]> git.proxmox.com Git - mirror_ovs.git/blob - lib/meta-flow.c
OXM: Allow masking of ARP SHA and THA
[mirror_ovs.git] / lib / meta-flow.c
1 /*
2 * Copyright (c) 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "meta-flow.h"
20
21 #include <assert.h>
22 #include <errno.h>
23 #include <limits.h>
24 #include <netinet/icmp6.h>
25 #include <netinet/ip6.h>
26
27 #include "classifier.h"
28 #include "dynamic-string.h"
29 #include "ofp-errors.h"
30 #include "ofp-util.h"
31 #include "packets.h"
32 #include "random.h"
33 #include "shash.h"
34 #include "socket-util.h"
35 #include "unaligned.h"
36 #include "vlog.h"
37
38 VLOG_DEFINE_THIS_MODULE(meta_flow);
39
40 #define MF_FIELD_SIZES(MEMBER) \
41 sizeof ((union mf_value *)0)->MEMBER, \
42 8 * sizeof ((union mf_value *)0)->MEMBER
43
44 static const struct mf_field mf_fields[MFF_N_IDS] = {
45 /* ## -------- ## */
46 /* ## metadata ## */
47 /* ## -------- ## */
48
49 {
50 MFF_TUN_ID, "tun_id", NULL,
51 MF_FIELD_SIZES(be64),
52 MFM_FULLY, 0,
53 MFS_HEXADECIMAL,
54 MFP_NONE,
55 true,
56 NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
57 NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
58 }, {
59 MFF_METADATA, "metadata", NULL,
60 MF_FIELD_SIZES(be64),
61 MFM_FULLY, 0,
62 MFS_HEXADECIMAL,
63 MFP_NONE,
64 true,
65 OXM_OF_METADATA, "OXM_OF_METADATA",
66 OXM_OF_METADATA, "OXM_OF_METADATA",
67 }, {
68 MFF_IN_PORT, "in_port", NULL,
69 MF_FIELD_SIZES(be16),
70 MFM_NONE, FWW_IN_PORT,
71 MFS_OFP_PORT,
72 MFP_NONE,
73 false,
74 NXM_OF_IN_PORT, "NXM_OF_IN_PORT",
75 OXM_OF_IN_PORT, "OXM_OF_IN_PORT",
76 },
77
78 #define REGISTER(IDX) \
79 { \
80 MFF_REG##IDX, "reg" #IDX, NULL, \
81 MF_FIELD_SIZES(be32), \
82 MFM_FULLY, 0, \
83 MFS_HEXADECIMAL, \
84 MFP_NONE, \
85 true, \
86 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
87 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
88 }
89 #if FLOW_N_REGS > 0
90 REGISTER(0),
91 #endif
92 #if FLOW_N_REGS > 1
93 REGISTER(1),
94 #endif
95 #if FLOW_N_REGS > 2
96 REGISTER(2),
97 #endif
98 #if FLOW_N_REGS > 3
99 REGISTER(3),
100 #endif
101 #if FLOW_N_REGS > 4
102 REGISTER(4),
103 #endif
104 #if FLOW_N_REGS > 5
105 REGISTER(5),
106 #endif
107 #if FLOW_N_REGS > 6
108 REGISTER(6),
109 #endif
110 #if FLOW_N_REGS > 7
111 REGISTER(7),
112 #endif
113 #if FLOW_N_REGS > 8
114 #error
115 #endif
116
117 /* ## -- ## */
118 /* ## L2 ## */
119 /* ## -- ## */
120
121 {
122 MFF_ETH_SRC, "eth_src", "dl_src",
123 MF_FIELD_SIZES(mac),
124 MFM_FULLY, 0,
125 MFS_ETHERNET,
126 MFP_NONE,
127 true,
128 NXM_OF_ETH_SRC, "NXM_OF_ETH_SRC",
129 OXM_OF_ETH_SRC, "OXM_OF_ETH_SRC",
130 }, {
131 MFF_ETH_DST, "eth_dst", "dl_dst",
132 MF_FIELD_SIZES(mac),
133 MFM_FULLY, 0,
134 MFS_ETHERNET,
135 MFP_NONE,
136 true,
137 NXM_OF_ETH_DST, "NXM_OF_ETH_DST",
138 OXM_OF_ETH_DST, "OXM_OF_ETH_DST",
139 }, {
140 MFF_ETH_TYPE, "eth_type", "dl_type",
141 MF_FIELD_SIZES(be16),
142 MFM_NONE, FWW_DL_TYPE,
143 MFS_HEXADECIMAL,
144 MFP_NONE,
145 false,
146 NXM_OF_ETH_TYPE, "NXM_OF_ETH_TYPE",
147 OXM_OF_ETH_TYPE, "OXM_OF_ETH_TYPE",
148 },
149
150 {
151 MFF_VLAN_TCI, "vlan_tci", NULL,
152 MF_FIELD_SIZES(be16),
153 MFM_FULLY, 0,
154 MFS_HEXADECIMAL,
155 MFP_NONE,
156 true,
157 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
158 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
159 }, {
160 MFF_VLAN_VID, "dl_vlan", NULL,
161 sizeof(ovs_be16), 12,
162 MFM_NONE, 0,
163 MFS_DECIMAL,
164 MFP_NONE,
165 true,
166 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
167 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
168 }, {
169 MFF_VLAN_PCP, "dl_vlan_pcp", NULL,
170 1, 3,
171 MFM_NONE, 0,
172 MFS_DECIMAL,
173 MFP_NONE,
174 true,
175 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
176 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
177 },
178
179 /* ## -- ## */
180 /* ## L3 ## */
181 /* ## -- ## */
182
183 {
184 MFF_IPV4_SRC, "ip_src", "nw_src",
185 MF_FIELD_SIZES(be32),
186 MFM_FULLY, 0,
187 MFS_IPV4,
188 MFP_IPV4,
189 true,
190 NXM_OF_IP_SRC, "NXM_OF_IP_SRC",
191 OXM_OF_IPV4_SRC, "OXM_OF_IPV4_SRC",
192 }, {
193 MFF_IPV4_DST, "ip_dst", "nw_dst",
194 MF_FIELD_SIZES(be32),
195 MFM_FULLY, 0,
196 MFS_IPV4,
197 MFP_IPV4,
198 true,
199 NXM_OF_IP_DST, "NXM_OF_IP_DST",
200 OXM_OF_IPV4_DST, "OXM_OF_IPV4_DST",
201 },
202
203 {
204 MFF_IPV6_SRC, "ipv6_src", NULL,
205 MF_FIELD_SIZES(ipv6),
206 MFM_FULLY, 0,
207 MFS_IPV6,
208 MFP_IPV6,
209 true,
210 NXM_NX_IPV6_SRC, "NXM_NX_IPV6_SRC",
211 OXM_OF_IPV6_SRC, "OXM_OF_IPV6_SRC",
212 }, {
213 MFF_IPV6_DST, "ipv6_dst", NULL,
214 MF_FIELD_SIZES(ipv6),
215 MFM_FULLY, 0,
216 MFS_IPV6,
217 MFP_IPV6,
218 true,
219 NXM_NX_IPV6_DST, "NXM_NX_IPV6_DST",
220 OXM_OF_IPV6_DST, "OXM_OF_IPV6_DST",
221 },
222 {
223 MFF_IPV6_LABEL, "ipv6_label", NULL,
224 4, 20,
225 MFM_FULLY, 0,
226 MFS_HEXADECIMAL,
227 MFP_IPV6,
228 false,
229 NXM_NX_IPV6_LABEL, "NXM_NX_IPV6_LABEL",
230 OXM_OF_IPV6_FLABEL, "OXM_OF_IPV6_FLABEL",
231 },
232
233 {
234 MFF_IP_PROTO, "nw_proto", NULL,
235 MF_FIELD_SIZES(u8),
236 MFM_NONE, FWW_NW_PROTO,
237 MFS_DECIMAL,
238 MFP_IP_ANY,
239 false,
240 NXM_OF_IP_PROTO, "NXM_OF_IP_PROTO",
241 OXM_OF_IP_PROTO, "OXM_OF_IP_PROTO",
242 }, {
243 MFF_IP_DSCP, "nw_tos", NULL,
244 MF_FIELD_SIZES(u8),
245 MFM_NONE, FWW_NW_DSCP,
246 MFS_DECIMAL,
247 MFP_IP_ANY,
248 true,
249 NXM_OF_IP_TOS, "NXM_OF_IP_TOS",
250 OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP",
251 }, {
252 MFF_IP_ECN, "nw_ecn", NULL,
253 1, 2,
254 MFM_NONE, FWW_NW_ECN,
255 MFS_DECIMAL,
256 MFP_IP_ANY,
257 true,
258 NXM_NX_IP_ECN, "NXM_NX_IP_ECN",
259 OXM_OF_IP_ECN, "OXM_OF_IP_ECN",
260 }, {
261 MFF_IP_TTL, "nw_ttl", NULL,
262 MF_FIELD_SIZES(u8),
263 MFM_NONE, FWW_NW_TTL,
264 MFS_DECIMAL,
265 MFP_IP_ANY,
266 true,
267 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
268 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
269 }, {
270 MFF_IP_FRAG, "ip_frag", NULL,
271 1, 2,
272 MFM_FULLY, 0,
273 MFS_FRAG,
274 MFP_IP_ANY,
275 false,
276 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
277 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
278 },
279
280 {
281 MFF_ARP_OP, "arp_op", NULL,
282 MF_FIELD_SIZES(be16),
283 MFM_NONE, FWW_NW_PROTO,
284 MFS_DECIMAL,
285 MFP_ARP,
286 false,
287 NXM_OF_ARP_OP, "NXM_OF_ARP_OP",
288 OXM_OF_ARP_OP, "OXM_OF_ARP_OP",
