]> git.proxmox.com Git - mirror_ovs.git/blob - lib/netlink-socket.c
ovn-controller: Handle physical changes correctly
[mirror_ovs.git] / lib / netlink-socket.c
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "netlink-socket.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <stdlib.h>
22 #include <sys/types.h>
23 #include <sys/uio.h>
24 #include <unistd.h>
25 #include "coverage.h"
26 #include "openvswitch/dynamic-string.h"
27 #include "hash.h"
28 #include "hmap.h"
29 #include "netlink.h"
30 #include "netlink-protocol.h"
31 #include "odp-netlink.h"
32 #include "openvswitch/ofpbuf.h"
33 #include "ovs-thread.h"
34 #include "poll-loop.h"
35 #include "seq.h"
36 #include "socket-util.h"
37 #include "util.h"
38 #include "openvswitch/vlog.h"
39
40 VLOG_DEFINE_THIS_MODULE(netlink_socket);
41
42 COVERAGE_DEFINE(netlink_overflow);
43 COVERAGE_DEFINE(netlink_received);
44 COVERAGE_DEFINE(netlink_recv_jumbo);
45 COVERAGE_DEFINE(netlink_sent);
46
47 /* Linux header file confusion causes this to be undefined. */
48 #ifndef SOL_NETLINK
49 #define SOL_NETLINK 270
50 #endif
51
52 /* A single (bad) Netlink message can in theory dump out many, many log
53 * messages, so the burst size is set quite high here to avoid missing useful
54 * information. Also, at high logging levels we log *all* Netlink messages. */
55 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 600);
56
57 static uint32_t nl_sock_allocate_seq(struct nl_sock *, unsigned int n);
58 static void log_nlmsg(const char *function, int error,
59 const void *message, size_t size, int protocol);
60 #ifdef _WIN32
61 static int get_sock_pid_from_kernel(struct nl_sock *sock);
62 static int set_sock_property(struct nl_sock *sock);
63 #endif
64 \f
65 /* Netlink sockets. */
66
67 struct nl_sock {
68 #ifdef _WIN32
69 HANDLE handle;
70 OVERLAPPED overlapped;
71 DWORD read_ioctl;
72 #else
73 int fd;
74 #endif
75 uint32_t next_seq;
76 uint32_t pid;
77 int protocol;
78 unsigned int rcvbuf; /* Receive buffer size (SO_RCVBUF). */
79 };
80
81 /* Compile-time limit on iovecs, so that we can allocate a maximum-size array
82 * of iovecs on the stack. */
83 #define MAX_IOVS 128
84
85 /* Maximum number of iovecs that may be passed to sendmsg, capped at a
86 * minimum of _XOPEN_IOV_MAX (16) and a maximum of MAX_IOVS.
87 *
88 * Initialized by nl_sock_create(). */
89 static int max_iovs;
90
91 static int nl_pool_alloc(int protocol, struct nl_sock **sockp);
92 static void nl_pool_release(struct nl_sock *);
93
94 /* Creates a new netlink socket for the given netlink 'protocol'
95 * (NETLINK_ROUTE, NETLINK_GENERIC, ...). Returns 0 and sets '*sockp' to the
96 * new socket if successful, otherwise returns a positive errno value. */
97 int
98 nl_sock_create(int protocol, struct nl_sock **sockp)
99 {
100 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
101 struct nl_sock *sock;
102 #ifndef _WIN32
103 struct sockaddr_nl local, remote;
104 #endif
105 socklen_t local_size;
106 int rcvbuf;
107 int retval = 0;
108
109 if (ovsthread_once_start(&once)) {
110 int save_errno = errno;
111 errno = 0;
112
113 max_iovs = sysconf(_SC_UIO_MAXIOV);
114 if (max_iovs < _XOPEN_IOV_MAX) {
115 if (max_iovs == -1 && errno) {
116 VLOG_WARN("sysconf(_SC_UIO_MAXIOV): %s", ovs_strerror(errno));
117 }
118 max_iovs = _XOPEN_IOV_MAX;
119 } else if (max_iovs > MAX_IOVS) {
120 max_iovs = MAX_IOVS;
121 }
122
123 errno = save_errno;
124 ovsthread_once_done(&once);
125 }
126
127 *sockp = NULL;
128 sock = xmalloc(sizeof *sock);
129
130 #ifdef _WIN32
131 sock->overlapped.hEvent = NULL;
132 sock->handle = CreateFile(OVS_DEVICE_NAME_USER,
133 GENERIC_READ | GENERIC_WRITE,
134 FILE_SHARE_READ | FILE_SHARE_WRITE,
135 NULL, OPEN_EXISTING,
136 FILE_FLAG_OVERLAPPED, NULL);
137
138 if (sock->handle == INVALID_HANDLE_VALUE) {
139 VLOG_ERR("fcntl: %s", ovs_lasterror_to_string());
140 goto error;
141 }
142
143 memset(&sock->overlapped, 0, sizeof sock->overlapped);
144 sock->overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
145 if (sock->overlapped.hEvent == NULL) {
146 VLOG_ERR("fcntl: %s", ovs_lasterror_to_string());
147 goto error;
148 }
149 /* Initialize the type/ioctl to Generic */
150 sock->read_ioctl = OVS_IOCTL_READ;
151 #else
152 sock->fd = socket(AF_NETLINK, SOCK_RAW, protocol);
153 if (sock->fd < 0) {
154 VLOG_ERR("fcntl: %s", ovs_strerror(errno));
155 goto error;
156 }
157 #endif
158
159 sock->protocol = protocol;
160 sock->next_seq = 1;
161
162 rcvbuf = 1024 * 1024;
163 #ifdef _WIN32
164 sock->rcvbuf = rcvbuf;
165 retval = get_sock_pid_from_kernel(sock);
166 if (retval != 0) {
167 goto error;
168 }
169 retval = set_sock_property(sock);
170 if (retval != 0) {
171 goto error;
172 }
173 #else
174 if (setsockopt(sock->fd, SOL_SOCKET, SO_RCVBUFFORCE,
175 &rcvbuf, sizeof rcvbuf)) {
176 /* Only root can use SO_RCVBUFFORCE. Everyone else gets EPERM.
