_field *
862 mf_from_nxm_header(uint32_t header)
863 {
864 nxm_init();
865 return mf_from_nxm_header__(header);
866 }
867
868 const struct mf_field *
869 mf_from_nxm_header__(uint32_t header)
870 {
871 const struct nxm_field *f;
872
873 HMAP_FOR_EACH_IN_BUCKET (f, hmap_node, hash_int(header, 0), &all_fields) {
874 if (f->header == header) {
875 return f->mf;
876 }
877 }
878
879 return NULL;
880 }
881
882 uint32_t
883 mf_oxm_header(enum mf_field_id id, enum ofp_version oxm_version)
884 {
885 const struct mf_field *field = mf_from_id(id);
886
887 return (oxm_version >= field->oxm_version
888 ? field->oxm_header
889 : field->nxm_header);
890 }
891
892 /* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc'
893 * specifies at least one bit in the field.
894 *
895 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
896 * meets 'mf''s prerequisites. */
897 bool
898 mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc)
899 {
900 switch (mf->id) {
901 case MFF_DP_HASH:
902 return !wc->masks.dp_hash;
903 case MFF_RECIRC_ID:
904 return !wc->masks.recirc_id;
905 case MFF_TUN_SRC:
906 return !wc->masks.tunnel.ip_src;
907 case MFF_TUN_DST:
908 return !wc->masks.tunnel.ip_dst;
909 case MFF_TUN_ID:
910 case MFF_TUN_TOS:
911 case MFF_TUN_TTL:
912 case MFF_TUN_FLAGS:
913 return !wc->masks.tunnel.tun_id;
914 case MFF_METADATA:
915 return !wc->masks.metadata;
916 case MFF_IN_PORT:
917 case MFF_IN_PORT_OXM:
918 return !wc->masks.in_port.ofp_port;
919 case MFF_SKB_PRIORITY:
920 return !wc->masks.skb_priority;
921 case MFF_PKT_MARK:
922 return !wc->masks.pkt_mark;
923 CASE_MFF_REGS:
924 return !wc->masks.regs[mf->id - MFF_REG0];
925
926 case MFF_ETH_SRC:
927 return eth_addr_is_zero(wc->masks.dl_src);
928 case MFF_ETH_DST:
929 return eth_addr_is_zero(wc->masks.dl_dst);
930 case MFF_ETH_TYPE:
931 return !wc->masks.dl_type;
932
933 case MFF_ARP_SHA:
934 case MFF_ND_SLL:
935 return eth_addr_is_zero(wc->masks.arp_sha);
936
937 case MFF_ARP_THA:
938 case MFF_ND_TLL:
939 return eth_addr_is_zero(wc->masks.arp_tha);
940
941 case MFF_VLAN_TCI:
942 return !wc->masks.vlan_tci;
943 case MFF_DL_VLAN:
944 return !(wc->masks.vlan_tci & htons(VLAN_VID_MASK));
945 case MFF_VLAN_VID:
946 return !(wc->masks.vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI));
947 case MFF_DL_VLAN_PCP:
948 case MFF_VLAN_PCP:
949 return !(wc->masks.vlan_tci & htons(VLAN_PCP_MASK));
950
951 case MFF_MPLS_LABEL:
952 return !(wc->masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK));
953 case MFF_MPLS_TC:
954 return !(wc->masks.mpls_lse[1] & htonl(MPLS_TC_MASK));
955 case MFF_MPLS_BOS:
956 return !(wc->masks.mpls_lse[2] & htonl(MPLS_BOS_MASK));
957
958 case MFF_IPV4_SRC:
959 return !wc->masks.nw_src;
960 case MFF_IPV4_DST:
961 return !wc->masks.nw_dst;
962
963 case MFF_IPV6_SRC:
964 return ipv6_mask_is_any(&wc->masks.ipv6_src);
965 case MFF_IPV6_DST:
966 return ipv6_mask_is_any(&wc->masks.ipv6_dst);
967
968 case MFF_IPV6_LABEL:
969 return !wc->masks.ipv6_label;
970
971 case MFF_IP_PROTO:
972 return !wc->masks.nw_proto;
973 case MFF_IP_DSCP:
974 case MFF_IP_DSCP_SHIFTED:
975 return !(wc->masks.nw_tos & IP_DSCP_MASK);
976 case MFF_IP_ECN:
977 return !(wc->masks.nw_tos & IP_ECN_MASK);
978 case MFF_IP_TTL:
979 return !wc->masks.nw_ttl;
980
981 case MFF_ND_TARGET:
982 return ipv6_mask_is_any(&wc->masks.nd_target);
983
984 case MFF_IP_FRAG:
985 return !(wc->masks.nw_frag & FLOW_NW_FRAG_MASK);
986
987 case MFF_ARP_OP:
988 return !wc->masks.nw_proto;
989 case MFF_ARP_SPA:
990 return !wc->masks.nw_src;
991 case MFF_ARP_TPA:
992 return !wc->masks.nw_dst;
993
994 case MFF_TCP_SRC:
995 case MFF_UDP_SRC:
996 case MFF_SCTP_SRC:
997 case MFF_ICMPV4_TYPE:
998 case MFF_ICMPV6_TYPE:
999 return !wc->masks.tp_src;
1000 case MFF_TCP_DST:
1001 case MFF_UDP_DST:
1002 case MFF_SCTP_DST:
1003 case MFF_ICMPV4_CODE:
1004 case MFF_ICMPV6_CODE:
1005 return !wc->masks.tp_dst;
1006 case MFF_TCP_FLAGS:
1007 return !wc->masks.tcp_flags;
1008
1009 case MFF_N_IDS:
1010 default:
1011 OVS_NOT_REACHED();
1012 }
1013 }
1014
1015 /* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'.
1016 * Each bit in 'mask' will be set to 1 if the bit is significant for matching
1017 * purposes, or to 0 if it is wildcarded.
1018 *
1019 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
1020 * meets 'mf''s prerequisites. */
1021 void
1022 mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc,
1023 union mf_value *mask)
1024 {
1025 mf_get_value(mf, &wc->masks, mask);
1026 }
1027
1028 /* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true
1029 * if the mask is valid, false otherwise. */
1030 bool
1031 mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask)
1032 {
1033 switch (mf->maskable) {
1034 case MFM_NONE:
1035 return (is_all_zeros((const uint8_t *) mask, mf->n_bytes) ||
1036 is_all_ones((const uint8_t *) mask, mf->n_bytes));
1037
1038 case MFM_FULLY:
1039 return true;
1040 }
1041
1042 OVS_NOT_REACHED();
1043 }
1044
1045 /* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. */
1046 bool
1047 mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow)
1048 {
1049 switch (mf->prereqs) {
1050 case MFP_NONE:
1051 return true;
1052
1053 case MFP_ARP:
1054 return (flow->dl_type == htons(ETH_TYPE_ARP) ||
1055 flow->dl_type == htons(ETH_TYPE_RARP));
1056 case MFP_IPV4:
1057 return flow->dl_type == htons(ETH_TYPE_IP);
1058 case MFP_IPV6:
1059 return flow->dl_type == htons(ETH_TYPE_IPV6);
1060 case MFP_VLAN_VID:
1061 return (flow->vlan_tci & htons(VLAN_CFI)) != 0;
1062 case MFP_MPLS:
1063 return eth_type_mpls(flow->dl_type);
1064 case MFP_IP_ANY:
1065 return is_ip_any(flow);
1066
1067 case MFP_TCP:
1068 return is_ip_any(flow) && flow->nw_proto == IPPROTO_TCP;
1069 case MFP_UDP:
1070 return is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP;
1071 case MFP_SCTP:
1072 return is_ip_any(flow) && flow->nw_proto == IPPROTO_SCTP;
1073 case MFP_ICMPV4:
1074 return is_icmpv4(flow);
1075 case MFP_ICMPV6:
1076 return is_icmpv6(flow);
1077
1078 case MFP_ND:
1079 return (is_icmpv6(flow)
1080 && flow->tp_dst == htons(0)
1081 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
1082 flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
1083 case MFP_ND_SOLICIT:
1084 return (is_icmpv6(flow)
1085 && flow->tp_dst == htons(0)
1086 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)));
1087 case MFP_ND_ADVERT:
1088 return (is_icmpv6(flow)
1089 && flow->tp_dst == htons(0)
1090 && (flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
1091 }
1092
1093 OVS_NOT_REACHED();
1094 }
1095
1096 /* Set field and it's prerequisities in the mask.
1097 * This is only ever called for writeable 'mf's, but we do not make the
1098 * distinction here. */
1099 void
1100 mf_mask_field_and_prereqs(const struct mf_field *mf, struct flow *mask)
1101 {
1102 static const union mf_value exact_match_mask = MF_EXACT_MASK_INITIALIZER;
1103
1104 mf_set_flow_value(mf, &exact_match_mask, mask);
1105
1106 switch (mf->prereqs) {
1107 case MFP_ND:
1108 case MFP_ND_SOLICIT:
1109 case MFP_ND_ADVERT:
1110 mask->tp_src = OVS_BE16_MAX;
1111 mask->tp_dst = OVS_BE16_MAX;
1112 /* Fall through. */
1113 case MFP_TCP:
1114 case MFP_UDP:
1115 case MFP_SCTP:
1116 case MFP_ICMPV4:
1117 case MFP_ICMPV6:
1118 mask->nw_proto = 0xff;
1119 /* Fall through. */
1120 case MFP_ARP:
1121 case MFP_IPV4:
1122 case MFP_IPV6:
1123 case MFP_MPLS:
1124 case MFP_IP_ANY:
1125 mask->dl_type = OVS_BE16_MAX;
1126 break;
1127 case MFP_VLAN_VID:
1128 mask->vlan_tci |= htons(VLAN_CFI);
1129 break;
1130 case MFP_NONE:
1131 break;
1132 }
1133 }
1134
1135
1136 /* Returns true if 'value' may be a valid value *as part of a masked match*,
1137 * false otherwise.