289 }, {
290 MFF_ARP_SPA, "arp_spa", NULL,
291 MF_FIELD_SIZES(be32),
292 MFM_FULLY, 0,
293 MFS_IPV4,
294 MFP_ARP,
295 false,
296 NXM_OF_ARP_SPA, "NXM_OF_ARP_SPA",
297 OXM_OF_ARP_SPA, "OXM_OF_ARP_SPA",
298 }, {
299 MFF_ARP_TPA, "arp_tpa", NULL,
300 MF_FIELD_SIZES(be32),
301 MFM_FULLY, 0,
302 MFS_IPV4,
303 MFP_ARP,
304 false,
305 NXM_OF_ARP_TPA, "NXM_OF_ARP_TPA",
306 OXM_OF_ARP_TPA, "OXM_OF_ARP_TPA",
307 }, {
308 MFF_ARP_SHA, "arp_sha", NULL,
309 MF_FIELD_SIZES(mac),
310 MFM_FULLY, 0,
311 MFS_ETHERNET,
312 MFP_ARP,
313 false,
314 NXM_NX_ARP_SHA, "NXM_NX_ARP_SHA",
315 OXM_OF_ARP_SHA, "OXM_OF_ARP_SHA",
316 }, {
317 MFF_ARP_THA, "arp_tha", NULL,
318 MF_FIELD_SIZES(mac),
319 MFM_FULLY, 0,
320 MFS_ETHERNET,
321 MFP_ARP,
322 false,
323 NXM_NX_ARP_THA, "NXM_NX_ARP_THA",
324 OXM_OF_ARP_THA, "OXM_OF_ARP_THA",
325 },
326
327 /* ## -- ## */
328 /* ## L4 ## */
329 /* ## -- ## */
330
331 {
332 MFF_TCP_SRC, "tcp_src", "tp_src",
333 MF_FIELD_SIZES(be16),
334 MFM_FULLY, 0,
335 MFS_DECIMAL,
336 MFP_TCP,
337 true,
338 NXM_OF_TCP_SRC, "NXM_OF_TCP_SRC",
339 OXM_OF_TCP_SRC, "OXM_OF_TCP_SRC",
340 }, {
341 MFF_TCP_DST, "tcp_dst", "tp_dst",
342 MF_FIELD_SIZES(be16),
343 MFM_FULLY, 0,
344 MFS_DECIMAL,
345 MFP_TCP,
346 true,
347 NXM_OF_TCP_DST, "NXM_OF_TCP_DST",
348 OXM_OF_TCP_DST, "OXM_OF_TCP_DST",
349 },
350
351 {
352 MFF_UDP_SRC, "udp_src", NULL,
353 MF_FIELD_SIZES(be16),
354 MFM_FULLY, 0,
355 MFS_DECIMAL,
356 MFP_UDP,
357 true,
358 NXM_OF_UDP_SRC, "NXM_OF_UDP_SRC",
359 OXM_OF_UDP_SRC, "OXM_OF_UDP_SRC",
360 }, {
361 MFF_UDP_DST, "udp_dst", NULL,
362 MF_FIELD_SIZES(be16),
363 MFM_FULLY, 0,
364 MFS_DECIMAL,
365 MFP_UDP,
366 true,
367 NXM_OF_UDP_DST, "NXM_OF_UDP_DST",
368 OXM_OF_UDP_DST, "OXM_OF_UDP_DST",
369 },
370
371 {
372 MFF_ICMPV4_TYPE, "icmp_type", NULL,
373 MF_FIELD_SIZES(u8),
374 MFM_NONE, 0,
375 MFS_DECIMAL,
376 MFP_ICMPV4,
377 false,
378 NXM_OF_ICMP_TYPE, "NXM_OF_ICMP_TYPE",
379 OXM_OF_ICMPV4_TYPE, "OXM_OF_ICMPV4_TYPE",
380 }, {
381 MFF_ICMPV4_CODE, "icmp_code", NULL,
382 MF_FIELD_SIZES(u8),
383 MFM_NONE, 0,
384 MFS_DECIMAL,
385 MFP_ICMPV4,
386 false,
387 NXM_OF_ICMP_CODE, "NXM_OF_ICMP_CODE",
388 OXM_OF_ICMPV4_CODE, "OXM_OF_ICMPV4_CODE",
389 },
390
391 {
392 MFF_ICMPV6_TYPE, "icmpv6_type", NULL,
393 MF_FIELD_SIZES(u8),
394 MFM_NONE, 0,
395 MFS_DECIMAL,
396 MFP_ICMPV6,
397 false,
398 NXM_NX_ICMPV6_TYPE, "NXM_NX_ICMPV6_TYPE",
399 OXM_OF_ICMPV6_TYPE, "OXM_OF_ICMPV6_TYPE",
400 }, {
401 MFF_ICMPV6_CODE, "icmpv6_code", NULL,
402 MF_FIELD_SIZES(u8),
403 MFM_NONE, 0,
404 MFS_DECIMAL,
405 MFP_ICMPV6,
406 false,
407 NXM_NX_ICMPV6_CODE, "NXM_NX_ICMPV6_CODE",
408 OXM_OF_ICMPV6_CODE, "OXM_OF_ICMPV6_CODE",
409 },
410
411 /* ## ---- ## */
412 /* ## L"5" ## */
413 /* ## ---- ## */
414
415 {
416 MFF_ND_TARGET, "nd_target", NULL,
417 MF_FIELD_SIZES(ipv6),
418 MFM_FULLY, 0,
419 MFS_IPV6,
420 MFP_ND,
421 false,
422 NXM_NX_ND_TARGET, "NXM_NX_ND_TARGET",
423 OXM_OF_IPV6_ND_TARGET, "OXM_OF_IPV6_ND_TARGET",
424 }, {
425 MFF_ND_SLL, "nd_sll", NULL,
426 MF_FIELD_SIZES(mac),
427 MFM_FULLY, 0,
428 MFS_ETHERNET,
429 MFP_ND_SOLICIT,
430 false,
431 NXM_NX_ND_SLL, "NXM_NX_ND_SLL",
432 OXM_OF_IPV6_ND_SLL, "OXM_OF_IPV6_ND_SLL",
433 }, {
434 MFF_ND_TLL, "nd_tll", NULL,
435 MF_FIELD_SIZES(mac),
436 MFM_FULLY, 0,
437 MFS_ETHERNET,
438 MFP_ND_ADVERT,
439 false,
440 NXM_NX_ND_TLL, "NXM_NX_ND_TLL",
441 OXM_OF_IPV6_ND_TLL, "OXM_OF_IPV6_ND_TLL",
442 }
443 };
444
445 /* Maps an NXM or OXM header value to an mf_field. */
446 struct nxm_field {
447 struct hmap_node hmap_node; /* In 'all_fields' hmap. */
448 uint32_t header; /* NXM or OXM header value. */
449 const struct mf_field *mf;
450 };
451
452 /* Contains 'struct nxm_field's. */
453 static struct hmap all_fields = HMAP_INITIALIZER(&all_fields);
454
455 /* Rate limit for parse errors. These always indicate a bug in an OpenFlow
456 * controller and so there's not much point in showing a lot of them. */
457 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
458
459 const struct mf_field *mf_from_nxm_header__(uint32_t header);
460
461 /* Returns the field with the given 'id'. */
462 const struct mf_field *
463 mf_from_id(enum mf_field_id id)
464 {
465 assert((unsigned int) id < MFF_N_IDS);
466 return &mf_fields[id];
467 }
468
469 /* Returns the field with the given 'name', or a null pointer if no field has
470 * that name. */
471 const struct mf_field *
472 mf_from_name(const char *name)
473 {
474 static struct shash mf_by_name = SHASH_INITIALIZER(&mf_by_name);
475
476 if (shash_is_empty(&mf_by_name)) {
477 const struct mf_field *mf;
478
479 for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
480 shash_add_once(&mf_by_name, mf->name, mf);
481 if (mf->extra_name) {
482 shash_add_once(&mf_by_name, mf->extra_name, mf);
483 }
484 }
485 }
486
487 return shash_find_data(&mf_by_name, name);
488 }
489
490 static void
491 add_nxm_field(uint32_t header, const struct mf_field *mf)
492 {
493 struct nxm_field *f;
494
495 f = xmalloc(sizeof *f);
496 hmap_insert(&all_fields, &f->hmap_node, hash_int(header, 0));
497 f->header = header;
498 f->mf = mf;
499 }
500
501 static void
502 nxm_init_add_field(const struct mf_field *mf, uint32_t header)
503 {
504 if (header) {
505 assert(!mf_from_nxm_header__(header));
506 add_nxm_field(header, mf);
507 if (mf->maskable != MFM_NONE) {
508 add_nxm_field(NXM_MAKE_WILD_HEADER(header), mf);
509 }
510 }
511 }
512
513 static void
514 nxm_init(void)
515 {
516 const struct mf_field *mf;
517
518 for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
519 nxm_init_add_field(mf, mf->nxm_header);
520 if (mf->oxm_header != mf->nxm_header) {
521 nxm_init_add_field(mf, mf->oxm_header);
522 }
523 }
524 }
525
526 const struct mf_field *
527 mf_from_nxm_header(uint32_t header)
528 {
529 if (hmap_is_empty(&all_fields)) {
530 nxm_init();
531 }
532 return mf_from_nxm_header__(header);
533 }
534
535 const struct mf_field *
536 mf_from_nxm_header__(uint32_t header)
537 {
538 const struct nxm_field *f;
539
540 HMAP_FOR_EACH_IN_BUCKET (f, hmap_node, hash_int(header, 0), &all_fields) {
541 if (f->header == header) {
542 return f->mf;
543 }
544 }
545
546 return NULL;
547 }
548
549 /* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc'
550 * specifies at least one bit in the field.