177 * Warn only if the failure is therefore unexpected. */
178 if (errno != EPERM) {
179 VLOG_WARN_RL(&rl, "setting %d-byte socket receive buffer failed "
180 "(%s)", rcvbuf, ovs_strerror(errno));
181 }
182 }
183
184 retval = get_socket_rcvbuf(sock->fd);
185 if (retval < 0) {
186 retval = -retval;
187 goto error;
188 }
189 sock->rcvbuf = retval;
190 retval = 0;
191
192 /* Connect to kernel (pid 0) as remote address. */
193 memset(&remote, 0, sizeof remote);
194 remote.nl_family = AF_NETLINK;
195 remote.nl_pid = 0;
196 if (connect(sock->fd, (struct sockaddr *) &remote, sizeof remote) < 0) {
197 VLOG_ERR("connect(0): %s", ovs_strerror(errno));
198 goto error;
199 }
200
201 /* Obtain pid assigned by kernel. */
202 local_size = sizeof local;
203 if (getsockname(sock->fd, (struct sockaddr *) &local, &local_size) < 0) {
204 VLOG_ERR("getsockname: %s", ovs_strerror(errno));
205 goto error;
206 }
207 if (local_size < sizeof local || local.nl_family != AF_NETLINK) {
208 VLOG_ERR("getsockname returned bad Netlink name");
209 retval = EINVAL;
210 goto error;
211 }
212 sock->pid = local.nl_pid;
213 #endif
214
215 *sockp = sock;
216 return 0;
217
218 error:
219 if (retval == 0) {
220 retval = errno;
221 if (retval == 0) {
222 retval = EINVAL;
223 }
224 }
225 #ifdef _WIN32
226 if (sock->overlapped.hEvent) {
227 CloseHandle(sock->overlapped.hEvent);
228 }
229 if (sock->handle != INVALID_HANDLE_VALUE) {
230 CloseHandle(sock->handle);
231 }
232 #else
233 if (sock->fd >= 0) {
234 close(sock->fd);
235 }
236 #endif
237 free(sock);
238 return retval;
239 }
240
241 /* Creates a new netlink socket for the same protocol as 'src'. Returns 0 and
242 * sets '*sockp' to the new socket if successful, otherwise returns a positive
243 * errno value. */
244 int
245 nl_sock_clone(const struct nl_sock *src, struct nl_sock **sockp)
246 {
247 return nl_sock_create(src->protocol, sockp);
248 }
249
250 /* Destroys netlink socket 'sock'. */
251 void
252 nl_sock_destroy(struct nl_sock *sock)
253 {
254 if (sock) {
255 #ifdef _WIN32
256 if (sock->overlapped.hEvent) {
257 CloseHandle(sock->overlapped.hEvent);
258 }
259 CloseHandle(sock->handle);
260 #else
261 close(sock->fd);
262 #endif
263 free(sock);
264 }
265 }
266
267 #ifdef _WIN32
268 /* Reads the pid for 'sock' generated in the kernel datapath. The function
269 * uses a separate IOCTL instead of a transaction semantic to avoid unnecessary
270 * message overhead. */
271 static int
272 get_sock_pid_from_kernel(struct nl_sock *sock)
273 {
274 uint32_t pid = 0;
275 int retval = 0;
276 DWORD bytes = 0;
277
278 if (!DeviceIoControl(sock->handle, OVS_IOCTL_GET_PID,
279 NULL, 0, &pid, sizeof(pid),
280 &bytes, NULL)) {
281 retval = EINVAL;
282 } else {
283 if (bytes < sizeof(pid)) {
284 retval = EINVAL;
285 } else {
286 sock->pid = pid;
287 }
288 }
289
290 return retval;
291 }
292
293 /* Used for setting and managing socket properties in userspace and kernel.