1138 *
1139 * A value is not rejected just because it is not valid for the field in
1140 * question, but only if it doesn't make sense to test the bits in question at
1141 * all. For example, the MFF_VLAN_TCI field will never have a nonzero value
1142 * without the VLAN_CFI bit being set, but we can't reject those values because
1143 * it is still legitimate to test just for those bits (see the documentation
1144 * for NXM_OF_VLAN_TCI in nicira-ext.h). On the other hand, there is never a
1145 * reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */
1146 bool
1147 mf_is_value_valid(const struct mf_field *mf, const union mf_value *value)
1148 {
1149 switch (mf->id) {
1150 case MFF_DP_HASH:
1151 case MFF_RECIRC_ID:
1152 case MFF_TUN_ID:
1153 case MFF_TUN_SRC:
1154 case MFF_TUN_DST:
1155 case MFF_TUN_TOS:
1156 case MFF_TUN_TTL:
1157 case MFF_TUN_FLAGS:
1158 case MFF_METADATA:
1159 case MFF_IN_PORT:
1160 case MFF_SKB_PRIORITY:
1161 case MFF_PKT_MARK:
1162 CASE_MFF_REGS:
1163 case MFF_ETH_SRC:
1164 case MFF_ETH_DST:
1165 case MFF_ETH_TYPE:
1166 case MFF_VLAN_TCI:
1167 case MFF_IPV4_SRC:
1168 case MFF_IPV4_DST:
1169 case MFF_IPV6_SRC:
1170 case MFF_IPV6_DST:
1171 case MFF_IP_PROTO:
1172 case MFF_IP_TTL:
1173 case MFF_ARP_SPA:
1174 case MFF_ARP_TPA:
1175 case MFF_ARP_SHA:
1176 case MFF_ARP_THA:
1177 case MFF_TCP_SRC:
1178 case MFF_TCP_DST:
1179 case MFF_UDP_SRC:
1180 case MFF_UDP_DST:
1181 case MFF_SCTP_SRC:
1182 case MFF_SCTP_DST:
1183 case MFF_ICMPV4_TYPE:
1184 case MFF_ICMPV4_CODE:
1185 case MFF_ICMPV6_TYPE:
1186 case MFF_ICMPV6_CODE:
1187 case MFF_ND_TARGET:
1188 case MFF_ND_SLL:
1189 case MFF_ND_TLL:
1190 return true;
1191
1192 case MFF_IN_PORT_OXM: {
1193 ofp_port_t port;
1194 return !ofputil_port_from_ofp11(value->be32, &port);
1195 }
1196
1197 case MFF_IP_DSCP:
1198 return !(value->u8 & ~IP_DSCP_MASK);
1199 case MFF_IP_DSCP_SHIFTED:
1200 return !(value->u8 & (~IP_DSCP_MASK >> 2));
1201 case MFF_IP_ECN:
1202 return !(value->u8 & ~IP_ECN_MASK);
1203 case MFF_IP_FRAG:
1204 return !(value->u8 & ~FLOW_NW_FRAG_MASK);
1205 case MFF_TCP_FLAGS:
1206 return !(value->be16 & ~htons(0x0fff));
1207
1208 case MFF_ARP_OP:
1209 return !(value->be16 & htons(0xff00));
1210
1211 case MFF_DL_VLAN:
1212 return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK));
1213 case MFF_VLAN_VID:
1214 return !(value->be16 & htons(VLAN_PCP_MASK));
1215
1216 case MFF_DL_VLAN_PCP:
1217 case MFF_VLAN_PCP:
1218 return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT));
1219
1220 case MFF_IPV6_LABEL:
1221 return !(value->be32 & ~htonl(IPV6_LABEL_MASK));
1222
1223 case MFF_MPLS_LABEL:
1224 return !(value->be32 & ~htonl(MPLS_LABEL_MASK >> MPLS_LABEL_SHIFT));
1225
1226 case MFF_MPLS_TC:
1227 return !(value->u8 & ~(MPLS_TC_MASK >> MPLS_TC_SHIFT));
1228
1229 case MFF_MPLS_BOS:
1230 return !(value->u8 & ~(MPLS_BOS_MASK >> MPLS_BOS_SHIFT));
1231
1232 case MFF_N_IDS:
1233 default:
1234 OVS_NOT_REACHED();
1235 }
1236 }
1237
1238 /* Copies the value of field 'mf' from 'flow' into 'value'. The caller is
1239 * responsible for ensuring that 'flow' meets 'mf''s prerequisites. */
1240 void
1241 mf_get_value(const struct mf_field *mf, const struct flow *flow,
1242 union mf_value *value)
1243 {
1244 switch (mf->id) {
1245 case MFF_DP_HASH:
1246 value->be32 = htonl(flow->dp_hash);
1247 break;
1248 case MFF_RECIRC_ID:
1249 value->be32 = htonl(flow->recirc_id);
1250 break;
1251 case MFF_TUN_ID:
1252 value->be64 = flow->tunnel.tun_id;
1253 break;
1254 case MFF_TUN_SRC:
1255 value->be32 = flow->tunnel.ip_src;
1256 break;
1257 case MFF_TUN_DST:
1258 value->be32 = flow->tunnel.ip_dst;
1259 break;
1260 case MFF_TUN_FLAGS:
1261 value->be16 = htons(flow->tunnel.flags);
1262 break;
1263 case MFF_TUN_TTL:
1264 value->u8 = flow->tunnel.ip_ttl;
1265 break;
1266 case MFF_TUN_TOS:
1267 value->u8 = flow->tunnel.ip_tos;
1268 break;
1269
1270 case MFF_METADATA:
1271 value->be64 = flow->metadata;
1272 break;
1273
1274 case MFF_IN_PORT:
1275 value->be16 = htons(ofp_to_u16(flow->in_port.ofp_port));
1276 break;
1277 case MFF_IN_PORT_OXM:
1278 value->be32 = ofputil_port_to_ofp11(flow->in_port.ofp_port);
1279 break;
1280
1281 case MFF_SKB_PRIORITY:
1282 value->be32 = htonl(flow->skb_priority);
1283 break;
1284
1285 case MFF_PKT_MARK:
1286 value->be32 = htonl(flow->pkt_mark);
1287 break;
1288
1289 CASE_MFF_REGS:
1290 value->be32 = htonl(flow->regs[mf->id - MFF_REG0]);
1291 break;
1292
1293 case MFF_ETH_SRC:
1294 memcpy(value->mac, flow->dl_src, ETH_ADDR_LEN);
1295 break;
1296
1297 case MFF_ETH_DST:
1298 memcpy(value->mac, flow->dl_dst, ETH_ADDR_LEN);
1299 break;
1300
1301 case MFF_ETH_TYPE:
1302 value->be16 = flow->dl_type;
1303 break;
1304
1305 case MFF_VLAN_TCI:
1306 value->be16 = flow->vlan_tci;
1307 break;
1308
1309 case MFF_DL_VLAN:
1310 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK);
1311 break;
1312 case MFF_VLAN_VID:
1313 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI);
1314 break;
1315
1316 case MFF_DL_VLAN_PCP:
1317 case MFF_VLAN_PCP:
1318 value->u8 = vlan_tci_to_pcp(flow->vlan_tci);
1319 break;
1320
1321 case MFF_MPLS_LABEL:
1322 value->be32 = htonl(mpls_lse_to_label(flow->mpls_lse[0]));
1323 break;
1324
1325 case MFF_MPLS_TC:
1326 value->u8 = mpls_lse_to_tc(flow->mpls_lse[0]);
1327 break;
1328
1329 case MFF_MPLS_BOS:
1330 value->u8 = mpls_lse_to_bos(flow->mpls_lse[0]);
1331 break;
1332
1333 case MFF_IPV4_SRC:
1334 value->be32 = flow->nw_src;
1335 break;
1336
1337 case MFF_IPV4_DST:
1338 value->be32 = flow->nw_dst;
1339 break;
1340
1341 case MFF_IPV6_SRC:
1342 value->ipv6 = flow->ipv6_src;
1343 break;
1344
1345 case MFF_IPV6_DST:
1346 value->ipv6 = flow->ipv6_dst;
1347 break;
1348
1349 case MFF_IPV6_LABEL:
1350 value->be32 = flow->ipv6_label;
1351 break;
1352
1353 case MFF_IP_PROTO:
1354 value->u8 = flow->nw_proto;
1355 break;
1356
1357 case MFF_IP_DSCP:
1358 value->u8 = flow->nw_tos & IP_DSCP_MASK;
1359 break;
1360
1361 case MFF_IP_DSCP_SHIFTED:
1362 value->u8 = flow->nw_tos >> 2;
1363 break;
1364
1365 case MFF_IP_ECN:
1366 value->u8 = flow->nw_tos & IP_ECN_MASK;
1367 break;
1368
1369 case MFF_IP_TTL:
1370 value->u8 = flow->nw_ttl;
1371 break;
1372
1373 case MFF_IP_FRAG:
1374 value->u8 = flow->nw_frag;
1375 break;
1376
1377 case MFF_ARP_OP:
1378 value->be16 = htons(flow->nw_proto);
1379 break;
1380
1381 case MFF_ARP_SPA:
1382 value->be32 = flow->nw_src;
1383 break;
1384
1385 case MFF_ARP_TPA:
1386 value->be32 = flow->nw_dst;
1387 break;
1388
1389 case MFF_ARP_SHA:
1390 case MFF_ND_SLL:
1391 memcpy(value->mac, flow->arp_sha, ETH_ADDR_LEN);
1392 break;
1393
1394 case MFF_ARP_THA:
1395 case MFF_ND_TLL:
1396 memcpy(value->mac, flow->arp_tha, ETH_ADDR_LEN);
1397 break;
1398
1399 case MFF_TCP_SRC:
1400 case MFF_UDP_SRC:
1401 case MFF_SCTP_SRC:
1402 value->be16 = flow->tp_src;
1403 break;
1404
1405 case MFF_TCP_DST:
1406 case MFF_UDP_DST:
1407 case MFF_SCTP_DST:
1408 value->be16 = flow->tp_dst;
1409 break;
1410
1411 case MFF_TCP_FLAGS:
1412 value->be16 = flow->tcp_flags;
1413 break;
1414
1415 case MFF_ICMPV4_TYPE:
1416 case MFF_ICMPV6_TYPE:
1417 value->u8 = ntohs(flow->tp_src);
1418 break;
1419
1420 case MFF_ICMPV4_CODE:
1421 case MFF_ICMPV6_CODE:
1422 value->u8 = ntohs(flow->tp_dst);
1423 break;
1424
1425 case MFF_ND_TARGET:
1426 value->ipv6 = flow->nd_target;
1427 break;
1428
1429 case MFF_N_IDS:
1430 default:
1431 OVS_NOT_REACHED();
1432 }
1433 }
1434
1435 /* Makes 'match' match field 'mf' exactly, with the value matched taken from