551 *
552 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
553 * meets 'mf''s prerequisites. */
554 bool
555 mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc)
556 {
557 switch (mf->id) {
558 case MFF_IN_PORT:
559 case MFF_ETH_TYPE:
560 case MFF_IP_PROTO:
561 case MFF_IP_DSCP:
562 case MFF_IP_ECN:
563 case MFF_IP_TTL:
564 case MFF_ARP_OP:
565 assert(mf->fww_bit != 0);
566 return (wc->wildcards & mf->fww_bit) != 0;
567
568 case MFF_TUN_ID:
569 return !wc->tun_id_mask;
570 case MFF_METADATA:
571 return !wc->metadata_mask;
572
573 CASE_MFF_REGS:
574 return !wc->reg_masks[mf->id - MFF_REG0];
575
576 case MFF_ETH_SRC:
577 return eth_addr_is_zero(wc->dl_src_mask);
578 case MFF_ETH_DST:
579 return eth_addr_is_zero(wc->dl_dst_mask);
580
581 case MFF_ARP_SHA:
582 case MFF_ND_SLL:
583 return eth_addr_is_zero(wc->arp_sha_mask);
584
585 case MFF_ARP_THA:
586 case MFF_ND_TLL:
587 return eth_addr_is_zero(wc->arp_tha_mask);
588
589 case MFF_VLAN_TCI:
590 return !wc->vlan_tci_mask;
591 case MFF_VLAN_VID:
592 return !(wc->vlan_tci_mask & htons(VLAN_VID_MASK));
593 case MFF_VLAN_PCP:
594 return !(wc->vlan_tci_mask & htons(VLAN_PCP_MASK));
595
596 case MFF_IPV4_SRC:
597 return !wc->nw_src_mask;
598 case MFF_IPV4_DST:
599 return !wc->nw_dst_mask;
600
601 case MFF_IPV6_SRC:
602 return ipv6_mask_is_any(&wc->ipv6_src_mask);
603 case MFF_IPV6_DST:
604 return ipv6_mask_is_any(&wc->ipv6_dst_mask);
605
606 case MFF_IPV6_LABEL:
607 return !wc->ipv6_label_mask;
608
609 case MFF_ND_TARGET:
610 return ipv6_mask_is_any(&wc->nd_target_mask);
611
612 case MFF_IP_FRAG:
613 return !(wc->nw_frag_mask & FLOW_NW_FRAG_MASK);
614
615 case MFF_ARP_SPA:
616 return !wc->nw_src_mask;
617 case MFF_ARP_TPA:
618 return !wc->nw_dst_mask;
619
620 case MFF_TCP_SRC:
621 case MFF_UDP_SRC:
622 case MFF_ICMPV4_TYPE:
623 case MFF_ICMPV6_TYPE:
624 return !wc->tp_src_mask;
625 case MFF_TCP_DST:
626 case MFF_UDP_DST:
627 case MFF_ICMPV4_CODE:
628 case MFF_ICMPV6_CODE:
629 return !wc->tp_dst_mask;
630
631 case MFF_N_IDS:
632 default:
633 NOT_REACHED();
634 }
635 }
636
637 /* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'.
638 * Each bit in 'mask' will be set to 1 if the bit is significant for matching
639 * purposes, or to 0 if it is wildcarded.
640 *
641 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
642 * meets 'mf''s prerequisites. */
643 void
644 mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc,
645 union mf_value *mask)
646 {
647 switch (mf->id) {
648 case MFF_IN_PORT:
649 case MFF_ETH_TYPE:
650 case MFF_IP_PROTO:
651 case MFF_IP_DSCP:
652 case MFF_IP_ECN:
653 case MFF_IP_TTL:
654 case MFF_ARP_OP:
655 assert(mf->fww_bit != 0);
656 memset(mask, wc->wildcards & mf->fww_bit ? 0x00 : 0xff, mf->n_bytes);
657 break;
658
659 case MFF_TUN_ID:
660 mask->be64 = wc->tun_id_mask;
661 break;
662 case MFF_METADATA:
663 mask->be64 = wc->metadata_mask;
664 break;
665
666 CASE_MFF_REGS:
667 mask->be32 = htonl(wc->reg_masks[mf->id - MFF_REG0]);
668 break;
669
670 case MFF_ETH_DST:
671 memcpy(mask->mac, wc->dl_dst_mask, ETH_ADDR_LEN);
672 break;
673
674 case MFF_ETH_SRC:
675 memcpy(mask->mac, wc->dl_src_mask, ETH_ADDR_LEN);
676 break;
677
678 case MFF_VLAN_TCI:
679 mask->be16 = wc->vlan_tci_mask;
680 break;
681 case MFF_VLAN_VID:
682 mask->be16 = wc->vlan_tci_mask & htons(VLAN_VID_MASK);
683 break;
684 case MFF_VLAN_PCP:
685 mask->u8 = vlan_tci_to_pcp(wc->vlan_tci_mask);
686 break;
687
688 case MFF_IPV4_SRC:
689 mask->be32 = wc->nw_src_mask;
690 break;
691 case MFF_IPV4_DST:
692 mask->be32 = wc->nw_dst_mask;
693 break;
694
695 case MFF_IPV6_SRC:
696 mask->ipv6 = wc->ipv6_src_mask;
697 break;
698 case MFF_IPV6_DST:
699 mask->ipv6 = wc->ipv6_dst_mask;
700 break;
701 case MFF_IPV6_LABEL:
702 mask->be32 = wc->ipv6_label_mask;
703 break;
704
705 case MFF_ND_TARGET:
706 mask->ipv6 = wc->nd_target_mask;
707 break;
708
709 case MFF_IP_FRAG:
710 mask->u8 = wc->nw_frag_mask & FLOW_NW_FRAG_MASK;
711 break;
712
713 case MFF_ARP_SPA:
714 mask->be32 = wc->nw_src_mask;
715 break;
716 case MFF_ARP_TPA:
717 mask->be32 = wc->nw_dst_mask;
718 break;
719 case MFF_ARP_SHA:
720 case MFF_ND_SLL:
721 memcpy(mask->mac, wc->arp_sha_mask, ETH_ADDR_LEN);
722 break;
723 case MFF_ARP_THA:
724 case MFF_ND_TLL:
725 memcpy(mask->mac, wc->arp_tha_mask, ETH_ADDR_LEN);
726 break;
727
728 case MFF_TCP_SRC:
729 case MFF_UDP_SRC:
730 mask->be16 = wc->tp_src_mask;
731 break;
732 case MFF_TCP_DST:
733 case MFF_UDP_DST:
734 mask->be16 = wc->tp_dst_mask;
735 break;
736
737 case MFF_ICMPV4_TYPE:
738 case MFF_ICMPV6_TYPE:
739 mask->u8 = ntohs(wc->tp_src_mask);
740 break;
741 case MFF_ICMPV4_CODE:
742 case MFF_ICMPV6_CODE:
743 mask->u8 = ntohs(wc->tp_dst_mask);
744 break;
745
746 case MFF_N_IDS:
747 default:
748 NOT_REACHED();
749 }
750 }
751
752 /* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true
753 * if the mask is valid, false otherwise. */
754 bool
755 mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask)
756 {
757 switch (mf->maskable) {
758 case MFM_NONE:
759 return (is_all_zeros((const uint8_t *) mask, mf->n_bytes) ||
760 is_all_ones((const uint8_t *) mask, mf->n_bytes));
761
762 case MFM_FULLY:
763 return true;
764 }
765
766 NOT_REACHED();
767 }
768
769 static bool
770 is_ip_any(const struct flow *flow)
771 {
772 return (flow->dl_type == htons(ETH_TYPE_IP) ||
773 flow->dl_type == htons(ETH_TYPE_IPV6));
774 }
775
776 static bool
777 is_icmpv4(const struct flow *flow)
778 {
779 return (flow->dl_type == htons(ETH_TYPE_IP)
780 && flow->nw_proto == IPPROTO_ICMP);
781 }
782
783 static bool
784 is_icmpv6(const struct flow *flow)
785 {
786 return (flow->dl_type == htons(ETH_TYPE_IPV6)
787 && flow->nw_proto == IPPROTO_ICMPV6);
788 }
789
790 /* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. */
791 bool
792 mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow)
793 {
794 switch (mf->prereqs) {
795 case MFP_NONE:
796 return true;
797
798 case MFP_ARP:
799 return flow->dl_type == htons(ETH_TYPE_ARP);
800 case MFP_IPV4:
801 return flow->dl_type == htons(ETH_TYPE_IP);
802 case MFP_IPV6:
803 return flow->dl_type == htons(ETH_TYPE_IPV6);
804 case MFP_IP_ANY:
805 return is_ip_any(flow);
806
807 case MFP_TCP:
808 return is_ip_any(flow) && flow->nw_proto == IPPROTO_TCP;
809 case MFP_UDP:
810 return is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP;
811 case MFP_ICMPV4:
812 return is_icmpv4(flow);
813 case MFP_ICMPV6:
814 return is_icmpv6(flow);
815
816 case MFP_ND:
817 return (is_icmpv6(flow)
818 && flow->tp_dst == htons(0)
819 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
820 flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
821 case MFP_ND_SOLICIT:
822 return (is_icmpv6(flow)
823 && flow->tp_dst == htons(0)
824 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)));
825 case MFP_ND_ADVERT:
826 return (is_icmpv6(flow)
827 && flow->tp_dst == htons(0)
828 && (flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
829 }
830
831 NOT_REACHED();
832 }
833
834 /* Returns true if 'value' may be a valid value *as part of a masked match*,
835 * false otherwise.