294 * Currently two attributes are tracked - pid and protocol
295 * protocol - supplied by userspace based on the netlink family. Windows uses
296 * this property to set the value in kernel datapath.
297 * eg: (NETLINK_GENERIC/ NETLINK_NETFILTER)
298 * pid - generated by windows kernel and set in userspace. The property
299 * is not modified.
300 * Also verify if Protocol and PID in Kernel reflects the values in userspace
301 * */
302 static int
303 set_sock_property(struct nl_sock *sock)
304 {
305 static const struct nl_policy ovs_socket_policy[] = {
306 [OVS_NL_ATTR_SOCK_PROTO] = { .type = NL_A_BE32, .optional = true },
307 [OVS_NL_ATTR_SOCK_PID] = { .type = NL_A_BE32, .optional = true }
308 };
309
310 struct ofpbuf request, *reply;
311 struct ovs_header *ovs_header;
312 struct nlattr *attrs[ARRAY_SIZE(ovs_socket_policy)];
313 int retval = 0;
314 int error;
315
316 ofpbuf_init(&request, 0);
317 nl_msg_put_genlmsghdr(&request, 0, OVS_WIN_NL_CTRL_FAMILY_ID, 0,
318 OVS_CTRL_CMD_SOCK_PROP, OVS_WIN_CONTROL_VERSION);
319 ovs_header = ofpbuf_put_uninit(&request, sizeof *ovs_header);
320 ovs_header->dp_ifindex = 0;
321
322 nl_msg_put_be32(&request, OVS_NL_ATTR_SOCK_PROTO, sock->protocol);
323 /* pid is already set as part of get_sock_pid_from_kernel()
324 * This is added to maintain consistency
325 */
326 nl_msg_put_be32(&request, OVS_NL_ATTR_SOCK_PID, sock->pid);
327
328 error = nl_sock_transact(sock, &request, &reply);
329 ofpbuf_uninit(&request);
330 if (error) {
331 retval = EINVAL;
332 }
333
334 if (!nl_policy_parse(reply,
335 NLMSG_HDRLEN + GENL_HDRLEN + sizeof *ovs_header,
336 ovs_socket_policy, attrs,
337 ARRAY_SIZE(ovs_socket_policy))) {
338 ofpbuf_delete(reply);
339 retval = EINVAL;
340 }
341 /* Verify if the properties are setup properly */
342 if (attrs[OVS_NL_ATTR_SOCK_PROTO]) {
343 int protocol = nl_attr_get_be32(attrs[OVS_NL_ATTR_SOCK_PROTO]);
344 if (protocol != sock->protocol) {
345 VLOG_ERR("Invalid protocol returned:%d expected:%d",
346 protocol, sock->protocol);
347 retval = EINVAL;
348 }
349 }
350
351 if (attrs[OVS_NL_ATTR_SOCK_PID]) {
352 int pid = nl_attr_get_be32(attrs[OVS_NL_ATTR_SOCK_PID]);
353 if (pid != sock->pid) {
354 VLOG_ERR("Invalid pid returned:%d expected:%d",
355 pid, sock->pid);
356 retval = EINVAL;
357 }
358 }
359
360 return retval;
361 }
362 #endif /* _WIN32 */
363
364 #ifdef _WIN32
365 static int __inline
366 nl_sock_mcgroup(struct nl_sock *sock, unsigned int multicast_group, bool join)
367 {
368 struct ofpbuf request;
369 uint64_t request_stub[128];
370 struct ovs_header *ovs_header;
371 struct nlmsghdr *nlmsg;
372 int error;
373
374 ofpbuf_use_stub(&request, request_stub, sizeof request_stub);
375
376 nl_msg_put_genlmsghdr(&request, 0, OVS_WIN_NL_CTRL_FAMILY_ID, 0,
377 OVS_CTRL_CMD_MC_SUBSCRIBE_REQ,
378 OVS_WIN_CONTROL_VERSION);
379
380 ovs_header = ofpbuf_put_uninit(&request, sizeof *ovs_header);
381 ovs_header->dp_ifindex = 0;
382
383 nl_msg_put_u32(&request, OVS_NL_ATTR_MCAST_GRP, multicast_group);
384 nl_msg_put_u8(&request, OVS_NL_ATTR_MCAST_JOIN, join ? 1 : 0);
385
386 error = nl_sock_send(sock, &request, true);
387 ofpbuf_uninit(&request);
388 return error;
389 }
390 #endif
391 /* Tries to add 'sock' as a listener for 'multicast_group'. Returns 0 if
392 * successful, otherwise a positive errno value.