1436 * 'value'. The caller is responsible for ensuring that 'match' meets 'mf''s
1437 * prerequisites. */
1438 void
1439 mf_set_value(const struct mf_field *mf,
1440 const union mf_value *value, struct match *match)
1441 {
1442 switch (mf->id) {
1443 case MFF_DP_HASH:
1444 match_set_dp_hash(match, ntohl(value->be32));
1445 break;
1446 case MFF_RECIRC_ID:
1447 match_set_recirc_id(match, ntohl(value->be32));
1448 break;
1449 case MFF_TUN_ID:
1450 match_set_tun_id(match, value->be64);
1451 break;
1452 case MFF_TUN_SRC:
1453 match_set_tun_src(match, value->be32);
1454 break;
1455 case MFF_TUN_DST:
1456 match_set_tun_dst(match, value->be32);
1457 break;
1458 case MFF_TUN_FLAGS:
1459 match_set_tun_flags(match, ntohs(value->be16));
1460 break;
1461 case MFF_TUN_TOS:
1462 match_set_tun_tos(match, value->u8);
1463 break;
1464 case MFF_TUN_TTL:
1465 match_set_tun_ttl(match, value->u8);
1466 break;
1467
1468 case MFF_METADATA:
1469 match_set_metadata(match, value->be64);
1470 break;
1471
1472 case MFF_IN_PORT:
1473 match_set_in_port(match, u16_to_ofp(ntohs(value->be16)));
1474 break;
1475
1476 case MFF_IN_PORT_OXM: {
1477 ofp_port_t port;
1478 ofputil_port_from_ofp11(value->be32, &port);
1479 match_set_in_port(match, port);
1480 break;
1481 }
1482
1483 case MFF_SKB_PRIORITY:
1484 match_set_skb_priority(match, ntohl(value->be32));
1485 break;
1486
1487 case MFF_PKT_MARK:
1488 match_set_pkt_mark(match, ntohl(value->be32));
1489 break;
1490
1491 CASE_MFF_REGS:
1492 match_set_reg(match, mf->id - MFF_REG0, ntohl(value->be32));
1493 break;
1494
1495 case MFF_ETH_SRC:
1496 match_set_dl_src(match, value->mac);
1497 break;
1498
1499 case MFF_ETH_DST:
1500 match_set_dl_dst(match, value->mac);
1501 break;
1502
1503 case MFF_ETH_TYPE:
1504 match_set_dl_type(match, value->be16);
1505 break;
1506
1507 case MFF_VLAN_TCI:
1508 match_set_dl_tci(match, value->be16);
1509 break;
1510
1511 case MFF_DL_VLAN:
1512 match_set_dl_vlan(match, value->be16);
1513 break;
1514 case MFF_VLAN_VID:
1515 match_set_vlan_vid(match, value->be16);
1516 break;
1517
1518 case MFF_DL_VLAN_PCP:
1519 case MFF_VLAN_PCP:
1520 match_set_dl_vlan_pcp(match, value->u8);
1521 break;
1522
1523 case MFF_MPLS_LABEL:
1524 match_set_mpls_label(match, 0, value->be32);
1525 break;
1526
1527 case MFF_MPLS_TC:
1528 match_set_mpls_tc(match, 0, value->u8);
1529 break;
1530
1531 case MFF_MPLS_BOS:
1532 match_set_mpls_bos(match, 0, value->u8);
1533 break;
1534
1535 case MFF_IPV4_SRC:
1536 match_set_nw_src(match, value->be32);
1537 break;
1538
1539 case MFF_IPV4_DST:
1540 match_set_nw_dst(match, value->be32);
1541 break;
1542
1543 case MFF_IPV6_SRC:
1544 match_set_ipv6_src(match, &value->ipv6);
1545 break;
1546
1547 case MFF_IPV6_DST:
1548 match_set_ipv6_dst(match, &value->ipv6);
1549 break;
1550
1551 case MFF_IPV6_LABEL:
1552 match_set_ipv6_label(match, value->be32);
1553 break;
1554
1555 case MFF_IP_PROTO:
1556 match_set_nw_proto(match, value->u8);
1557 break;
1558
1559 case MFF_IP_DSCP:
1560 match_set_nw_dscp(match, value->u8);
1561 break;
1562
1563 case MFF_IP_DSCP_SHIFTED:
1564 match_set_nw_dscp(match, value->u8 << 2);
1565 break;
1566
1567 case MFF_IP_ECN:
1568 match_set_nw_ecn(match, value->u8);
1569 break;
1570
1571 case MFF_IP_TTL:
1572 match_set_nw_ttl(match, value->u8);
1573 break;
1574
1575 case MFF_IP_FRAG:
1576 match_set_nw_frag(match, value->u8);
1577 break;
1578
1579 case MFF_ARP_OP:
1580 match_set_nw_proto(match, ntohs(value->be16));
1581 break;
1582
1583 case MFF_ARP_SPA:
1584 match_set_nw_src(match, value->be32);
1585 break;
1586
1587 case MFF_ARP_TPA:
1588 match_set_nw_dst(match, value->be32);
1589 break;
1590
1591 case MFF_ARP_SHA:
1592 case MFF_ND_SLL:
1593 match_set_arp_sha(match, value->mac);
1594 break;
1595
1596 case MFF_ARP_THA:
1597 case MFF_ND_TLL:
1598 match_set_arp_tha(match, value->mac);
1599 break;
1600
1601 case MFF_TCP_SRC:
1602 case MFF_UDP_SRC:
1603 case MFF_SCTP_SRC:
1604 match_set_tp_src(match, value->be16);
1605 break;
1606
1607 case MFF_TCP_DST:
1608 case MFF_UDP_DST:
1609 case MFF_SCTP_DST:
1610 match_set_tp_dst(match, value->be16);
1611 break;
1612
1613 case MFF_TCP_FLAGS:
1614 match_set_tcp_flags(match, value->be16);
1615 break;
1616
1617 case MFF_ICMPV4_TYPE:
1618 case MFF_ICMPV6_TYPE:
1619 match_set_icmp_type(match, value->u8);
1620 break;
1621
1622 case MFF_ICMPV4_CODE:
1623 case MFF_ICMPV6_CODE:
1624 match_set_icmp_code(match, value->u8);
1625 break;
1626
1627 case MFF_ND_TARGET:
1628 match_set_nd_target(match, &value->ipv6);
1629 break;
1630
1631 case MFF_N_IDS:
1632 default:
1633 OVS_NOT_REACHED();
1634 }
1635 }
1636
1637 /* Unwildcard 'mask' member field described by 'mf'. The caller is
1638 * responsible for ensuring that 'mask' meets 'mf''s prerequisites. */
1639 void
1640 mf_mask_field(const struct mf_field *mf, struct flow *mask)
1641 {
1642 static const union mf_value exact_match_mask = MF_EXACT_MASK_INITIALIZER;
1643
1644 /* For MFF_DL_VLAN, we cannot send a all 1's to flow_set_dl_vlan()
1645 * as that will be considered as OFP10_VLAN_NONE. So consider it as a
1646 * special case. For the rest, calling mf_set_flow_value() is good
1647 * enough. */
1648 if (mf->id == MFF_DL_VLAN) {
1649 flow_set_dl_vlan(mask, htons(VLAN_VID_MASK));
1650 } else {
1651 mf_set_flow_value(mf, &exact_match_mask, mask);
1652 }
1653 }
1654
1655 /* Sets 'flow' member field described by 'mf' to 'value'. The caller is
1656 * responsible for ensuring that 'flow' meets 'mf''s prerequisites.*/
1657 void
1658 mf_set_flow_value(const struct mf_field *mf,
1659 const union mf_value *value, struct flow *flow)
1660 {
1661 switch (mf->id) {
1662 case MFF_DP_HASH:
1663 flow->dp_hash = ntohl(value->be32);
1664 break;
1665 case MFF_RECIRC_ID:
1666 flow->recirc_id = ntohl(value->be32);
1667 break;
1668 case MFF_TUN_ID:
1669 flow->tunnel.tun_id = value->be64;
1670 break;
1671 case MFF_TUN_SRC:
1672 flow->tunnel.ip_src = value->be32;
1673 break;
1674 case MFF_TUN_DST:
1675 flow->tunnel.ip_dst = value->be32;
1676 break;
1677 case MFF_TUN_FLAGS:
1678 flow->tunnel.flags = ntohs(value->be16);
1679 break;
1680 case MFF_TUN_TOS:
1681 flow->tunnel.ip_tos = value->u8;
1682 break;
1683 case MFF_TUN_TTL:
1684 flow->tunnel.ip_ttl = value->u8;
1685 break;
1686
1687 case MFF_METADATA:
1688 flow->metadata = value->be64;
1689 break;
1690
1691 case MFF_IN_PORT:
1692 flow->in_port.ofp_port = u16_to_ofp(ntohs(value->be16));
1693 break;
1694
1695 case MFF_IN_PORT_OXM: {
1696 ofp_port_t port;
1697 ofputil_port_from_ofp11(value->be32, &port);
1698 flow->in_port.ofp_port = port;
1699 break;
1700 }
1701
1702 case MFF_SKB_PRIORITY:
1703 flow->skb_priority = ntohl(value->be32);
1704 break;
1705
1706 case MFF_PKT_MARK:
1707 flow->pkt_mark = ntohl(value->be32);
1708 break;
1709
1710 CASE_MFF_REGS:
1711 flow->regs[mf->id - MFF_REG0] = ntohl(value->be32);
1712 break;
1713
1714 case MFF_ETH_SRC:
1715 memcpy(flow->dl_src, value->mac, ETH_ADDR_LEN);
1716 break;
1717
1718 case MFF_ETH_DST:
1719 memcpy(flow->dl_dst, value->mac, ETH_ADDR_LEN);
1720 break;
1721
1722 case MFF_ETH_TYPE:
1723 flow->dl_type = value->be16;
1724 break;
1725
1726 case MFF_VLAN_TCI:
1727 flow->vlan_tci = value->be16;
1728 break;
1729
1730 case MFF_DL_VLAN:
1731 flow_set_dl_vlan(flow, value->be16);
1732 break;
1733 case MFF_VLAN_VID:
1734 flow_set_vlan_vid(flow, value->be16);
1735 break;
1736
1737 case MFF_DL_VLAN_PCP:
1738 case MFF_VLAN_PCP:
1739 flow_set_vlan_pcp(flow, value->u8);