836 *
837 * A value is not rejected just because it is not valid for the field in
838 * question, but only if it doesn't make sense to test the bits in question at
839 * all. For example, the MFF_VLAN_TCI field will never have a nonzero value
840 * without the VLAN_CFI bit being set, but we can't reject those values because
841 * it is still legitimate to test just for those bits (see the documentation
842 * for NXM_OF_VLAN_TCI in nicira-ext.h). On the other hand, there is never a
843 * reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */
844 bool
845 mf_is_value_valid(const struct mf_field *mf, const union mf_value *value)
846 {
847 switch (mf->id) {
848 case MFF_TUN_ID:
849 case MFF_METADATA:
850 case MFF_IN_PORT:
851 CASE_MFF_REGS:
852 case MFF_ETH_SRC:
853 case MFF_ETH_DST:
854 case MFF_ETH_TYPE:
855 case MFF_VLAN_TCI:
856 case MFF_IPV4_SRC:
857 case MFF_IPV4_DST:
858 case MFF_IPV6_SRC:
859 case MFF_IPV6_DST:
860 case MFF_IP_PROTO:
861 case MFF_IP_TTL:
862 case MFF_ARP_SPA:
863 case MFF_ARP_TPA:
864 case MFF_ARP_SHA:
865 case MFF_ARP_THA:
866 case MFF_TCP_SRC:
867 case MFF_TCP_DST:
868 case MFF_UDP_SRC:
869 case MFF_UDP_DST:
870 case MFF_ICMPV4_TYPE:
871 case MFF_ICMPV4_CODE:
872 case MFF_ICMPV6_TYPE:
873 case MFF_ICMPV6_CODE:
874 case MFF_ND_TARGET:
875 case MFF_ND_SLL:
876 case MFF_ND_TLL:
877 return true;
878
879 case MFF_IP_DSCP:
880 return !(value->u8 & ~IP_DSCP_MASK);
881 case MFF_IP_ECN:
882 return !(value->u8 & ~IP_ECN_MASK);
883 case MFF_IP_FRAG:
884 return !(value->u8 & ~FLOW_NW_FRAG_MASK);
885
886 case MFF_ARP_OP:
887 return !(value->be16 & htons(0xff00));
888
889 case MFF_VLAN_VID:
890 return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK));
891
892 case MFF_VLAN_PCP:
893 return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT));
894
895 case MFF_IPV6_LABEL:
896 return !(value->be32 & ~htonl(IPV6_LABEL_MASK));
897
898 case MFF_N_IDS:
899 default:
900 NOT_REACHED();
901 }
902 }
903
904 /* Copies the value of field 'mf' from 'flow' into 'value'. The caller is
905 * responsible for ensuring that 'flow' meets 'mf''s prerequisites. */
906 void
907 mf_get_value(const struct mf_field *mf, const struct flow *flow,
908 union mf_value *value)
909 {
910 switch (mf->id) {
911 case MFF_TUN_ID:
912 value->be64 = flow->tun_id;
913 break;
914 case MFF_METADATA:
915 value->be64 = flow->metadata;
916 break;
917
918 case MFF_IN_PORT:
919 value->be16 = htons(flow->in_port);
920 break;
921
922 CASE_MFF_REGS:
923 value->be32 = htonl(flow->regs[mf->id - MFF_REG0]);
924 break;
925
926 case MFF_ETH_SRC:
927 memcpy(value->mac, flow->dl_src, ETH_ADDR_LEN);
928 break;
929
930 case MFF_ETH_DST:
931 memcpy(value->mac, flow->dl_dst, ETH_ADDR_LEN);
932 break;
933
934 case MFF_ETH_TYPE:
935 value->be16 = flow->dl_type;
936 break;
937
938 case MFF_VLAN_TCI:
939 value->be16 = flow->vlan_tci;
940 break;
941
942 case MFF_VLAN_VID:
943 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK);
944 break;
945
946 case MFF_VLAN_PCP:
947 value->u8 = vlan_tci_to_pcp(flow->vlan_tci);
948 break;
949
950 case MFF_IPV4_SRC:
951 value->be32 = flow->nw_src;
952 break;
953
954 case MFF_IPV4_DST:
955 value->be32 = flow->nw_dst;
956 break;
957
958 case MFF_IPV6_SRC:
959 value->ipv6 = flow->ipv6_src;
960 break;
961
962 case MFF_IPV6_DST:
963 value->ipv6 = flow->ipv6_dst;
964 break;
965
966 case MFF_IPV6_LABEL:
967 value->be32 = flow->ipv6_label;
968 break;
969
970 case MFF_IP_PROTO:
971 value->u8 = flow->nw_proto;
972 break;
973
974 case MFF_IP_DSCP:
975 value->u8 = flow->nw_tos & IP_DSCP_MASK;
976 break;
977
978 case MFF_IP_ECN:
979 value->u8 = flow->nw_tos & IP_ECN_MASK;
980 break;
981
982 case MFF_IP_TTL:
983 value->u8 = flow->nw_ttl;
984 break;
985
986 case MFF_IP_FRAG:
987 value->u8 = flow->nw_frag;
988 break;
989
990 case MFF_ARP_OP:
991 value->be16 = htons(flow->nw_proto);
992 break;
993
994 case MFF_ARP_SPA:
995 value->be32 = flow->nw_src;
996 break;
997
998 case MFF_ARP_TPA:
999 value->be32 = flow->nw_dst;
1000 break;
1001
1002 case MFF_ARP_SHA:
1003 case MFF_ND_SLL:
1004 memcpy(value->mac, flow->arp_sha, ETH_ADDR_LEN);
1005 break;
1006
1007 case MFF_ARP_THA:
1008 case MFF_ND_TLL:
1009 memcpy(value->mac, flow->arp_tha, ETH_ADDR_LEN);
1010 break;
1011
1012 case MFF_TCP_SRC:
1013 case MFF_UDP_SRC:
1014 value->be16 = flow->tp_src;
1015 break;
1016
1017 case MFF_TCP_DST:
1018 case MFF_UDP_DST:
1019 value->be16 = flow->tp_dst;
1020 break;
1021
1022 case MFF_ICMPV4_TYPE:
1023 case MFF_ICMPV6_TYPE:
1024 value->u8 = ntohs(flow->tp_src);
1025 break;
1026
1027 case MFF_ICMPV4_CODE:
1028 case MFF_ICMPV6_CODE:
1029 value->u8 = ntohs(flow->tp_dst);
1030 break;
1031
1032 case MFF_ND_TARGET:
1033 value->ipv6 = flow->nd_target;
1034 break;
1035
1036 case MFF_N_IDS:
1037 default:
1038 NOT_REACHED();
1039 }
1040 }
1041
1042 /* Makes 'rule' match field 'mf' exactly, with the value matched taken from
1043 * 'value'. The caller is responsible for ensuring that 'rule' meets 'mf''s
1044 * prerequisites. */
1045 void
1046 mf_set_value(const struct mf_field *mf,
1047 const union mf_value *value, struct cls_rule *rule)
1048 {
1049 switch (mf->id) {
1050 case MFF_TUN_ID:
1051 cls_rule_set_tun_id(rule, value->be64);
1052 break;
1053 case MFF_METADATA:
1054 cls_rule_set_metadata(rule, value->be64);
1055 break;
1056
1057 case MFF_IN_PORT:
1058 cls_rule_set_in_port(rule, ntohs(value->be16));
1059 break;
1060
1061 CASE_MFF_REGS:
1062 cls_rule_set_reg(rule, mf->id - MFF_REG0, ntohl(value->be32));
1063 break;
1064
1065 case MFF_ETH_SRC:
1066 cls_rule_set_dl_src(rule, value->mac);
1067 break;
1068
1069 case MFF_ETH_DST:
1070 cls_rule_set_dl_dst(rule, value->mac);
1071 break;
1072
1073 case MFF_ETH_TYPE:
1074 cls_rule_set_dl_type(rule, value->be16);
1075 break;
1076
1077 case MFF_VLAN_TCI:
1078 cls_rule_set_dl_tci(rule, value->be16);
1079 break;
1080
1081 case MFF_VLAN_VID:
1082 cls_rule_set_dl_vlan(rule, value->be16);
1083 break;
1084
1085 case MFF_VLAN_PCP:
1086 cls_rule_set_dl_vlan_pcp(rule, value->u8);
1087 break;
1088
1089 case MFF_IPV4_SRC:
1090 cls_rule_set_nw_src(rule, value->be32);
1091 break;
1092
1093 case MFF_IPV4_DST:
1094 cls_rule_set_nw_dst(rule, value->be32);
1095 break;
1096
1097 case MFF_IPV6_SRC:
1098 cls_rule_set_ipv6_src(rule, &value->ipv6);
1099 break;
1100
1101 case MFF_IPV6_DST:
1102 cls_rule_set_ipv6_dst(rule, &value->ipv6);
1103 break;
1104
1105 case MFF_IPV6_LABEL:
1106 cls_rule_set_ipv6_label(rule, value->be32);
1107 break;
1108
1109 case MFF_IP_PROTO:
1110 cls_rule_set_nw_proto(rule, value->u8);
1111 break;
1112
1113 case MFF_IP_DSCP:
1114 cls_rule_set_nw_dscp(rule, value->u8);
1115 break;
1116
1117 case MFF_IP_ECN:
1118 cls_rule_set_nw_ecn(rule, value->u8);
1119 break;
1120
1121 case MFF_IP_TTL:
1122 cls_rule_set_nw_ttl(rule, value->u8);
1123 break;
1124
1125 case MFF_IP_FRAG:
1126 cls_rule_set_nw_frag(rule, value->u8);
1127 break;
1128
1129 case MFF_ARP_OP:
1130 cls_rule_set_nw_proto(rule, ntohs(value->be16));
1131 break;
1132
1133 case MFF_ARP_SPA:
1134 cls_rule_set_nw_src(rule, value->be32);
1135 break;
1136
1137 case MFF_ARP_TPA:
1138 cls_rule_set_nw_dst(rule, value->be32);
1139 break;
1140
1141 case MFF_ARP_SHA:
1142 case MFF_ND_SLL:
1143 cls_rule_set_arp_sha(rule, value->mac);
1144 break;
1145
1146 case MFF_ARP_THA:
1147 case MFF_ND_TLL:
1148 cls_rule_set_arp_tha(rule, value->mac);
1149 break;
1150
1151 case MFF_TCP_SRC:
1152 case MFF_UDP_SRC:
1153 cls_rule_set_tp_src(rule, value->be16);
1154 break;
1155
1156 case MFF_TCP_DST:
1157 case MFF_UDP_DST:
1158 cls_rule_set_tp_dst(rule, value->be16);
1159 break;
1160
1161 case MFF_ICMPV4_TYPE:
1162 case MFF_ICMPV6_TYPE:
1163 cls_rule_set_icmp_type(rule, value->u8);
1164 break;
1165
1166 case MFF_ICMPV4_CODE:
1167 case MFF_ICMPV6_CODE:
1168 cls_rule_set_icmp_code(rule, value->u8);
1169 break;
1170
1171 case MFF_ND_TARGET:
1172 cls_rule_set_nd_target(rule, &value->ipv6);
1173 break;
1174
1175 case MFF_N_IDS:
1176 default:
1177 NOT_REACHED();
1178 }
1179 }
1180
1181 /* Makes 'rule' match field 'mf' exactly, with the value matched taken from
1182 * 'value'. The caller is responsible for ensuring that 'rule' meets 'mf''s
1183 * prerequisites. */
1184 void
1185 mf_set_flow_value(const struct mf_field *mf,
1186 const union mf_value *value, struct flow *flow)
1187 {
1188 switch (mf->id) {
1189 case MFF_TUN_ID:
1190 flow->tun_id = value->be64;
1191 break;
1192 case MFF_METADATA:
1193 flow->metadata = value->be64;
1194 break;
1195
1196 case MFF_IN_PORT:
1197 flow->in_port = ntohs(value->be16);
1198 break;
1199
1200 CASE_MFF_REGS:
1201 flow->regs[mf->id - MFF_REG0] = ntohl(value->be32);
1202 break;
1203
1204 case MFF_ETH_SRC:
1205 memcpy(flow->dl_src, value->mac, ETH_ADDR_LEN);
1206 break;
1207
1208 case MFF_ETH_DST:
1209 memcpy(flow->dl_dst, value->mac, ETH_ADDR_LEN);
1210 break;
1211
1212 case MFF_ETH_TYPE:
1213 flow->dl_type = value->be16;
1214 break;
1215
1216 case MFF_VLAN_TCI:
1217 flow->vlan_tci = value->be16;
1218 break;
1219
1220 case MFF_VLAN_VID:
1221 flow_set_vlan_vid(flow, value->be16);
1222 break;
1223
1224 case MFF_VLAN_PCP:
1225 flow_set_vlan_pcp(flow, value->u8);
1226 break;
1227
1228 case MFF_IPV4_SRC:
1229 flow->nw_src = value->be32;
1230 break;
1231
1232 case MFF_IPV4_DST:
1233 flow->nw_dst = value->be32;
1234 break;
1235
1236 case MFF_IPV6_SRC:
1237 flow->ipv6_src = value->ipv6;
1238 break;
1239
1240 case MFF_IPV6_DST:
1241 flow->ipv6_dst = value->ipv6;
1242 break;
1243
1244 case MFF_IPV6_LABEL:
1245 flow->ipv6_label = value->be32 & ~htonl(IPV6_LABEL_MASK);
1246 break;
1247
1248 case MFF_IP_PROTO:
1249 flow->nw_proto = value->u8;
1250 break;
1251
1252 case MFF_IP_DSCP:
1253 flow->nw_tos &= ~IP_DSCP_MASK;
1254 flow->nw_tos |= value->u8 & IP_DSCP_MASK;
1255 break;
1256
1257 case MFF_IP_ECN:
1258 flow->nw_tos &= ~IP_ECN_MASK;
1259 flow->nw_tos |= value->u8 & IP_ECN_MASK;
1260 break;
1261
1262 case MFF_IP_TTL:
1263 flow->nw_ttl = value->u8;
1264 break;
1265
1266 case MFF_IP_FRAG:
1267 flow->nw_frag &= value->u8;
1268 break;
1269
1270 case MFF_ARP_OP:
1271 flow->nw_proto = ntohs(value->be16);
1272 break;
1273
1274 case MFF_ARP_SPA:
1275 flow->nw_src = value->be32;
1276 break;
1277
1278 case MFF_ARP_TPA:
1279 flow->nw_dst = value->be32;
1280 break;
1281
1282 case MFF_ARP_SHA:
1283 case MFF_ND_SLL:
1284 memcpy(flow->arp_sha, value->mac, ETH_ADDR_LEN);
1285 break;
1286
1287 case MFF_ARP_THA:
1288 case MFF_ND_TLL:
1289 memcpy(flow->arp_tha, value->mac, ETH_ADDR_LEN);
1290 break;
1291
1292 case MFF_TCP_SRC:
1293 case MFF_UDP_SRC:
1294 flow->tp_src = value->be16;
1295 break;
1296
1297 case MFF_TCP_DST:
1298 case MFF_UDP_DST:
1299 flow->tp_dst = value->be16;
1300 break;
1301
1302 case MFF_ICMPV4_TYPE:
1303 case MFF_ICMPV6_TYPE:
1304 flow->tp_src = htons(value->u8);
1305 break;
1306
1307 case MFF_ICMPV4_CODE:
1308 case MFF_ICMPV6_CODE:
1309 flow->tp_dst = htons(value->u8);
1310 break;
1311
1312 case MFF_ND_TARGET:
1313 flow->nd_target = value->ipv6;
1314 break;
1315
1316 case MFF_N_IDS:
1317 default:
1318 NOT_REACHED();
1319 }
1320 }
1321
1322 /* Returns true if 'mf' has a zero value in 'flow', false if it is nonzero.
1323 *
1324 * The caller is responsible for ensuring that 'flow' meets 'mf''s
1325 * prerequisites. */
1326 bool
1327 mf_is_zero(const struct mf_field *mf, const struct flow *flow)
1328 {
1329 union mf_value value;
1330
1331 mf_get_value(mf, flow, &value);
1332 return is_all_zeros((const uint8_t *) &value, mf->n_bytes);
1333 }
1334
1335 /* Makes 'rule' wildcard field 'mf'.
1336 *
1337 * The caller is responsible for ensuring that 'rule' meets 'mf''s
1338 * prerequisites. */
1339 void
1340 mf_set_wild(const struct mf_field *mf, struct cls_rule *rule)
1341 {
1342 switch (mf->id) {
1343 case MFF_TUN_ID:
1344 cls_rule_set_tun_id_masked(rule, htonll(0), htonll(0));
1345 break;
1346 case MFF_METADATA:
1347 cls_rule_set_metadata_masked(rule, htonll(0), htonll(0));
1348
1349 case MFF_IN_PORT:
1350 rule->wc.wildcards |= FWW_IN_PORT;
1351 rule->flow.in_port = 0;
1352 break;
1353
1354 CASE_MFF_REGS:
1355 cls_rule_set_reg_masked(rule, mf->id - MFF_REG0, 0, 0);
1356 break;
1357
1358 case MFF_ETH_SRC:
1359 memset(rule->flow.dl_src, 0, ETH_ADDR_LEN);
1360 memset(rule->wc.dl_src_mask, 0, ETH_ADDR_LEN);
1361 break;
1362
1363 case MFF_ETH_DST:
1364 memset(rule->flow.dl_dst, 0, ETH_ADDR_LEN);
1365 memset(rule->wc.dl_dst_mask, 0, ETH_ADDR_LEN);
1366 break;
1367
1368 case MFF_ETH_TYPE:
1369 rule->wc.wildcards |= FWW_DL_TYPE;
1370 rule->flow.dl_type = htons(0);
1371 break;
1372
1373 case MFF_VLAN_TCI:
1374 cls_rule_set_dl_tci_masked(rule, htons(0), htons(0));
1375 break;
1376
1377 case MFF_VLAN_VID:
1378 cls_rule_set_any_vid(rule);
1379 break;
1380
1381 case MFF_VLAN_PCP:
1382 cls_rule_set_any_pcp(rule);
1383 break;
1384
1385 case MFF_IPV4_SRC:
1386 case MFF_ARP_SPA:
1387 cls_rule_set_nw_src_masked(rule, htonl(0), htonl(0));
1388 break;
1389
1390 case MFF_IPV4_DST:
1391 case MFF_ARP_TPA:
1392 cls_rule_set_nw_dst_masked(rule, htonl(0), htonl(0));
1393 break;
1394
1395 case MFF_IPV6_SRC:
1396 memset(&rule->wc.ipv6_src_mask, 0, sizeof rule->wc.ipv6_src_mask);
1397 memset(&rule->flow.ipv6_src, 0, sizeof rule->flow.ipv6_src);
1398 break;
1399
1400 case MFF_IPV6_DST:
1401 memset(&rule->wc.ipv6_dst_mask, 0, sizeof rule->wc.ipv6_dst_mask);
1402 memset(&rule->flow.ipv6_dst, 0, sizeof rule->flow.ipv6_dst);
1403 break;
1404
1405 case MFF_IPV6_LABEL:
1406 rule->wc.ipv6_label_mask = 0;
1407 rule->flow.ipv6_label = 0;
1408 break;
1409
1410 case MFF_IP_PROTO:
1411 rule->wc.wildcards |= FWW_NW_PROTO;
1412 rule->flow.nw_proto = 0;
1413 break;
1414
1415 case MFF_IP_DSCP:
1416 rule->wc.wildcards |= FWW_NW_DSCP;
1417 rule->flow.nw_tos &= ~IP_DSCP_MASK;
1418 break;
1419
1420 case MFF_IP_ECN:
1421 rule->wc.wildcards |= FWW_NW_ECN;
1422 rule->flow.nw_tos &= ~IP_ECN_MASK;
1423 break;
1424
1425 case MFF_IP_TTL:
1426 rule->wc.wildcards |= FWW_NW_TTL;
1427 rule->flow.nw_ttl = 0;
1428 break;
1429
1430 case MFF_IP_FRAG:
1431 rule->wc.nw_frag_mask |= FLOW_NW_FRAG_MASK;
1432 rule->flow.nw_frag &= ~FLOW_NW_FRAG_MASK;
1433 break;
1434
1435 case MFF_ARP_OP:
1436 rule->wc.wildcards |= FWW_NW_PROTO;
1437 rule->flow.nw_proto = 0;
1438 break;
1439
1440 case MFF_ARP_SHA:
1441 case MFF_ND_SLL:
1442 memset(rule->flow.arp_sha, 0, ETH_ADDR_LEN);
1443 memset(rule->wc.arp_sha_mask, 0, ETH_ADDR_LEN);
1444 break;
1445
1446 case MFF_ARP_THA:
1447 case MFF_ND_TLL:
1448 memset(rule->flow.arp_tha, 0, ETH_ADDR_LEN);
1449 memset(rule->wc.arp_tha_mask, 0, ETH_ADDR_LEN);
1450 break;
1451
1452 case MFF_TCP_SRC:
1453 case MFF_UDP_SRC:
1454 case MFF_ICMPV4_TYPE:
1455 case MFF_ICMPV6_TYPE:
1456 rule->wc.tp_src_mask = htons(0);
1457 rule->flow.tp_src = htons(0);
1458 break;
1459
1460 case MFF_TCP_DST:
1461 case MFF_UDP_DST:
1462 case MFF_ICMPV4_CODE:
1463 case MFF_ICMPV6_CODE:
1464 rule->wc.tp_dst_mask = htons(0);
1465 rule->flow.tp_dst = htons(0);
1466 break;
1467
1468 case MFF_ND_TARGET:
1469 memset(&rule->wc.nd_target_mask, 0, sizeof rule->wc.nd_target_mask);
1470 memset(&rule->flow.nd_target, 0, sizeof rule->flow.nd_target);
1471 break;
1472
1473 case MFF_N_IDS:
1474 default:
1475 NOT_REACHED();
1476 }
1477 }
1478
1479 /* Makes 'rule' match field 'mf' with the specified 'value' and 'mask'.