393 *
394 * A socket that is subscribed to a multicast group that receives asynchronous
395 * notifications must not be used for Netlink transactions or dumps, because
396 * transactions and dumps can cause notifications to be lost.
397 *
398 * Multicast group numbers are always positive.
399 *
400 * It is not an error to attempt to join a multicast group to which a socket
401 * already belongs. */
402 int
403 nl_sock_join_mcgroup(struct nl_sock *sock, unsigned int multicast_group)
404 {
405 #ifdef _WIN32
406 /* Set the socket type as a "multicast" socket */
407 sock->read_ioctl = OVS_IOCTL_READ_EVENT;
408 int error = nl_sock_mcgroup(sock, multicast_group, true);
409 if (error) {
410 sock->read_ioctl = OVS_IOCTL_READ;
411 VLOG_WARN("could not join multicast group %u (%s)",
412 multicast_group, ovs_strerror(error));
413 return error;
414 }
415 #else
416 if (setsockopt(sock->fd, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP,
417 &multicast_group, sizeof multicast_group) < 0) {
418 VLOG_WARN("could not join multicast group %u (%s)",
419 multicast_group, ovs_strerror(errno));
420 return errno;
421 }
422 #endif
423 return 0;
424 }
425
426 #ifdef _WIN32
427 int
428 nl_sock_subscribe_packets(struct nl_sock *sock)
429 {
430 int error;
431
432 if (sock->read_ioctl != OVS_IOCTL_READ) {
433 return EINVAL;
434 }
435
436 error = nl_sock_subscribe_packet__(sock, true);
437 if (error) {
438 VLOG_WARN("could not subscribe packets (%s)",
439 ovs_strerror(error));
440 return error;
441 }
442 sock->read_ioctl = OVS_IOCTL_READ_PACKET;
443
444 return 0;
445 }
446
447 int
448 nl_sock_unsubscribe_packets(struct nl_sock *sock)
449 {
450 ovs_assert(sock->read_ioctl == OVS_IOCTL_READ_PACKET);
451
452 int error = nl_sock_subscribe_packet__(sock, false);
453 if (error) {
454 VLOG_WARN("could not unsubscribe to packets (%s)",
455 ovs_strerror(error));
456 return error;
457 }
458
459 sock->read_ioctl = OVS_IOCTL_READ;
460 return 0;
461 }
462
463 int
464 nl_sock_subscribe_packet__(struct nl_sock *sock, bool subscribe)
465 {
466 struct ofpbuf request;
467 uint64_t request_stub[128];
468 struct ovs_header *ovs_header;
469 struct nlmsghdr *nlmsg;
470 int error;
471
472 ofpbuf_use_stub(&request, request_stub, sizeof request_stub);
473 nl_msg_put_genlmsghdr(&request, 0, OVS_WIN_NL_CTRL_FAMILY_ID, 0,
474 OVS_CTRL_CMD_PACKET_SUBSCRIBE_REQ,
475 OVS_WIN_CONTROL_VERSION);
476
477 ovs_header = ofpbuf_put_uninit(&request, sizeof *ovs_header);
478 ovs_header->dp_ifindex = 0;
479 nl_msg_put_u8(&request, OVS_NL_ATTR_PACKET_SUBSCRIBE, subscribe ? 1 : 0);
480 nl_msg_put_u32(&request, OVS_NL_ATTR_PACKET_PID, sock->pid);
481
482 error = nl_sock_send(sock, &request, true);
483 ofpbuf_uninit(&request);
484 return error;
485 }
486 #endif
487
488 /* Tries to make 'sock' stop listening to 'multicast_group'. Returns 0 if
489 * successful, otherwise a positive errno value.
490 *
491 * Multicast group numbers are always positive.
492 *
493 * It is not an error to attempt to leave a multicast group to which a socket
494 * does not belong.