1740 break;
1741
1742 case MFF_MPLS_LABEL:
1743 flow_set_mpls_label(flow, 0, value->be32);
1744 break;
1745
1746 case MFF_MPLS_TC:
1747 flow_set_mpls_tc(flow, 0, value->u8);
1748 break;
1749
1750 case MFF_MPLS_BOS:
1751 flow_set_mpls_bos(flow, 0, value->u8);
1752 break;
1753
1754 case MFF_IPV4_SRC:
1755 flow->nw_src = value->be32;
1756 break;
1757
1758 case MFF_IPV4_DST:
1759 flow->nw_dst = value->be32;
1760 break;
1761
1762 case MFF_IPV6_SRC:
1763 flow->ipv6_src = value->ipv6;
1764 break;
1765
1766 case MFF_IPV6_DST:
1767 flow->ipv6_dst = value->ipv6;
1768 break;
1769
1770 case MFF_IPV6_LABEL:
1771 flow->ipv6_label = value->be32 & ~htonl(IPV6_LABEL_MASK);
1772 break;
1773
1774 case MFF_IP_PROTO:
1775 flow->nw_proto = value->u8;
1776 break;
1777
1778 case MFF_IP_DSCP:
1779 flow->nw_tos &= ~IP_DSCP_MASK;
1780 flow->nw_tos |= value->u8 & IP_DSCP_MASK;
1781 break;
1782
1783 case MFF_IP_DSCP_SHIFTED:
1784 flow->nw_tos &= ~IP_DSCP_MASK;
1785 flow->nw_tos |= value->u8 << 2;
1786 break;
1787
1788 case MFF_IP_ECN:
1789 flow->nw_tos &= ~IP_ECN_MASK;
1790 flow->nw_tos |= value->u8 & IP_ECN_MASK;
1791 break;
1792
1793 case MFF_IP_TTL:
1794 flow->nw_ttl = value->u8;
1795 break;
1796
1797 case MFF_IP_FRAG:
1798 flow->nw_frag = value->u8 & FLOW_NW_FRAG_MASK;
1799 break;
1800
1801 case MFF_ARP_OP:
1802 flow->nw_proto = ntohs(value->be16);
1803 break;
1804
1805 case MFF_ARP_SPA:
1806 flow->nw_src = value->be32;
1807 break;
1808
1809 case MFF_ARP_TPA:
1810 flow->nw_dst = value->be32;
1811 break;
1812
1813 case MFF_ARP_SHA:
1814 case MFF_ND_SLL:
1815 memcpy(flow->arp_sha, value->mac, ETH_ADDR_LEN);
1816 break;
1817
1818 case MFF_ARP_THA:
1819 case MFF_ND_TLL:
1820 memcpy(flow->arp_tha, value->mac, ETH_ADDR_LEN);
1821 break;
1822
1823 case MFF_TCP_SRC:
1824 case MFF_UDP_SRC:
1825 case MFF_SCTP_SRC:
1826 flow->tp_src = value->be16;
1827 break;
1828
1829 case MFF_TCP_DST:
1830 case MFF_UDP_DST:
1831 case MFF_SCTP_DST:
1832 flow->tp_dst = value->be16;
1833 break;
1834
1835 case MFF_TCP_FLAGS:
1836 flow->tcp_flags = value->be16;
1837 break;
1838
1839 case MFF_ICMPV4_TYPE:
1840 case MFF_ICMPV6_TYPE:
1841 flow->tp_src = htons(value->u8);
1842 break;
1843
1844 case MFF_ICMPV4_CODE:
1845 case MFF_ICMPV6_CODE:
1846 flow->tp_dst = htons(value->u8);
1847 break;
1848
1849 case MFF_ND_TARGET:
1850 flow->nd_target = value->ipv6;
1851 break;
1852
1853 case MFF_N_IDS:
1854 default:
1855 OVS_NOT_REACHED();
1856 }
1857 }
1858
1859 /* Returns true if 'mf' has a zero value in 'flow', false if it is nonzero.
1860 *
1861 * The caller is responsible for ensuring that 'flow' meets 'mf''s
1862 * prerequisites. */
1863 bool
1864 mf_is_zero(const struct mf_field *mf, const struct flow *flow)
1865 {
1866 union mf_value value;
1867
1868 mf_get_value(mf, flow, &value);
1869 return is_all_zeros((const uint8_t *) &value, mf->n_bytes);
1870 }
1871
1872 /* Makes 'match' wildcard field 'mf'.
1873 *
1874 * The caller is responsible for ensuring that 'match' meets 'mf''s
1875 * prerequisites. */
1876 void
1877 mf_set_wild(const struct mf_field *mf, struct match *match)
1878 {
1879 switch (mf->id) {
1880 case MFF_DP_HASH:
1881 match->flow.dp_hash = 0;
1882 match->wc.masks.dp_hash = 0;
1883 break;
1884 case MFF_RECIRC_ID:
1885 match->flow.recirc_id = 0;
1886 match->wc.masks.recirc_id = 0;
1887 break;
1888 case MFF_TUN_ID:
1889 match_set_tun_id_masked(match, htonll(0), htonll(0));
1890 break;
1891 case MFF_TUN_SRC:
1892 match_set_tun_src_masked(match, htonl(0), htonl(0));
1893 break;
1894 case MFF_TUN_DST:
1895 match_set_tun_dst_masked(match, htonl(0), htonl(0));
1896 break;
1897 case MFF_TUN_FLAGS:
1898 match_set_tun_flags_masked(match, 0, 0);
1899 break;
1900 case MFF_TUN_TOS:
1901 match_set_tun_tos_masked(match, 0, 0);
1902 break;
1903 case MFF_TUN_TTL:
1904 match_set_tun_ttl_masked(match, 0, 0);
1905 break;
1906
1907 case MFF_METADATA:
1908 match_set_metadata_masked(match, htonll(0), htonll(0));
1909 break;
1910
1911 case MFF_IN_PORT:
1912 case MFF_IN_PORT_OXM:
1913 match->flow.in_port.ofp_port = 0;
1914 match->wc.masks.in_port.ofp_port = 0;
1915 break;
1916
1917 case MFF_SKB_PRIORITY:
1918 match->flow.skb_priority = 0;
1919 match->wc.masks.skb_priority = 0;
1920 break;
1921
1922 case MFF_PKT_MARK:
1923 match->flow.pkt_mark = 0;
1924 match->wc.masks.pkt_mark = 0;
1925 break;
1926
1927 CASE_MFF_REGS:
1928 match_set_reg_masked(match, mf->id - MFF_REG0, 0, 0);
1929 break;
1930
1931 case MFF_ETH_SRC:
1932 memset(match->flow.dl_src, 0, ETH_ADDR_LEN);
1933 memset(match->wc.masks.dl_src, 0, ETH_ADDR_LEN);
1934 break;
1935
1936 case MFF_ETH_DST:
1937 memset(match->flow.dl_dst, 0, ETH_ADDR_LEN);
1938 memset(match->wc.masks.dl_dst, 0, ETH_ADDR_LEN);
1939 break;
1940
1941 case MFF_ETH_TYPE:
1942 match->flow.dl_type = htons(0);
1943 match->wc.masks.dl_type = htons(0);
1944 break;
1945
1946 case MFF_VLAN_TCI:
1947 match_set_dl_tci_masked(match, htons(0), htons(0));
1948 break;
1949
1950 case MFF_DL_VLAN:
1951 case MFF_VLAN_VID:
1952 match_set_any_vid(match);
1953 break;
1954
1955 case MFF_DL_VLAN_PCP:
1956 case MFF_VLAN_PCP:
1957 match_set_any_pcp(match);
1958 break;
1959
1960 case MFF_MPLS_LABEL:
1961 match_set_any_mpls_label(match, 0);
1962 break;
1963
1964 case MFF_MPLS_TC:
1965 match_set_any_mpls_tc(match, 0);
1966 break;
1967
1968 case MFF_MPLS_BOS:
1969 match_set_any_mpls_bos(match, 0);
1970 break;
1971
1972 case MFF_IPV4_SRC:
1973 case MFF_ARP_SPA:
1974 match_set_nw_src_masked(match, htonl(0), htonl(0));
1975 break;
1976
1977 case MFF_IPV4_DST:
1978 case MFF_ARP_TPA:
1979 match_set_nw_dst_masked(match, htonl(0), htonl(0));
1980 break;
1981
1982 case MFF_IPV6_SRC:
1983 memset(&match->wc.masks.ipv6_src, 0, sizeof match->wc.masks.ipv6_src);
1984 memset(&match->flow.ipv6_src, 0, sizeof match->flow.ipv6_src);
1985 break;
1986
1987 case MFF_IPV6_DST:
1988 memset(&match->wc.masks.ipv6_dst, 0, sizeof match->wc.masks.ipv6_dst);
1989 memset(&match->flow.ipv6_dst, 0, sizeof match->flow.ipv6_dst);
1990 break;
1991
1992 case MFF_IPV6_LABEL:
1993 match->wc.masks.ipv6_label = htonl(0);
1994 match->flow.ipv6_label = htonl(0);
1995 break;
1996
1997 case MFF_IP_PROTO:
1998 match->wc.masks.nw_proto = 0;
1999 match->flow.nw_proto = 0;
2000 break;
2001
2002 case MFF_IP_DSCP:
2003 case MFF_IP_DSCP_SHIFTED:
2004 match->wc.masks.nw_tos &= ~IP_DSCP_MASK;
2005 match->flow.nw_tos &= ~IP_DSCP_MASK;
2006 break;
2007
2008 case MFF_IP_ECN:
2009 match->wc.masks.nw_tos &= ~IP_ECN_MASK;
2010 match->flow.nw_tos &= ~IP_ECN_MASK;
2011 break;
2012
2013 case MFF_IP_TTL:
2014 match->wc.masks.nw_ttl = 0;
2015 match->flow.nw_ttl = 0;
2016 break;
2017
2018 case MFF_IP_FRAG:
2019 match->wc.masks.nw_frag |= FLOW_NW_FRAG_MASK;
2020 match->flow.nw_frag &= ~FLOW_NW_FRAG_MASK;
2021 break;
2022
2023 case MFF_ARP_OP:
2024 match->wc.masks.nw_proto = 0;
2025 match->flow.nw_proto = 0;
2026 break;
2027
2028 case MFF_ARP_SHA:
2029 case MFF_ND_SLL:
2030 memset(match->flow.arp_sha, 0, ETH_ADDR_LEN);
2031 memset(match->wc.masks.arp_sha, 0, ETH_ADDR_LEN);
2032 break;
2033
2034 case MFF_ARP_THA:
2035 case MFF_ND_TLL:
2036 memset(match->flow.arp_tha, 0, ETH_ADDR_LEN);
2037 memset(match->wc.masks.arp_tha, 0, ETH_ADDR_LEN);
2038 break;
2039
2040 case MFF_TCP_SRC:
2041 case MFF_UDP_SRC:
2042 case MFF_SCTP_SRC:
2043 case MFF_ICMPV4_TYPE:
2044 case MFF_ICMPV6_TYPE:
2045 match->wc.masks.tp_src = htons(0);
2046 match->flow.tp_src = htons(0);
2047 break;
2048
2049 case MFF_TCP_DST:
2050 case MFF_UDP_DST:
2051 case MFF_SCTP_DST:
2052 case MFF_ICMPV4_CODE:
2053 case MFF_ICMPV6_CODE:
2054 match->wc.masks.tp_dst = htons(0);
2055 match->flow.tp_dst = htons(0);
2056 break;
2057
2058 case MFF_TCP_FLAGS:
2059 match->wc.masks.tcp_flags = htons(0);
2060 match->flow.tcp_flags = htons(0);
2061 break;
2062
2063 case MFF_ND_TARGET:
2064 memset(&match->wc.masks.nd_target, 0,
2065 sizeof match->wc.masks.nd_target);
2066 memset(&match->flow.nd_target, 0, sizeof match->flow.nd_target);
2067 break;
2068
2069 case MFF_N_IDS:
2070 default:
2071 OVS_NOT_REACHED();
2072 }
2073 }
2074
2075 /* Makes 'match' match field 'mf' with the specified 'value' and 'mask'.
2076 * 'value' specifies a value to match and 'mask' specifies a wildcard pattern,
2077 * with a 1-bit indicating that the corresponding value bit must match and a
2078 * 0-bit indicating a don't-care.
2079 *
2080 * If 'mask' is NULL or points to all-1-bits, then this call is equivalent to
2081 * mf_set_value(mf, value, match). If 'mask' points to all-0-bits, then this
2082 * call is equivalent to mf_set_wild(mf, match).
2083 *
2084 * 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller
2085 * is responsible for ensuring that 'match' meets 'mf''s prerequisites. */
2086 enum ofputil_protocol
2087 mf_set(const struct mf_field *mf,
2088 const union mf_value *value, const union mf_value *mask,
2089 struct match *match)
2090 {
2091 if (!mask || is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
2092 mf_set_value(mf, value, match);
2093 return mf->usable_protocols;
2094 } else if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
2095 mf_set_wild(mf, match);
2096 return OFPUTIL_P_ANY;
2097 }
2098
2099 switch (mf->id) {
2100 case MFF_RECIRC_ID:
2101 case MFF_IN_PORT:
2102 case MFF_IN_PORT_OXM:
2103 case MFF_SKB_PRIORITY:
2104 case MFF_ETH_TYPE:
2105 case MFF_DL_VLAN:
2106 case MFF_DL_VLAN_PCP:
2107 case MFF_VLAN_PCP:
2108 case MFF_MPLS_LABEL:
2109 case MFF_MPLS_TC:
2110 case MFF_MPLS_BOS:
2111 case MFF_IP_PROTO:
2112 case MFF_IP_TTL:
2113 case MFF_IP_DSCP:
2114 case MFF_IP_DSCP_SHIFTED:
2115 case MFF_IP_ECN:
2116 case MFF_ARP_OP:
2117 case MFF_ICMPV4_TYPE:
2118 case MFF_ICMPV4_CODE:
2119 case MFF_ICMPV6_TYPE:
2120 case MFF_ICMPV6_CODE:
2121 return OFPUTIL_P_NONE;
2122
2123 case MFF_DP_HASH:
2124 match_set_dp_hash_masked(match, ntohl(value->be32), ntohl(mask->be32));
2125 break;
2126 case MFF_TUN_ID:
2127 match_set_tun_id_masked(match, value->be64, mask->be64);
2128 break;
2129 case MFF_TUN_SRC:
2130 match_set_tun_src_masked(match, value->be32, mask->be32);
2131 break;
2132 case MFF_TUN_DST:
2133 match_set_tun_dst_masked(match, value->be32, mask->be32);
2134 break;
2135 case MFF_TUN_FLAGS:
2136 match_set_tun_flags_masked(match, ntohs(value->be16), ntohs(mask->be16));
2137 break;
2138 case MFF_TUN_TTL:
2139 match_set_tun_ttl_masked(match, value->u8, mask->u8);
2140 break;
2141 case MFF_TUN_TOS:
2142 match_set_tun_tos_masked(match, value->u8, mask->u8);
2143 break;
2144
2145 case MFF_METADATA:
2146 match_set_metadata_masked(match, value->be64, mask->be64);
2147 break;
2148
2149 CASE_MFF_REGS:
2150 match_set_reg_masked(match, mf->id - MFF_REG0,
2151 ntohl(value->be32), ntohl(mask->be32));
2152 break;
2153
2154 case MFF_PKT_MARK:
2155 match_set_pkt_mark_masked(match, ntohl(value->be32),
2156 ntohl(mask->be32));
2157 break;
2158
2159 case MFF_ETH_DST:
2160 match_set_dl_dst_masked(match, value->mac, mask->mac);
2161 break;
2162
2163 case MFF_ETH_SRC:
2164 match_set_dl_src_masked(match, value->mac, mask->mac);
2165 break;
2166
2167 case MFF_ARP_SHA:
2168 case MFF_ND_SLL:
2169 match_set_arp_sha_masked(match, value->mac, mask->mac);
2170 break;
2171
2172 case MFF_ARP_THA:
2173 case MFF_ND_TLL:
2174 match_set_arp_tha_masked(match, value->mac, mask->mac);
2175 break;
2176
2177 case MFF_VLAN_TCI:
2178 match_set_dl_tci_masked(match, value->be16, mask->be16);
2179 break;
2180
2181 case MFF_VLAN_VID:
2182 match_set_vlan_vid_masked(match, value->be16, mask->be16);
2183 break;
2184
2185 case MFF_IPV4_SRC:
2186 match_set_nw_src_masked(match, value->be32, mask->be32);
2187 goto cidr_check;
2188
2189 case MFF_IPV4_DST:
2190 match_set_nw_dst_masked(match, value->be32, mask->be32);
2191 goto cidr_check;
2192
2193 case MFF_IPV6_SRC:
2194 match_set_ipv6_src_masked(match, &value->ipv6, &mask->ipv6);
2195 break;
2196
2197 case MFF_IPV6_DST:
2198 match_set_ipv6_dst_masked(match, &value->ipv6, &mask->ipv6);
2199 break;
2200
2201 case MFF_IPV6_LABEL:
2202 if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) {
2203 mf_set_value(mf, value, match);
2204 } else {
2205 match_set_ipv6_label_masked(match, value->be32, mask->be32);
2206 }
2207 break;
2208
2209 case MFF_ND_TARGET:
2210 match_set_nd_target_masked(match, &value->ipv6, &mask->ipv6);
2211 break;
2212
2213 case MFF_IP_FRAG:
2214 match_set_nw_frag_masked(match, value->u8, mask->u8);
2215 break;
2216
2217 case MFF_ARP_SPA:
2218 match_set_nw_src_masked(match, value->be32, mask->be32);
2219 goto cidr_check;
2220
2221 case MFF_ARP_TPA:
2222 match_set_nw_dst_masked(match, value->be32, mask->be32);
2223 goto cidr_check;
2224
2225 case MFF_TCP_SRC:
2226 case MFF_UDP_SRC:
2227 case MFF_SCTP_SRC:
2228 match_set_tp_src_masked(match, value->be16, mask->be16);
2229 break;
2230
2231 case MFF_TCP_DST:
2232 case MFF_UDP_DST:
2233 case MFF_SCTP_DST:
2234 match_set_tp_dst_masked(match, value->be16, mask->be16);
2235 break;
2236
2237 case MFF_TCP_FLAGS:
2238 match_set_tcp_flags_masked(match, value->be16, mask->be16);
2239 break;
2240
2241 case MFF_N_IDS:
2242 default:
2243 OVS_NOT_REACHED();
2244 }
2245
2246 return mf->usable_protocols_bitwise;
2247
2248 cidr_check:
2249 return ip_is_cidr(mask->be32) ? mf->usable_protocols :
2250 mf->usable_protocols_bitwise;
2251 }
2252
2253 static enum ofperr
2254 mf_check__(const struct mf_subfield *sf, const struct flow *flow,
2255 const char *type)
2256 {
2257 if (!sf->field) {
2258 VLOG_WARN_RL(&rl, "unknown %s field", type);
2259 return OFPERR_OFPBAC_BAD_SET_TYPE;
2260 } else if (!sf->n_bits) {
2261 VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name);
2262 return OFPERR_OFPBAC_BAD_SET_LEN;
2263 } else if (sf->ofs >= sf->field->n_bits) {
2264 VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s",
2265 sf->ofs, sf->field->n_bits, type, sf->field->name);
2266 return OFPERR_OFPBAC_BAD_SET_LEN;
2267 } else if (sf->ofs + sf->n_bits > sf->field->n_bits) {
2268 VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width "
2269 "of %s field %s", sf->ofs, sf->n_bits,
2270 sf->field->n_bits, type, sf->field->name);
2271 return OFPERR_OFPBAC_BAD_SET_LEN;
2272 } else if (flow && !mf_are_prereqs_ok(sf->field, flow)) {
2273 VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites",
2274 type, sf->field->name);
2275 return OFPERR_OFPBAC_MATCH_INCONSISTENT;
2276 } else {
2277 return 0;
2278 }
2279 }
2280
2281 /* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns
2282 * 0 if so, otherwise an OpenFlow error code (e.g. as returned by
2283 * ofp_mkerr()). */
2284 enum ofperr
2285 mf_check_src(const struct mf_subfield *sf, const struct flow *flow)
2286 {
2287 return mf_check__(sf, flow, "source");
2288 }
2289
2290 /* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0
2291 * if so, otherwise an OpenFlow error code (e.g. as returned by
2292 * ofp_mkerr()). */
2293 enum ofperr
2294 mf_check_dst(const struct mf_subfield *sf, const struct flow *flow)
2295 {