1480 * 'value' specifies a value to match and 'mask' specifies a wildcard pattern,
1481 * with a 1-bit indicating that the corresponding value bit must match and a
1482 * 0-bit indicating a don't-care.
1483 *
1484 * If 'mask' is NULL or points to all-1-bits, then this call is equivalent to
1485 * mf_set_value(mf, value, rule). If 'mask' points to all-0-bits, then this
1486 * call is equivalent to mf_set_wild(mf, rule).
1487 *
1488 * 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller
1489 * is responsible for ensuring that 'rule' meets 'mf''s prerequisites. */
1490 void
1491 mf_set(const struct mf_field *mf,
1492 const union mf_value *value, const union mf_value *mask,
1493 struct cls_rule *rule)
1494 {
1495 if (!mask || is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
1496 mf_set_value(mf, value, rule);
1497 return;
1498 } else if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
1499 mf_set_wild(mf, rule);
1500 return;
1501 }
1502
1503 switch (mf->id) {
1504 case MFF_IN_PORT:
1505 case MFF_ETH_TYPE:
1506 case MFF_VLAN_VID:
1507 case MFF_VLAN_PCP:
1508 case MFF_IP_PROTO:
1509 case MFF_IP_TTL:
1510 case MFF_IP_DSCP:
1511 case MFF_IP_ECN:
1512 case MFF_ARP_OP:
1513 case MFF_ICMPV4_TYPE:
1514 case MFF_ICMPV4_CODE:
1515 case MFF_ICMPV6_TYPE:
1516 case MFF_ICMPV6_CODE:
1517 NOT_REACHED();
1518
1519 case MFF_TUN_ID:
1520 cls_rule_set_tun_id_masked(rule, value->be64, mask->be64);
1521 break;
1522 case MFF_METADATA:
1523 cls_rule_set_metadata_masked(rule, value->be64, mask->be64);
1524 break;
1525
1526 CASE_MFF_REGS:
1527 cls_rule_set_reg_masked(rule, mf->id - MFF_REG0,
1528 ntohl(value->be32), ntohl(mask->be32));
1529 break;
1530
1531 case MFF_ETH_DST:
1532 cls_rule_set_dl_dst_masked(rule, value->mac, mask->mac);
1533 break;
1534
1535 case MFF_ETH_SRC:
1536 cls_rule_set_dl_src_masked(rule, value->mac, mask->mac);
1537 break;
1538
1539 case MFF_ARP_SHA:
1540 case MFF_ND_SLL:
1541 cls_rule_set_arp_sha_masked(rule, value->mac, mask->mac);
1542 break;
1543
1544 case MFF_ARP_THA:
1545 case MFF_ND_TLL:
1546 cls_rule_set_arp_tha_masked(rule, value->mac, mask->mac);
1547 break;
1548
1549 case MFF_VLAN_TCI:
1550 cls_rule_set_dl_tci_masked(rule, value->be16, mask->be16);
1551 break;
1552
1553 case MFF_IPV4_SRC:
1554 cls_rule_set_nw_src_masked(rule, value->be32, mask->be32);
1555 break;
1556
1557 case MFF_IPV4_DST:
1558 cls_rule_set_nw_dst_masked(rule, value->be32, mask->be32);
1559 break;
1560
1561 case MFF_IPV6_SRC:
1562 cls_rule_set_ipv6_src_masked(rule, &value->ipv6, &mask->ipv6);
1563 break;
1564
1565 case MFF_IPV6_DST:
1566 cls_rule_set_ipv6_dst_masked(rule, &value->ipv6, &mask->ipv6);
1567 break;
1568
1569 case MFF_IPV6_LABEL:
1570 if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) {
1571 mf_set_value(mf, value, rule);
1572 } else {
1573 cls_rule_set_ipv6_label_masked(rule, value->be32, mask->be32);
1574 }
1575 break;
1576
1577 case MFF_ND_TARGET:
1578 cls_rule_set_nd_target_masked(rule, &value->ipv6, &mask->ipv6);
1579 break;
1580
1581 case MFF_IP_FRAG:
1582 cls_rule_set_nw_frag_masked(rule, value->u8, mask->u8);
1583 break;
1584
1585 case MFF_ARP_SPA:
1586 cls_rule_set_nw_src_masked(rule, value->be32, mask->be32);
1587 break;
1588
1589 case MFF_ARP_TPA:
1590 cls_rule_set_nw_dst_masked(rule, value->be32, mask->be32);
1591 break;
1592
1593 case MFF_TCP_SRC:
1594 case MFF_UDP_SRC:
1595 cls_rule_set_tp_src_masked(rule, value->be16, mask->be16);
1596 break;
1597
1598 case MFF_TCP_DST:
1599 case MFF_UDP_DST:
1600 cls_rule_set_tp_dst_masked(rule, value->be16, mask->be16);
1601 break;
1602
1603 case MFF_N_IDS:
1604 default:
1605 NOT_REACHED();
1606 }
1607 }
1608
1609 static enum ofperr
1610 mf_check__(const struct mf_subfield *sf, const struct flow *flow,
1611 const char *type)
1612 {
1613 if (!sf->field) {
1614 VLOG_WARN_RL(&rl, "unknown %s field", type);
1615 } else if (!sf->n_bits) {
1616 VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name);
1617 } else if (sf->ofs >= sf->field->n_bits) {
1618 VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s",
1619 sf->ofs, sf->field->n_bits, type, sf->field->name);
1620 } else if (sf->ofs + sf->n_bits > sf->field->n_bits) {
1621 VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width "
1622 "of %s field %s", sf->ofs, sf->n_bits,
1623 sf->field->n_bits, type, sf->field->name);
1624 } else if (flow && !mf_are_prereqs_ok(sf->field, flow)) {
1625 VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites",
1626 type, sf->field->name);
1627 } else {
1628 return 0;
1629 }
1630
1631 return OFPERR_OFPBAC_BAD_ARGUMENT;
1632 }
1633
1634 /* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns
1635 * 0 if so, otherwise an OpenFlow error code (e.g. as returned by
1636 * ofp_mkerr()). */
1637 enum ofperr
1638 mf_check_src(const struct mf_subfield *sf, const struct flow *flow)
1639 {
1640 return mf_check__(sf, flow, "source");
1641 }
1642
1643 /* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0
1644 * if so, otherwise an OpenFlow error code (e.g. as returned by
1645 * ofp_mkerr()). */
1646 enum ofperr
1647 mf_check_dst(const struct mf_subfield *sf, const struct flow *flow)
1648 {
1649 int error = mf_check__(sf, flow, "destination");
1650 if (!error && !sf->field->writable) {
1651 VLOG_WARN_RL(&rl, "destination field %s is not writable",
1652 sf->field->name);
1653 return OFPERR_OFPBAC_BAD_ARGUMENT;
1654 }
1655 return error;
1656 }
1657
1658 /* Copies the value and wildcard bit pattern for 'mf' from 'rule' into the
1659 * 'value' and 'mask', respectively. */
1660 void
1661 mf_get(const struct mf_field *mf, const struct cls_rule *rule,
1662 union mf_value *value, union mf_value *mask)
1663 {
1664 mf_get_value(mf, &rule->flow, value);
1665 mf_get_mask(mf, &rule->wc, mask);
1666 }
1667
1668 /* Assigns a random value for field 'mf' to 'value'. */
1669 void
1670 mf_random_value(const struct mf_field *mf, union mf_value *value)
1671 {
1672 random_bytes(value, mf->n_bytes);
1673
1674 switch (mf->id) {
1675 case MFF_TUN_ID:
1676 case MFF_METADATA:
1677 case MFF_IN_PORT:
1678 CASE_MFF_REGS:
1679 case MFF_ETH_SRC:
1680 case MFF_ETH_DST:
1681 case MFF_ETH_TYPE:
1682 case MFF_VLAN_TCI:
1683 case MFF_IPV4_SRC:
1684 case MFF_IPV4_DST:
1685 case MFF_IPV6_SRC:
1686 case MFF_IPV6_DST:
1687 case MFF_IP_PROTO:
1688 case MFF_IP_TTL:
1689 case MFF_ARP_SPA:
1690 case MFF_ARP_TPA:
1691 case MFF_ARP_SHA:
1692 case MFF_ARP_THA:
1693 case MFF_TCP_SRC:
1694 case MFF_TCP_DST:
1695 case MFF_UDP_SRC:
1696 case MFF_UDP_DST:
1697 case MFF_ICMPV4_TYPE:
1698 case MFF_ICMPV4_CODE:
1699 case MFF_ICMPV6_TYPE:
1700 case MFF_ICMPV6_CODE:
1701 case MFF_ND_TARGET:
1702 case MFF_ND_SLL:
1703 case MFF_ND_TLL:
1704 break;
1705
1706 case MFF_IPV6_LABEL:
1707 value->be32 &= ~htonl(IPV6_LABEL_MASK);
1708 break;
1709
1710 case MFF_IP_DSCP:
1711 value->u8 &= IP_DSCP_MASK;
1712 break;
1713
1714 case MFF_IP_ECN:
1715 value->u8 &= IP_ECN_MASK;
1716 break;
1717
1718 case MFF_IP_FRAG:
1719 value->u8 &= FLOW_NW_FRAG_MASK;
1720 break;
1721
1722 case MFF_ARP_OP:
1723 value->be16 &= htons(0xff);
1724 break;
1725
1726 case MFF_VLAN_VID:
1727 value->be16 &= htons(VLAN_VID_MASK);
1728 break;
1729
1730 case MFF_VLAN_PCP:
1731 value->u8 &= 0x07;
1732 break;
1733
1734 case MFF_N_IDS:
1735 default:
1736 NOT_REACHED();
1737 }
1738 }
1739
1740 static char *
1741 mf_from_integer_string(const struct mf_field *mf, const char *s,
1742 uint8_t *valuep, uint8_t *maskp)
1743 {
1744 unsigned long long int integer, mask;