495 *
496 * On success, reading from 'sock' will still return any messages that were
497 * received on 'multicast_group' before the group was left. */
498 int
499 nl_sock_leave_mcgroup(struct nl_sock *sock, unsigned int multicast_group)
500 {
501 #ifdef _WIN32
502 int error = nl_sock_mcgroup(sock, multicast_group, false);
503 if (error) {
504 VLOG_WARN("could not leave multicast group %u (%s)",
505 multicast_group, ovs_strerror(error));
506 return error;
507 }
508 sock->read_ioctl = OVS_IOCTL_READ;
509 #else
510 if (setsockopt(sock->fd, SOL_NETLINK, NETLINK_DROP_MEMBERSHIP,
511 &multicast_group, sizeof multicast_group) < 0) {
512 VLOG_WARN("could not leave multicast group %u (%s)",
513 multicast_group, ovs_strerror(errno));
514 return errno;
515 }
516 #endif
517 return 0;
518 }
519
520 static int
521 nl_sock_send__(struct nl_sock *sock, const struct ofpbuf *msg,
522 uint32_t nlmsg_seq, bool wait)
523 {
524 struct nlmsghdr *nlmsg = nl_msg_nlmsghdr(msg);
525 int error;
526
527 nlmsg->nlmsg_len = msg->size;
528 nlmsg->nlmsg_seq = nlmsg_seq;
529 nlmsg->nlmsg_pid = sock->pid;
530 do {
531 int retval;
532 #ifdef _WIN32
533 DWORD bytes;
534
535 if (!DeviceIoControl(sock->handle, OVS_IOCTL_WRITE,
536 msg->data, msg->size, NULL, 0,
537 &bytes, NULL)) {
538 retval = -1;
539 /* XXX: Map to a more appropriate error based on GetLastError(). */
540 errno = EINVAL;
541 VLOG_DBG_RL(&rl, "fatal driver failure in write: %s",
542 ovs_lasterror_to_string());
543 } else {
544 retval = msg->size;
545 }
546 #else
547 retval = send(sock->fd, msg->data, msg->size,
548 wait ? 0 : MSG_DONTWAIT);
549 #endif
550 error = retval < 0 ? errno : 0;
551 } while (error == EINTR);
552 log_nlmsg(__func__, error, msg->data, msg->size, sock->protocol);
553 if (!error) {
554 COVERAGE_INC(netlink_sent);
555 }
556 return error;
557 }
558
559 /* Tries to send 'msg', which must contain a Netlink message, to the kernel on
560 * 'sock'. nlmsg_len in 'msg' will be finalized to match msg->size, nlmsg_pid
561 * will be set to 'sock''s pid, and nlmsg_seq will be initialized to a fresh
562 * sequence number, before the message is sent.
563 *
564 * Returns 0 if successful, otherwise a positive errno value. If
565 * 'wait' is true, then the send will wait until buffer space is ready;
566 * otherwise, returns EAGAIN if the 'sock' send buffer is full. */
567 int
568 nl_sock_send(struct nl_sock *sock, const struct ofpbuf *msg, bool wait)
569 {
570 return nl_sock_send_seq(sock, msg, nl_sock_allocate_seq(sock, 1), wait);
571 }
572
573 /* Tries to send 'msg', which must contain a Netlink message, to the kernel on
574 * 'sock'. nlmsg_len in 'msg' will be finalized to match msg->size, nlmsg_pid
575 * will be set to 'sock''s pid, and nlmsg_seq will be initialized to
576 * 'nlmsg_seq', before the message is sent.
577 *
578 * Returns 0 if successful, otherwise a positive errno value. If
579 * 'wait' is true, then the send will wait until buffer space is ready;
580 * otherwise, returns EAGAIN if the 'sock' send buffer is full.
581 *
582 * This function is suitable for sending a reply to a request that was received
583 * with sequence number 'nlmsg_seq'. Otherwise, use nl_sock_send() instead. */
584 int
585 nl_sock_send_seq(struct nl_sock *sock, const struct ofpbuf *msg,
586 uint32_t nlmsg_seq, bool wait)
587 {
588 return nl_sock_send__(sock, msg, nlmsg_seq, wait);
589 }
590
591 static int
592 nl_sock_recv__(struct nl_sock *sock, struct ofpbuf *buf, bool wait)
593 {
594 /* We can't accurately predict the size of the data to be received. The
595 * caller is supposed to have allocated enough space in 'buf' to handle the
596 * "typical" case. To handle exceptions, we make available enough space in
597 * 'tail' to allow Netlink messages to be up to 64 kB long (a reasonable
598 * figure since that's the maximum length of a Netlink attribute). */
599 struct nlmsghdr *nlmsghdr;
600 uint8_t tail[65536];
601 struct iovec iov[2];
602 struct msghdr msg;
603 ssize_t retval;
604 int error;
605
606 ovs_assert(buf->allocated >= sizeof *nlmsghdr);
607 ofpbuf_clear(buf);
608
609 iov[0].iov_base = buf->base;
610 iov[0].iov_len = buf->allocated;
611 iov[1].iov_base = tail;
612 iov[1].iov_len = sizeof tail;
613
614 memset(&msg, 0, sizeof msg);
615 msg.msg_iov = iov;
616 msg.msg_iovlen = 2;
617
618 /* Receive a Netlink message from the kernel.