2296 int error = mf_check__(sf, flow, "destination");
2297 if (!error && !sf->field->writable) {
2298 VLOG_WARN_RL(&rl, "destination field %s is not writable",
2299 sf->field->name);
2300 return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
2301 }
2302 return error;
2303 }
2304
2305 /* Copies the value and wildcard bit pattern for 'mf' from 'match' into the
2306 * 'value' and 'mask', respectively. */
2307 void
2308 mf_get(const struct mf_field *mf, const struct match *match,
2309 union mf_value *value, union mf_value *mask)
2310 {
2311 mf_get_value(mf, &match->flow, value);
2312 mf_get_mask(mf, &match->wc, mask);
2313 }
2314
2315 static char *
2316 mf_from_integer_string(const struct mf_field *mf, const char *s,
2317 uint8_t *valuep, uint8_t *maskp)
2318 {
2319 unsigned long long int integer, mask;
2320 char *tail;
2321 int i;
2322
2323 errno = 0;
2324 integer = strtoull(s, &tail, 0);
2325 if (errno || (*tail != '\0' && *tail != '/')) {
2326 goto syntax_error;
2327 }
2328
2329 if (*tail == '/') {
2330 mask = strtoull(tail + 1, &tail, 0);
2331 if (errno || *tail != '\0') {
2332 goto syntax_error;
2333 }
2334 } else {
2335 mask = ULLONG_MAX;
2336 }
2337
2338 for (i = mf->n_bytes - 1; i >= 0; i--) {
2339 valuep[i] = integer;
2340 maskp[i] = mask;
2341 integer >>= 8;
2342 mask >>= 8;
2343 }
2344 if (integer) {
2345 return xasprintf("%s: value too large for %u-byte field %s",
2346 s, mf->n_bytes, mf->name);
2347 }
2348 return NULL;
2349
2350 syntax_error:
2351 return xasprintf("%s: bad syntax for %s", s, mf->name);
2352 }
2353
2354 static char *
2355 mf_from_ethernet_string(const struct mf_field *mf, const char *s,
2356 uint8_t mac[ETH_ADDR_LEN],
2357 uint8_t mask[ETH_ADDR_LEN])
2358 {
2359 int n;
2360
2361 ovs_assert(mf->n_bytes == ETH_ADDR_LEN);
2362
2363 n = -1;
2364 if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(mac), &n)
2365 && n == strlen(s)) {
2366 memset(mask, 0xff, ETH_ADDR_LEN);
2367 return NULL;
2368 }
2369
2370 n = -1;
2371 if (ovs_scan(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT"%n",
2372 ETH_ADDR_SCAN_ARGS(mac), ETH_ADDR_SCAN_ARGS(mask), &n)
2373 && n == strlen(s)) {
2374 return NULL;
2375 }
2376
2377 return xasprintf("%s: invalid Ethernet address", s);
2378 }
2379
2380 static char *
2381 mf_from_ipv4_string(const struct mf_field *mf, const char *s,
2382 ovs_be32 *ip, ovs_be32 *mask)
2383 {
2384 int prefix;
2385
2386 ovs_assert(mf->n_bytes == sizeof *ip);
2387
2388 if (ovs_scan(s, IP_SCAN_FMT"/"IP_SCAN_FMT,
2389 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
2390 /* OK. */
2391 } else if (ovs_scan(s, IP_SCAN_FMT"/%d", IP_SCAN_ARGS(ip), &prefix)) {
2392 if (prefix <= 0 || prefix > 32) {
2393 return xasprintf("%s: network prefix bits not between 1 and "
2394 "32", s);
2395 } else if (prefix == 32) {
2396 *mask = OVS_BE32_MAX;
2397 } else {
2398 *mask = htonl(((1u << prefix) - 1) << (32 - prefix));
2399 }
2400 } else if (ovs_scan(s, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
2401 *mask = OVS_BE32_MAX;
2402 } else {
2403 return xasprintf("%s: invalid IP address", s);
2404 }
2405 return NULL;
2406 }
2407
2408 static char *
2409 mf_from_ipv6_string(const struct mf_field *mf, const char *s,
2410 struct in6_addr *value, struct in6_addr *mask)
2411 {
2412 char *str = xstrdup(s);
2413 char *save_ptr = NULL;
2414 const char *name, *netmask;
2415 int retval;
2416
2417 ovs_assert(mf->n_bytes == sizeof *value);
2418
2419 name = strtok_r(str, "/", &save_ptr);
2420 retval = name ? lookup_ipv6(name, value) : EINVAL;
2421 if (retval) {
2422 char *err;
2423
2424 err = xasprintf("%s: could not convert to IPv6 address", str);
2425 free(str);
2426
2427 return err;
2428 }
2429
2430 netmask = strtok_r(NULL, "/", &save_ptr);
2431 if (netmask) {
2432 if (inet_pton(AF_INET6, netmask, mask) != 1) {
2433 int prefix = atoi(netmask);
2434 if (prefix <= 0 || prefix > 128) {
2435 free(str);
2436 return xasprintf("%s: prefix bits not between 1 and 128", s);
2437 } else {
2438 *mask = ipv6_create_mask(prefix);
2439 }
2440 }
2441 } else {
2442 *mask = in6addr_exact;
2443 }
2444 free(str);
2445
2446 return NULL;
2447 }
2448
2449 static char *
2450 mf_from_ofp_port_string(const struct mf_field *mf, const char *s,
2451 ovs_be16 *valuep, ovs_be16 *maskp)
2452 {
2453 ofp_port_t port;
2454
2455 ovs_assert(mf->n_bytes == sizeof(ovs_be16));
2456
2457 if (ofputil_port_from_string(s, &port)) {
2458 *valuep = htons(ofp_to_u16(port));
2459 *maskp = OVS_BE16_MAX;
2460 return NULL;
2461 }
2462 return xasprintf("%s: port value out of range for %s", s, mf->name);
2463 }
2464
2465 static char *
2466 mf_from_ofp_port_string32(const struct mf_field *mf, const char *s,
2467 ovs_be32 *valuep, ovs_be32 *maskp)
2468 {
2469 ofp_port_t port;
2470
2471 ovs_assert(mf->n_bytes == sizeof(ovs_be32));
2472 if (ofputil_port_from_string(s, &port)) {
2473 *valuep = ofputil_port_to_ofp11(port);
2474 *maskp = OVS_BE32_MAX;
2475 return NULL;
2476 }
2477 return xasprintf("%s: port value out of range for %s", s, mf->name);
2478 }
2479
2480 struct frag_handling {
2481 const char *name;
2482 uint8_t mask;
2483 uint8_t value;
2484 };
2485
2486 static const struct frag_handling all_frags[] = {
2487 #define A FLOW_NW_FRAG_ANY
2488 #define L FLOW_NW_FRAG_LATER
2489 /* name mask value */
2490
2491 { "no", A|L, 0 },
2492 { "first", A|L, A },
2493 { "later", A|L, A|L },
2494
2495 { "no", A, 0 },
2496 { "yes", A, A },
2497
2498 { "not_later", L, 0 },
2499 { "later", L, L },
2500 #undef A
2501 #undef L
2502 };
2503
2504 static char *
2505 mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp)
2506 {
2507 const struct frag_handling *h;
2508
2509 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
2510 if (!strcasecmp(s, h->name)) {
2511 /* We force the upper bits of the mask on to make mf_parse_value()
2512 * happy (otherwise it will never think it's an exact match.) */
2513 *maskp = h->mask | ~FLOW_NW_FRAG_MASK;
2514 *valuep = h->value;
2515 return NULL;
2516 }
2517 }
2518
2519 return xasprintf("%s: unknown fragment type (valid types are \"no\", "
2520 "\"yes\", \"first\", \"later\", \"not_first\"", s);
2521 }
2522
2523 static int
2524 parse_flow_tun_flags(const char *s_, const char *(*bit_to_string)(uint32_t),
2525 ovs_be16 *res)
2526 {
2527 uint32_t result = 0;
2528 char *save_ptr = NULL;
2529 char *name;
2530 int rc = 0;
2531 char *s = xstrdup(s_);
2532
2533 for (name = strtok_r((char *)s, " |", &save_ptr); name;
2534 name = strtok_r(NULL, " |", &save_ptr)) {
2535 int name_len;
2536 unsigned long long int flags;
2537 uint32_t bit;
2538
2539 if (ovs_scan(name, "%lli", &flags)) {
2540 result |= flags;
2541 continue;
2542 }
2543 name_len = strlen(name);
2544 for (bit = 1; bit; bit <<= 1) {
2545 const char *fname = bit_to_string(bit);
2546 size_t len;
2547
2548 if (!fname) {
2549 continue;
2550 }
2551
2552 len = strlen(fname);
2553 if (len != name_len) {
2554 continue;
2555 }
2556 if (!strncmp(name, fname, len)) {
2557 result |= bit;
2558 break;
2559 }
2560 }
2561
2562 if (!bit) {
2563 rc = -ENOENT;
2564 goto out;
2565 }
2566 }
2567
2568 *res = htons(result);
2569 out:
2570 free(s);
2571 return rc;
2572 }
2573
2574 static char *
2575 mf_from_tun_flags_string(const char *s, ovs_be16 *valuep, ovs_be16 *maskp)
2576 {
2577 if (!parse_flow_tun_flags(s, flow_tun_flag_to_string, valuep)) {
2578 *maskp = OVS_BE16_MAX;
2579 return NULL;
2580 }
2581
2582 return xasprintf("%s: unknown tunnel flags (valid flags are \"df\", "