1745 char *tail;
1746 int i;
1747
1748 errno = 0;
1749 integer = strtoull(s, &tail, 0);
1750 if (errno || (*tail != '\0' && *tail != '/')) {
1751 goto syntax_error;
1752 }
1753
1754 if (*tail == '/') {
1755 mask = strtoull(tail + 1, &tail, 0);
1756 if (errno || *tail != '\0') {
1757 goto syntax_error;
1758 }
1759 } else {
1760 mask = ULLONG_MAX;
1761 }
1762
1763 for (i = mf->n_bytes - 1; i >= 0; i--) {
1764 valuep[i] = integer;
1765 maskp[i] = mask;
1766 integer >>= 8;
1767 mask >>= 8;
1768 }
1769 if (integer) {
1770 return xasprintf("%s: value too large for %u-byte field %s",
1771 s, mf->n_bytes, mf->name);
1772 }
1773 return NULL;
1774
1775 syntax_error:
1776 return xasprintf("%s: bad syntax for %s", s, mf->name);
1777 }
1778
1779 static char *
1780 mf_from_ethernet_string(const struct mf_field *mf, const char *s,
1781 uint8_t mac[ETH_ADDR_LEN],
1782 uint8_t mask[ETH_ADDR_LEN])
1783 {
1784 assert(mf->n_bytes == ETH_ADDR_LEN);
1785
1786 switch (sscanf(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT,
1787 ETH_ADDR_SCAN_ARGS(mac), ETH_ADDR_SCAN_ARGS(mask))){
1788 case ETH_ADDR_SCAN_COUNT * 2:
1789 return NULL;
1790
1791 case ETH_ADDR_SCAN_COUNT:
1792 memset(mask, 0xff, ETH_ADDR_LEN);
1793 return NULL;
1794
1795 default:
1796 return xasprintf("%s: invalid Ethernet address", s);
1797 }
1798 }
1799
1800 static char *
1801 mf_from_ipv4_string(const struct mf_field *mf, const char *s,
1802 ovs_be32 *ip, ovs_be32 *mask)
1803 {
1804 int prefix;
1805
1806 assert(mf->n_bytes == sizeof *ip);
1807
1808 if (sscanf(s, IP_SCAN_FMT"/"IP_SCAN_FMT,
1809 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask)) == IP_SCAN_COUNT * 2) {
1810 /* OK. */
1811 } else if (sscanf(s, IP_SCAN_FMT"/%d",
1812 IP_SCAN_ARGS(ip), &prefix) == IP_SCAN_COUNT + 1) {
1813 if (prefix <= 0 || prefix > 32) {
1814 return xasprintf("%s: network prefix bits not between 1 and "
1815 "32", s);
1816 } else if (prefix == 32) {
1817 *mask = htonl(UINT32_MAX);
1818 } else {
1819 *mask = htonl(((1u << prefix) - 1) << (32 - prefix));
1820 }
1821 } else if (sscanf(s, IP_SCAN_FMT, IP_SCAN_ARGS(ip)) == IP_SCAN_COUNT) {
1822 *mask = htonl(UINT32_MAX);
1823 } else {
1824 return xasprintf("%s: invalid IP address", s);
1825 }
1826 return NULL;
1827 }
1828
1829 static char *
1830 mf_from_ipv6_string(const struct mf_field *mf, const char *s,
1831 struct in6_addr *value, struct in6_addr *mask)
1832 {
1833 char *str = xstrdup(s);
1834 char *save_ptr = NULL;
1835 const char *name, *netmask;
1836 int retval;
1837
1838 assert(mf->n_bytes == sizeof *value);
1839
1840 name = strtok_r(str, "/", &save_ptr);
1841 retval = name ? lookup_ipv6(name, value) : EINVAL;
1842 if (retval) {
1843 char *err;
1844
1845 err = xasprintf("%s: could not convert to IPv6 address", str);
1846 free(str);
1847
1848 return err;
1849 }
1850
1851 netmask = strtok_r(NULL, "/", &save_ptr);
1852 if (netmask) {
1853 if (inet_pton(AF_INET6, netmask, mask) != 1) {
1854 int prefix = atoi(netmask);
1855 if (prefix <= 0 || prefix > 128) {
1856 free(str);
1857 return xasprintf("%s: prefix bits not between 1 and 128", s);
1858 } else {
1859 *mask = ipv6_create_mask(prefix);
1860 }
1861 }
1862 } else {
1863 *mask = in6addr_exact;
1864 }
1865 free(str);
1866
1867 return NULL;
1868 }
1869
1870 static char *
1871 mf_from_ofp_port_string(const struct mf_field *mf, const char *s,
1872 ovs_be16 *valuep, ovs_be16 *maskp)
1873 {
1874 uint16_t port;
1875
1876 assert(mf->n_bytes == sizeof(ovs_be16));
1877 if (ofputil_port_from_string(s, &port)) {
1878 *valuep = htons(port);
1879 *maskp = htons(UINT16_MAX);
1880 return NULL;
1881 } else {
1882 return mf_from_integer_string(mf, s,
1883 (uint8_t *) valuep, (uint8_t *) maskp);
1884 }
1885 }
1886
1887 struct frag_handling {
1888 const char *name;
1889 uint8_t mask;
1890 uint8_t value;
1891 };
1892
1893 static const struct frag_handling all_frags[] = {
1894 #define A FLOW_NW_FRAG_ANY
1895 #define L FLOW_NW_FRAG_LATER
1896 /* name mask value */
1897
1898 { "no", A|L, 0 },
1899 { "first", A|L, A },
1900 { "later", A|L, A|L },
1901
1902 { "no", A, 0 },
1903 { "yes", A, A },
1904
1905 { "not_later", L, 0 },
1906 { "later", L, L },
1907 #undef A
1908 #undef L
1909 };
1910
1911 static char *
1912 mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp)
1913 {
1914 const struct frag_handling *h;
1915
1916 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
1917 if (!strcasecmp(s, h->name)) {
1918 /* We force the upper bits of the mask on to make mf_parse_value()
1919 * happy (otherwise it will never think it's an exact match.) */
1920 *maskp = h->mask | ~FLOW_NW_FRAG_MASK;
1921 *valuep = h->value;
1922 return NULL;
1923 }
1924 }
1925
1926 return xasprintf("%s: unknown fragment type (valid types are \"no\", "
1927 "\"yes\", \"first\", \"later\", \"not_first\"", s);
1928 }
1929
1930 /* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns
1931 * NULL if successful, otherwise a malloc()'d string describing the error. */
1932 char *
1933 mf_parse(const struct mf_field *mf, const char *s,
1934 union mf_value *value, union mf_value *mask)
1935 {
1936 if (!strcasecmp(s, "any") || !strcmp(s, "*")) {
1937 memset(value, 0, mf->n_bytes);
1938 memset(mask, 0, mf->n_bytes);
1939 return NULL;
1940 }
1941
1942 switch (mf->string) {
1943 case MFS_DECIMAL:
1944 case MFS_HEXADECIMAL:
1945 return mf_from_integer_string(mf, s,
1946 (uint8_t *) value, (uint8_t *) mask);
1947
1948 case MFS_ETHERNET:
1949 return mf_from_ethernet_string(mf, s, value->mac, mask->mac);
1950
1951 case MFS_IPV4:
1952 return mf_from_ipv4_string(mf, s, &value->be32, &mask->be32);
1953
1954 case MFS_IPV6:
1955 return mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6);
1956
1957 case MFS_OFP_PORT:
1958 return mf_from_ofp_port_string(mf, s, &value->be16, &mask->be16);
1959
1960 case MFS_FRAG:
1961 return mf_from_frag_string(s, &value->u8, &mask->u8);
1962 }
1963 NOT_REACHED();
1964 }
1965
1966 /* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if
1967 * successful, otherwise a malloc()'d string describing the error. */
1968 char *
1969 mf_parse_value(const struct mf_field *mf, const char *s, union mf_value *value)
1970 {
1971 union mf_value mask;
1972 char *error;
1973
1974 error = mf_parse(mf, s, value, &mask);
1975 if (error) {
1976 return error;
1977 }
1978
1979 if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) {
1980 return xasprintf("%s: wildcards not allowed here", s);
1981 }
1982 return NULL;
1983 }
1984
1985 static void
1986 mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep,
1987 const uint8_t *maskp, struct ds *s)
1988 {
1989 unsigned long long int integer;
1990 int i;
1991
1992 assert(mf->n_bytes <= 8);
1993
1994 integer = 0;
1995 for (i = 0; i < mf->n_bytes; i++) {
1996 integer = (integer << 8) | valuep[i];
1997 }
1998 if (mf->string == MFS_HEXADECIMAL) {
1999 ds_put_format(s, "%#llx", integer);
2000 } else {
2001 ds_put_format(s, "%lld", integer);
2002 }
2003
2004 if (maskp) {
2005 unsigned long long int mask;
2006
2007 mask = 0;
2008 for (i = 0; i < mf->n_bytes; i++) {
2009 mask = (mask << 8) | maskp[i];
2010 }
2011
2012 /* I guess we could write the mask in decimal for MFS_DECIMAL but I'm
2013 * not sure that that a bit-mask written in decimal is ever easier to
2014 * understand than the same bit-mask written in hexadecimal. */
2015 ds_put_format(s, "/%#llx", mask);
2016 }
2017 }
2018
2019 static void
2020 mf_format_frag_string(const uint8_t *valuep, const uint8_t *maskp,