619 *
620 * This works around a kernel bug in which the kernel returns an error code
621 * as if it were the number of bytes read. It doesn't actually modify
622 * anything in the receive buffer in that case, so we can initialize the
623 * Netlink header with an impossible message length and then, upon success,
624 * check whether it changed. */
625 nlmsghdr = buf->base;
626 do {
627 nlmsghdr->nlmsg_len = UINT32_MAX;
628 #ifdef _WIN32
629 DWORD bytes;
630 if (!DeviceIoControl(sock->handle, sock->read_ioctl,
631 NULL, 0, tail, sizeof tail, &bytes, NULL)) {
632 VLOG_DBG_RL(&rl, "fatal driver failure in transact: %s",
633 ovs_lasterror_to_string());
634 retval = -1;
635 /* XXX: Map to a more appropriate error. */
636 errno = EINVAL;
637 } else {
638 retval = bytes;
639 if (retval == 0) {
640 retval = -1;
641 errno = EAGAIN;
642 } else {
643 if (retval >= buf->allocated) {
644 ofpbuf_reinit(buf, retval);
645 nlmsghdr = buf->base;
646 nlmsghdr->nlmsg_len = UINT32_MAX;
647 }
648 memcpy(buf->data, tail, retval);
649 buf->size = retval;
650 }
651 }
652 #else
653 retval = recvmsg(sock->fd, &msg, wait ? 0 : MSG_DONTWAIT);
654 #endif
655 error = (retval < 0 ? errno
656 : retval == 0 ? ECONNRESET /* not possible? */
657 : nlmsghdr->nlmsg_len != UINT32_MAX ? 0
658 : retval);
659 } while (error == EINTR);
660 if (error) {
661 if (error == ENOBUFS) {
662 /* Socket receive buffer overflow dropped one or more messages that
663 * the kernel tried to send to us. */
664 COVERAGE_INC(netlink_overflow);
665 }
666 return error;
667 }
668
669 if (msg.msg_flags & MSG_TRUNC) {
670 VLOG_ERR_RL(&rl, "truncated message (longer than %"PRIuSIZE" bytes)",
671 sizeof tail);
672 return E2BIG;
673 }
674
675 if (retval < sizeof *nlmsghdr
676 || nlmsghdr->nlmsg_len < sizeof *nlmsghdr
677 || nlmsghdr->nlmsg_len > retval) {
678 VLOG_ERR_RL(&rl, "received invalid nlmsg (%"PRIuSIZE" bytes < %"PRIuSIZE")",
679 retval, sizeof *nlmsghdr);
680 return EPROTO;
681 }
682 #ifndef _WIN32
683 buf->size = MIN(retval, buf->allocated);
684 if (retval > buf->allocated) {
685 COVERAGE_INC(netlink_recv_jumbo);
686 ofpbuf_put(buf, tail, retval - buf->allocated);
687 }
688 #endif
689
690 log_nlmsg(__func__, 0, buf->data, buf->size, sock->protocol);
691 COVERAGE_INC(netlink_received);
692
693 return 0;
694 }
695
696 /* Tries to receive a Netlink message from the kernel on 'sock' into 'buf'. If
697 * 'wait' is true, waits for a message to be ready. Otherwise, fails with
698 * EAGAIN if the 'sock' receive buffer is empty.
699 *
700 * The caller must have initialized 'buf' with an allocation of at least
701 * NLMSG_HDRLEN bytes. For best performance, the caller should allocate enough
702 * space for a "typical" message.
703 *
704 * On success, returns 0 and replaces 'buf''s previous content by the received
705 * message. This function expands 'buf''s allocated memory, as necessary, to
706 * hold the actual size of the received message.
707 *
708 * On failure, returns a positive errno value and clears 'buf' to zero length.
709 * 'buf' retains its previous memory allocation.
710 *
711 * Regardless of success or failure, this function resets 'buf''s headroom to
712 * 0. */
713 int
714 nl_sock_recv(struct nl_sock *sock, struct ofpbuf *buf, bool wait)
715 {
716 return nl_sock_recv__(sock, buf, wait);
717 }
718
719 static void
720 nl_sock_record_errors__(struct nl_transaction **transactions, size_t n,
721 int error)
722 {
723 size_t i;
724
725 for (i = 0; i < n; i++) {
726 struct nl_transaction *txn = transactions[i];
727
728 txn->error = error;
729 if (txn->reply) {
730 ofpbuf_clear(txn->reply);
731 }
732 }
733 }
734
735 static int
736 nl_sock_transact_multiple__(struct nl_sock *sock,
737 struct nl_transaction **transactions, size_t n,
738 size_t *done)
739 {
740 uint64_t tmp_reply_stub[1024 / 8];
741 struct nl_transaction tmp_txn;
742 struct ofpbuf tmp_reply;
743
744 uint32_t base_seq;
745 struct iovec iovs[MAX_IOVS];
746 struct msghdr msg;
747 int error;
748 int i;
749
750 base_seq = nl_sock_allocate_seq(sock, n);
751 *done = 0;
752 for (i = 0; i < n; i++) {
753 struct nl_transaction *txn = transactions[i];
754 struct nlmsghdr *nlmsg = nl_msg_nlmsghdr(txn->request);
755
756 nlmsg->nlmsg_len = txn->request->size;
757 nlmsg->nlmsg_seq = base_seq + i;
758 nlmsg->nlmsg_pid = sock->pid;
759
760 iovs[i].iov_base = txn->request->data;
761 iovs[i].iov_len = txn->request->size;
762 }
763
764 #ifndef _WIN32
765 memset(&msg, 0, sizeof msg);
766 msg.msg_iov = iovs;
767 msg.msg_iovlen = n;
768 do {
769 error = sendmsg(sock->fd, &msg, 0) < 0 ? errno : 0;
770 } while (error == EINTR);
771
772 for (i = 0; i < n; i++) {
773 struct nl_transaction *txn = transactions[i];
774
775 log_nlmsg(__func__, error, txn->request->data,
776 txn->request->size, sock->protocol);
777 }
778 if (!error) {
779 COVERAGE_ADD(netlink_sent, n);
780 }
781
782 if (error) {
783 return error;
784 }
785
786 ofpbuf_use_stub(&tmp_reply, tmp_reply_stub, sizeof tmp_reply_stub);
787 tmp_txn.request = NULL;
788 tmp_txn.reply = &tmp_reply;
789 tmp_txn.error = 0;
790 while (n > 0) {
791 struct nl_transaction *buf_txn, *txn;
792 uint32_t seq;
793
794 /* Find a transaction whose buffer we can use for receiving a reply.