2583 "\"csum\", \"key\")", s);
2584 }
2585
2586 static char *
2587 mf_from_tcp_flags_string(const char *s, ovs_be16 *flagsp, ovs_be16 *maskp)
2588 {
2589 uint16_t flags = 0;
2590 uint16_t mask = 0;
2591 uint16_t bit;
2592 int n;
2593
2594 if (ovs_scan(s, "%"SCNi16"/%"SCNi16"%n", &flags, &mask, &n) && !s[n]) {
2595 *flagsp = htons(flags);
2596 *maskp = htons(mask);
2597 return NULL;
2598 }
2599 if (ovs_scan(s, "%"SCNi16"%n", &flags, &n) && !s[n]) {
2600 *flagsp = htons(flags);
2601 *maskp = OVS_BE16_MAX;
2602 return NULL;
2603 }
2604
2605 while (*s != '\0') {
2606 bool set;
2607 int name_len;
2608
2609 switch (*s) {
2610 case '+':
2611 set = true;
2612 break;
2613 case '-':
2614 set = false;
2615 break;
2616 default:
2617 return xasprintf("%s: TCP flag must be preceded by '+' (for SET) "
2618 "or '-' (NOT SET)", s);
2619 }
2620 s++;
2621
2622 name_len = strcspn(s,"+-");
2623
2624 for (bit = 1; bit; bit <<= 1) {
2625 const char *fname = packet_tcp_flag_to_string(bit);
2626 size_t len;
2627
2628 if (!fname) {
2629 continue;
2630 }
2631
2632 len = strlen(fname);
2633 if (len != name_len) {
2634 continue;
2635 }
2636 if (!strncmp(s, fname, len)) {
2637 if (mask & bit) {
2638 return xasprintf("%s: Each TCP flag can be specified only "
2639 "once", s);
2640 }
2641 if (set) {
2642 flags |= bit;
2643 }
2644 mask |= bit;
2645 break;
2646 }
2647 }
2648
2649 if (!bit) {
2650 return xasprintf("%s: unknown TCP flag(s)", s);
2651 }
2652 s += name_len;
2653 }
2654
2655 *flagsp = htons(flags);
2656 *maskp = htons(mask);
2657 return NULL;
2658 }
2659
2660
2661 /* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns
2662 * NULL if successful, otherwise a malloc()'d string describing the error. */
2663 char *
2664 mf_parse(const struct mf_field *mf, const char *s,
2665 union mf_value *value, union mf_value *mask)
2666 {
2667 char *error;
2668
2669 if (!strcmp(s, "*")) {
2670 memset(value, 0, mf->n_bytes);
2671 memset(mask, 0, mf->n_bytes);
2672 return NULL;
2673 }
2674
2675 switch (mf->string) {
2676 case MFS_DECIMAL:
2677 case MFS_HEXADECIMAL:
2678 error = mf_from_integer_string(mf, s,
2679 (uint8_t *) value, (uint8_t *) mask);
2680 break;
2681
2682 case MFS_ETHERNET:
2683 error = mf_from_ethernet_string(mf, s, value->mac, mask->mac);
2684 break;
2685
2686 case MFS_IPV4:
2687 error = mf_from_ipv4_string(mf, s, &value->be32, &mask->be32);
2688 break;
2689
2690 case MFS_IPV6:
2691 error = mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6);
2692 break;
2693
2694 case MFS_OFP_PORT:
2695 error = mf_from_ofp_port_string(mf, s, &value->be16, &mask->be16);
2696 break;
2697
2698 case MFS_OFP_PORT_OXM:
2699 error = mf_from_ofp_port_string32(mf, s, &value->be32, &mask->be32);
2700 break;
2701
2702 case MFS_FRAG:
2703 error = mf_from_frag_string(s, &value->u8, &mask->u8);
2704 break;
2705
2706 case MFS_TNL_FLAGS:
2707 ovs_assert(mf->n_bytes == sizeof(ovs_be16));
2708 error = mf_from_tun_flags_string(s, &value->be16, &mask->be16);
2709 break;
2710
2711 case MFS_TCP_FLAGS:
2712 ovs_assert(mf->n_bytes == sizeof(ovs_be16));
2713 error = mf_from_tcp_flags_string(s, &value->be16, &mask->be16);
2714 break;
2715
2716 default:
2717 OVS_NOT_REACHED();
2718 }
2719
2720 if (!error && !mf_is_mask_valid(mf, mask)) {
2721 error = xasprintf("%s: invalid mask for field %s", s, mf->name);
2722 }
2723 return error;
2724 }
2725
2726 /* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if
2727 * successful, otherwise a malloc()'d string describing the error. */
2728 char *
2729 mf_parse_value(const struct mf_field *mf, const char *s, union mf_value *value)
2730 {
2731 union mf_value mask;
2732 char *error;
2733
2734 error = mf_parse(mf, s, value, &mask);
2735 if (error) {
2736 return error;
2737 }
2738
2739 if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) {
2740 return xasprintf("%s: wildcards not allowed here", s);
2741 }
2742 return NULL;
2743 }
2744
2745 static void
2746 mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep,
2747 const uint8_t *maskp, struct ds *s)
2748 {
2749 unsigned long long int integer;
2750 int i;
2751
2752 ovs_assert(mf->n_bytes <= 8);
2753
2754 integer = 0;
2755 for (i = 0; i < mf->n_bytes; i++) {
2756 integer = (integer << 8) | valuep[i];
2757 }
2758 if (mf->string == MFS_HEXADECIMAL) {
2759 ds_put_format(s, "%#llx", integer);
2760 } else {
2761 ds_put_format(s, "%lld", integer);
2762 }
2763
2764 if (maskp) {
2765 unsigned long long int mask;
2766
2767 mask = 0;
2768 for (i = 0; i < mf->n_bytes; i++) {
2769 mask = (mask << 8) | maskp[i];
2770 }
2771
2772 /* I guess we could write the mask in decimal for MFS_DECIMAL but I'm
2773 * not sure that that a bit-mask written in decimal is ever easier to
2774 * understand than the same bit-mask written in hexadecimal. */
2775 ds_put_format(s, "/%#llx", mask);
2776 }
2777 }
2778
2779 static void
2780 mf_format_frag_string(uint8_t value, uint8_t mask, struct ds *s)
2781 {
2782 const struct frag_handling *h;
2783
2784 mask &= FLOW_NW_FRAG_MASK;
2785 value &= mask;
2786
2787 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
2788 if (value == h->value && mask == h->mask) {
2789 ds_put_cstr(s, h->name);
2790 return;
2791 }
2792 }
2793 ds_put_cstr(s, "<error>");
2794 }
2795
2796 static void
2797 mf_format_tnl_flags_string(const ovs_be16 *valuep, struct ds *s)
2798 {
2799 format_flags(s, flow_tun_flag_to_string, ntohs(*valuep), '|');
2800 }
2801
2802 static void
2803 mf_format_tcp_flags_string(ovs_be16 value, ovs_be16 mask, struct ds *s)
2804 {
2805 format_flags_masked(s, NULL, packet_tcp_flag_to_string, ntohs(value),
2806 TCP_FLAGS(mask));
2807 }
2808
2809 /* Appends to 's' a string representation of field 'mf' whose value is in
2810 * 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */
2811 void
2812 mf_format(const struct mf_field *mf,
2813 const union mf_value *value, const union mf_value *mask,
2814 struct ds *s)
2815 {
2816 if (mask) {
2817 if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
2818 ds_put_cstr(s, "ANY");
2819 return;
2820 } else if (is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
2821 mask = NULL;
2822 }
2823 }
2824
2825 switch (mf->string) {
2826 case MFS_OFP_PORT_OXM:
2827 if (!mask) {
2828 ofp_port_t port;
2829 ofputil_port_from_ofp11(value->be32, &port);
2830 ofputil_format_port(port, s);
2831 break;
2832 }
2833 /* fall through */
2834 case MFS_OFP_PORT:
2835 if (!mask) {
2836 ofputil_format_port(u16_to_ofp(ntohs(value->be16)), s);
2837 break;
2838 }
2839 /* fall through */
2840 case MFS_DECIMAL:
2841 case MFS_HEXADECIMAL:
2842 mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s);
2843 break;
2844
2845 case MFS_ETHERNET:
2846 eth_format_masked(value->mac, mask->mac, s);
2847 break;
2848
2849 case MFS_IPV4:
2850 ip_format_masked(value->be32, mask ? mask->be32 : OVS_BE32_MAX, s);
2851 break;
2852
2853 case MFS_IPV6:
2854 print_ipv6_masked(s, &value->ipv6, mask ? &mask->ipv6 : NULL);
2855 break;
2856
2857 case MFS_FRAG:
2858 mf_format_frag_string(value->u8, mask ? mask->u8 : UINT8_MAX, s);
2859 break;
2860
2861 case MFS_TNL_FLAGS:
2862 mf_format_tnl_flags_string(&value->be16, s);
2863 break;
2864
2865 case MFS_TCP_FLAGS:
2866 mf_format_tcp_flags_string(value->be16,
2867 mask ? mask->be16 : OVS_BE16_MAX, s);
2868 break;
2869
2870 default:
2871 OVS_NOT_REACHED();
2872 }
2873 }
2874 \f
2875 /* Makes subfield 'sf' within 'flow' exactly match the 'sf->n_bits'
2876 * least-significant bits in 'x'.