2021 struct ds *s)
2022 {
2023 const struct frag_handling *h;
2024 uint8_t value = *valuep;
2025 uint8_t mask = *maskp;
2026
2027 value &= mask;
2028 mask &= FLOW_NW_FRAG_MASK;
2029
2030 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
2031 if (value == h->value && mask == h->mask) {
2032 ds_put_cstr(s, h->name);
2033 return;
2034 }
2035 }
2036 ds_put_cstr(s, "<error>");
2037 }
2038
2039 /* Appends to 's' a string representation of field 'mf' whose value is in
2040 * 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */
2041 void
2042 mf_format(const struct mf_field *mf,
2043 const union mf_value *value, const union mf_value *mask,
2044 struct ds *s)
2045 {
2046 if (mask) {
2047 if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
2048 ds_put_cstr(s, "ANY");
2049 return;
2050 } else if (is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
2051 mask = NULL;
2052 }
2053 }
2054
2055 switch (mf->string) {
2056 case MFS_OFP_PORT:
2057 if (!mask) {
2058 ofputil_format_port(ntohs(value->be16), s);
2059 break;
2060 }
2061 /* fall through */
2062 case MFS_DECIMAL:
2063 case MFS_HEXADECIMAL:
2064 mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s);
2065 break;
2066
2067 case MFS_ETHERNET:
2068 eth_format_masked(value->mac, mask->mac, s);
2069 break;
2070
2071 case MFS_IPV4:
2072 ip_format_masked(value->be32, mask ? mask->be32 : htonl(UINT32_MAX),
2073 s);
2074 break;
2075
2076 case MFS_IPV6:
2077 print_ipv6_masked(s, &value->ipv6, mask ? &mask->ipv6 : NULL);
2078 break;
2079
2080 case MFS_FRAG:
2081 mf_format_frag_string(&value->u8, &mask->u8, s);
2082 break;
2083
2084 default:
2085 NOT_REACHED();
2086 }
2087 }
2088 \f
2089 /* Makes subfield 'sf' within 'rule' exactly match the 'sf->n_bits'
2090 * least-significant bits in 'x'.
2091 */
2092 void
2093 mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x,
2094 struct cls_rule *rule)
2095 {
2096 const struct mf_field *field = sf->field;
2097 union mf_value value, mask;
2098
2099 mf_get(field, rule, &value, &mask);
2100 bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits);
2101 bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits);
2102 mf_set(field, &value, &mask, rule);
2103 }
2104
2105 /* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for
2106 * reading 'flow', e.g. as checked by mf_check_src(). */
2107 void
2108 mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow,
2109 union mf_subvalue *x)
2110 {
2111 union mf_value value;
2112
2113 mf_get_value(sf->field, flow, &value);
2114
2115 memset(x, 0, sizeof *x);
2116 bitwise_copy(&value, sf->field->n_bytes, sf->ofs,
2117 x, sizeof *x, 0,
2118 sf->n_bits);
2119 }
2120
2121 /* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading
2122 * 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or
2123 * less. */
2124 uint64_t
2125 mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow)
2126 {
2127 union mf_value value;
2128
2129 mf_get_value(sf->field, flow, &value);
2130 return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits);
2131 }
2132
2133 /* Formats 'sf' into 's' in a format normally acceptable to
2134 * mf_parse_subfield(). (It won't be acceptable if sf->field is NULL or if
2135 * sf->field has no NXM name.) */
2136 void
2137 mf_format_subfield(const struct mf_subfield *sf, struct ds *s)
2138 {
2139 if (!sf->field) {
2140 ds_put_cstr(s, "<unknown>");
2141 } else if (sf->field->nxm_name) {
2142 ds_put_cstr(s, sf->field->nxm_name);
2143 } else if (sf->field->nxm_header) {
2144 uint32_t header = sf->field->nxm_header;
2145 ds_put_format(s, "%d:%d", NXM_VENDOR(header), NXM_FIELD(header));
2146 } else {
2147 ds_put_cstr(s, sf->field->name);
2148 }
2149
2150 if (sf->field && sf->ofs == 0 && sf->n_bits == sf->field->n_bits) {
2151 ds_put_cstr(s, "[]");
2152 } else if (sf->n_bits == 1) {
2153 ds_put_format(s, "[%d]", sf->ofs);
2154 } else {
2155 ds_put_format(s, "[%d..%d]", sf->ofs, sf->ofs + sf->n_bits - 1);
2156 }
2157 }
2158
2159 static const struct mf_field *
2160 mf_parse_subfield_name(const char *name, int name_len, bool *wild)
2161 {
2162 int i;
2163
2164 *wild = name_len > 2 && !memcmp(&name[name_len - 2], "_W", 2);
2165 if (*wild) {
2166 name_len -= 2;
2167 }
2168
2169 for (i = 0; i < MFF_N_IDS; i++) {
2170 const struct mf_field *mf = mf_from_id(i);
2171
2172 if (mf->nxm_name
2173 && !strncmp(mf->nxm_name, name, name_len)
2174 && mf->nxm_name[name_len] == '\0') {
2175 return mf;
2176 }
2177 if (mf->oxm_name
2178 && !strncmp(mf->oxm_name, name, name_len)
2179 && mf->oxm_name[name_len] == '\0') {
2180 return mf;
2181 }
2182 }
2183
2184 return NULL;
2185 }
2186
2187 /* Parses a subfield from the beginning of '*sp' into 'sf'. If successful,
2188 * returns NULL and advances '*sp' to the first byte following the parsed
2189 * string. On failure, returns a malloc()'d error message, does not modify
2190 * '*sp', and does not properly initialize 'sf'.
2191 *
2192 * The syntax parsed from '*sp' takes the form "header[start..end]" where
2193 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2194 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2195 * may both be omitted (the [] are still required) to indicate an entire
2196 * field. */
2197 char *
2198 mf_parse_subfield__(struct mf_subfield *sf, const char **sp)
2199 {
2200 const struct mf_field *field;
2201 const char *name;
2202 int start, end;
2203 const char *s;
2204 int name_len;
2205 bool wild;
2206
2207 s = *sp;
2208 name = s;
2209 name_len = strcspn(s, "[");
2210 if (s[name_len] != '[') {
2211 return xasprintf("%s: missing [ looking for field name", *sp);
2212 }
2213
2214 field = mf_parse_subfield_name(name, name_len, &wild);
2215 if (!field) {
2216 return xasprintf("%s: unknown field `%.*s'", *sp, name_len, s);
2217 }
2218
2219 s += name_len;
2220 if (sscanf(s, "[%d..%d]", &start, &end) == 2) {
2221 /* Nothing to do. */
2222 } else if (sscanf(s, "[%d]", &start) == 1) {
2223 end = start;
2224 } else if (!strncmp(s, "[]", 2)) {
2225 start = 0;
2226 end = field->n_bits - 1;
2227 } else {
2228 return xasprintf("%s: syntax error expecting [] or [<bit>] or "
2229 "[<start>..<end>]", *sp);
2230 }
2231 s = strchr(s, ']') + 1;
2232
2233 if (start > end) {
2234 return xasprintf("%s: starting bit %d is after ending bit %d",
2235 *sp, start, end);
2236 } else if (start >= field->n_bits) {
2237 return xasprintf("%s: starting bit %d is not valid because field is "
2238 "only %d bits wide", *sp, start, field->n_bits);
2239 } else if (end >= field->n_bits){
2240 return xasprintf("%s: ending bit %d is not valid because field is "
2241 "only %d bits wide", *sp, end, field->n_bits);
2242 }
2243
2244 sf->field = field;
2245 sf->ofs = start;
2246 sf->n_bits = end - start + 1;
2247
2248 *sp = s;
2249 return NULL;
2250 }
2251
2252 /* Parses a subfield from the beginning of 's' into 'sf'. Returns the first
2253 * byte in 's' following the parsed string.
2254 *
2255 * Exits with an error message if 's' has incorrect syntax.
2256 *
2257 * The syntax parsed from 's' takes the form "header[start..end]" where
2258 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2259 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2260 * may both be omitted (the [] are still required) to indicate an entire
2261 * field. */
2262 const char *
2263 mf_parse_subfield(struct mf_subfield *sf, const char *s)
2264 {
2265 char *msg = mf_parse_subfield__(sf, &s);
2266 if (msg) {
2267 ovs_fatal(0, "%s", msg);
2268 }
2269 return s;
2270 }