795 * If no such transaction is left, use tmp_txn. */
796 buf_txn = &tmp_txn;
797 for (i = 0; i < n; i++) {
798 if (transactions[i]->reply) {
799 buf_txn = transactions[i];
800 break;
801 }
802 }
803
804 /* Receive a reply. */
805 error = nl_sock_recv__(sock, buf_txn->reply, false);
806 if (error) {
807 if (error == EAGAIN) {
808 nl_sock_record_errors__(transactions, n, 0);
809 *done += n;
810 error = 0;
811 }
812 break;
813 }
814
815 /* Match the reply up with a transaction. */
816 seq = nl_msg_nlmsghdr(buf_txn->reply)->nlmsg_seq;
817 if (seq < base_seq || seq >= base_seq + n) {
818 VLOG_DBG_RL(&rl, "ignoring unexpected seq %#"PRIx32, seq);
819 continue;
820 }
821 i = seq - base_seq;
822 txn = transactions[i];
823
824 /* Fill in the results for 'txn'. */
825 if (nl_msg_nlmsgerr(buf_txn->reply, &txn->error)) {
826 if (txn->reply) {
827 ofpbuf_clear(txn->reply);
828 }
829 if (txn->error) {
830 VLOG_DBG_RL(&rl, "received NAK error=%d (%s)",
831 error, ovs_strerror(txn->error));
832 }
833 } else {
834 txn->error = 0;
835 if (txn->reply && txn != buf_txn) {
836 /* Swap buffers. */
837 struct ofpbuf *reply = buf_txn->reply;
838 buf_txn->reply = txn->reply;
839 txn->reply = reply;
840 }
841 }
842
843 /* Fill in the results for transactions before 'txn'. (We have to do
844 * this after the results for 'txn' itself because of the buffer swap
845 * above.) */
846 nl_sock_record_errors__(transactions, i, 0);
847
848 /* Advance. */
849 *done += i + 1;
850 transactions += i + 1;
851 n -= i + 1;
852 base_seq += i + 1;
853 }
854 ofpbuf_uninit(&tmp_reply);
855 #else
856 error = 0;
857 uint8_t reply_buf[65536];
858 for (i = 0; i < n; i++) {
859 DWORD reply_len;
860 bool ret;
861 struct nl_transaction *txn = transactions[i];
862 struct nlmsghdr *request_nlmsg, *reply_nlmsg;
863
864 ret = DeviceIoControl(sock->handle, OVS_IOCTL_TRANSACT,
865 txn->request->data,
866 txn->request->size,
867 reply_buf, sizeof reply_buf,
868 &reply_len, NULL);
869
870 if (ret && reply_len == 0) {
871 /*
872 * The current transaction did not produce any data to read and that
873 * is not an error as such. Continue with the remainder of the
874 * transactions.