2877 */
2878 void
2879 mf_write_subfield_flow(const struct mf_subfield *sf,
2880 const union mf_subvalue *x, struct flow *flow)
2881 {
2882 const struct mf_field *field = sf->field;
2883 union mf_value value;
2884
2885 mf_get_value(field, flow, &value);
2886 bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes,
2887 sf->ofs, sf->n_bits);
2888 mf_set_flow_value(field, &value, flow);
2889 }
2890
2891 /* Makes subfield 'sf' within 'match' exactly match the 'sf->n_bits'
2892 * least-significant bits in 'x'.
2893 */
2894 void
2895 mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x,
2896 struct match *match)
2897 {
2898 const struct mf_field *field = sf->field;
2899 union mf_value value, mask;
2900
2901 mf_get(field, match, &value, &mask);
2902 bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits);
2903 bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits);
2904 mf_set(field, &value, &mask, match);
2905 }
2906
2907 /* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for
2908 * reading 'flow', e.g. as checked by mf_check_src(). */
2909 void
2910 mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow,
2911 union mf_subvalue *x)
2912 {
2913 union mf_value value;
2914
2915 mf_get_value(sf->field, flow, &value);
2916
2917 memset(x, 0, sizeof *x);
2918 bitwise_copy(&value, sf->field->n_bytes, sf->ofs,
2919 x, sizeof *x, 0,
2920 sf->n_bits);
2921 }
2922
2923 /* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading
2924 * 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or
2925 * less. */
2926 uint64_t
2927 mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow)
2928 {
2929 union mf_value value;
2930
2931 mf_get_value(sf->field, flow, &value);
2932 return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits);
2933 }
2934
2935 /* Formats 'sf' into 's' in a format normally acceptable to
2936 * mf_parse_subfield(). (It won't be acceptable if sf->field is NULL or if
2937 * sf->field has no NXM name.) */
2938 void
2939 mf_format_subfield(const struct mf_subfield *sf, struct ds *s)
2940 {
2941 if (!sf->field) {
2942 ds_put_cstr(s, "<unknown>");
2943 } else if (sf->field->nxm_name) {
2944 ds_put_cstr(s, sf->field->nxm_name);
2945 } else if (sf->field->nxm_header) {
2946 uint32_t header = sf->field->nxm_header;
2947 ds_put_format(s, "%d:%d", NXM_VENDOR(header), NXM_FIELD(header));
2948 } else {
2949 ds_put_cstr(s, sf->field->name);
2950 }
2951
2952 if (sf->field && sf->ofs == 0 && sf->n_bits == sf->field->n_bits) {
2953 ds_put_cstr(s, "[]");
2954 } else if (sf->n_bits == 1) {
2955 ds_put_format(s, "[%d]", sf->ofs);
2956 } else {
2957 ds_put_format(s, "[%d..%d]", sf->ofs, sf->ofs + sf->n_bits - 1);
2958 }
2959 }
2960
2961 static const struct mf_field *
2962 mf_parse_subfield_name(const char *name, int name_len, bool *wild)
2963 {
2964 int i;
2965
2966 *wild = name_len > 2 && !memcmp(&name[name_len - 2], "_W", 2);
2967 if (*wild) {
2968 name_len -= 2;
2969 }
2970
2971 for (i = 0; i < MFF_N_IDS; i++) {
2972 const struct mf_field *mf = mf_from_id(i);
2973
2974 if (mf->nxm_name
2975 && !strncmp(mf->nxm_name, name, name_len)
2976 && mf->nxm_name[name_len] == '\0') {
2977 return mf;
2978 }
2979 if (mf->oxm_name
2980 && !strncmp(mf->oxm_name, name, name_len)
2981 && mf->oxm_name[name_len] == '\0') {
2982 return mf;
2983 }
2984 }
2985
2986 return NULL;
2987 }
2988
2989 /* Parses a subfield from the beginning of '*sp' into 'sf'. If successful,
2990 * returns NULL and advances '*sp' to the first byte following the parsed
2991 * string. On failure, returns a malloc()'d error message, does not modify
2992 * '*sp', and does not properly initialize 'sf'.
2993 *
2994 * The syntax parsed from '*sp' takes the form "header[start..end]" where
2995 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2996 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2997 * may both be omitted (the [] are still required) to indicate an entire
2998 * field. */
2999 char * WARN_UNUSED_RESULT
3000 mf_parse_subfield__(struct mf_subfield *sf, const char **sp)
3001 {
3002 const struct mf_field *field;
3003 const char *name;
3004 int start, end;
3005 const char *s;
3006 int name_len;
3007 bool wild;
3008
3009 s = *sp;
3010 name = s;
3011 name_len = strcspn(s, "[");
3012 if (s[name_len] != '[') {
3013 return xasprintf("%s: missing [ looking for field name", *sp);
3014 }
3015
3016 field = mf_parse_subfield_name(name, name_len, &wild);
3017 if (!field) {
3018 return xasprintf("%s: unknown field `%.*s'", *sp, name_len, s);
3019 }
3020
3021 s += name_len;
3022 if (ovs_scan(s, "[%d..%d]", &start, &end)) {
3023 /* Nothing to do. */
3024 } else if (ovs_scan(s, "[%d]", &start)) {
3025 end = start;
3026 } else if (!strncmp(s, "[]", 2)) {
3027 start = 0;
3028 end = field->n_bits - 1;
3029 } else {
3030 return xasprintf("%s: syntax error expecting [] or [<bit>] or "
3031 "[<start>..<end>]", *sp);
3032 }
3033 s = strchr(s, ']') + 1;
3034
3035 if (start > end) {
3036 return xasprintf("%s: starting bit %d is after ending bit %d",
3037 *sp, start, end);
3038 } else if (start >= field->n_bits) {
3039 return xasprintf("%s: starting bit %d is not valid because field is "
3040 "only %d bits wide", *sp, start, field->n_bits);
3041 } else if (end >= field->n_bits){
3042 return xasprintf("%s: ending bit %d is not valid because field is "
3043 "only %d bits wide", *sp, end, field->n_bits);
3044 }
3045
3046 sf->field = field;
3047 sf->ofs = start;
3048 sf->n_bits = end - start + 1;
3049
3050 *sp = s;
3051 return NULL;
3052 }
3053
3054 /* Parses a subfield from the entirety of 's' into 'sf'. Returns NULL if
3055 * successful, otherwise a malloc()'d string describing the error. The caller
3056 * is responsible for freeing the returned string.
3057 *
3058 * The syntax parsed from 's' takes the form "header[start..end]" where
3059 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
3060 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
3061 * may both be omitted (the [] are still required) to indicate an entire
3062 * field. */
3063 char * WARN_UNUSED_RESULT
3064 mf_parse_subfield(struct mf_subfield *sf, const char *s)
3065 {
3066 char *error = mf_parse_subfield__(sf, &s);
3067 if (!error && s[0]) {
3068 error = xstrdup("unexpected input following field syntax");
3069 }
3070 return error;
3071 }
3072
3073 void
3074 mf_format_subvalue(const union mf_subvalue *subvalue, struct ds *s)
3075 {
3076 int i;
3077
3078 for (i = 0; i < ARRAY_SIZE(subvalue->u8); i++) {
3079 if (subvalue->u8[i]) {
3080 ds_put_format(s, "0x%"PRIx8, subvalue->u8[i]);
3081 for (i++; i < ARRAY_SIZE(subvalue->u8); i++) {
3082 ds_put_format(s, "%02"PRIx8, subvalue->u8[i]);
3083 }
3084 return;
3085 }
3086 }
3087 ds_put_char(s, '0');
3088 }