875 */
876 txn->error = 0;
877 if (txn->reply) {
878 ofpbuf_clear(txn->reply);
879 }
880 } else if (!ret) {
881 /* XXX: Map to a more appropriate error. */
882 error = EINVAL;
883 VLOG_DBG_RL(&rl, "fatal driver failure: %s",
884 ovs_lasterror_to_string());
885 break;
886 }
887
888 if (reply_len != 0) {
889 if (reply_len < sizeof *reply_nlmsg) {
890 nl_sock_record_errors__(transactions, n, 0);
891 VLOG_DBG_RL(&rl, "insufficient length of reply %#"PRIu32
892 " for seq: %#"PRIx32, reply_len, request_nlmsg->nlmsg_seq);
893 break;
894 }
895
896 /* Validate the sequence number in the reply. */
897 request_nlmsg = nl_msg_nlmsghdr(txn->request);
898 reply_nlmsg = (struct nlmsghdr *)reply_buf;
899
900 if (request_nlmsg->nlmsg_seq != reply_nlmsg->nlmsg_seq) {
901 ovs_assert(request_nlmsg->nlmsg_seq == reply_nlmsg->nlmsg_seq);
902 VLOG_DBG_RL(&rl, "mismatched seq request %#"PRIx32
903 ", reply %#"PRIx32, request_nlmsg->nlmsg_seq,
904 reply_nlmsg->nlmsg_seq);
905 break;
906 }
907
908 /* Handle errors embedded within the netlink message. */
909 ofpbuf_use_stub(&tmp_reply, reply_buf, sizeof reply_buf);
910 tmp_reply.size = sizeof reply_buf;
911 if (nl_msg_nlmsgerr(&tmp_reply, &txn->error)) {
912 if (txn->reply) {
913 ofpbuf_clear(txn->reply);
914 }
915 if (txn->error) {
916 VLOG_DBG_RL(&rl, "received NAK error=%d (%s)",
917 error, ovs_strerror(txn->error));
918 }
919 } else {
920 txn->error = 0;
921 if (txn->reply) {
922 /* Copy the reply to the buffer specified by the caller. */
923 if (reply_len > txn->reply->allocated) {
924 ofpbuf_reinit(txn->reply, reply_len);
925 }
926 memcpy(txn->reply->data, reply_buf, reply_len);
927 txn->reply->size = reply_len;
928 }
929 }
930 ofpbuf_uninit(&tmp_reply);
931 }
932
933 /* Count the number of successful transactions. */
934 (*done)++;
935
936 }
937
938 if (!error) {
939 COVERAGE_ADD(netlink_sent, n);
940 }
941 #endif
942
943 return error;
944 }
945
946 static void
947 nl_sock_transact_multiple(struct nl_sock *sock,
948 struct nl_transaction **transactions, size_t n)
949 {
950 int max_batch_count;
951 int error;
952
953 if (!n) {
954 return;
955 }
956
957 /* In theory, every request could have a 64 kB reply. But the default and
958 * maximum socket rcvbuf size with typical Dom0 memory sizes both tend to
959 * be a bit below 128 kB, so that would only allow a single message in a
960 * "batch". So we assume that replies average (at most) 4 kB, which allows
961 * a good deal of batching.
962 *
963 * In practice, most of the requests that we batch either have no reply at
964 * all or a brief reply. */
965 max_batch_count = MAX(sock->rcvbuf / 4096, 1);
966 max_batch_count = MIN(max_batch_count, max_iovs);
967
968 while (n > 0) {
969 size_t count, bytes;
970 size_t done;
971
972 /* Batch up to 'max_batch_count' transactions. But cap it at about a
973 * page of requests total because big skbuffs are expensive to
974 * allocate in the kernel. */
975 #if defined(PAGESIZE)
976 enum { MAX_BATCH_BYTES = MAX(1, PAGESIZE - 512) };
977 #else
978 enum { MAX_BATCH_BYTES = 4096 - 512 };
979 #endif
980 bytes = transactions[0]->request->size;
981 for (count = 1; count < n && count < max_batch_count; count++) {
982 if (bytes + transactions[count]->request->size > MAX_BATCH_BYTES) {
983 break;
984 }
985 bytes += transactions[count]->request->size;
986 }
987
988 error = nl_sock_transact_multiple__(sock, transactions, count, &done);
989 transactions += done;
990 n -= done;
991
992 if (error == ENOBUFS) {
993 VLOG_DBG_RL(&rl, "receive buffer overflow, resending request");
994 } else if (error) {
995 VLOG_ERR_RL(&rl, "transaction error (%s)", ovs_strerror(error));
996 nl_sock_record_errors__(transactions, n, error);
997 if (error != EAGAIN) {
998 /* A fatal error has occurred. Abort the rest of
999 * transactions. */
1000 break;
1001 }
1002 }
1003 }
1004 }
1005
1006 static int
1007 nl_sock_transact(struct nl_sock *sock, const struct ofpbuf *request,
1008 struct ofpbuf **replyp)
1009 {
1010 struct nl_transaction *transactionp;
1011 struct nl_transaction transaction;
1012
1013 transaction.request = CONST_CAST(struct ofpbuf *, request);
1014 transaction.reply = replyp ? ofpbuf_new(1024) : NULL;
1015 transactionp = &transaction;
1016
1017 nl_sock_transact_multiple(sock, &transactionp, 1);
1018
1019 if (replyp) {
1020 if (transaction.error) {
1021 ofpbuf_delete(transaction.reply);
1022 *replyp = NULL;
1023 } else {
1024 *replyp = transaction.reply;
1025 }
1026 }
1027
1028 return transaction.error;
1029 }
1030
1031 /* Drain all the messages currently in 'sock''s receive queue. */
1032 int
1033 nl_sock_drain(struct nl_sock *sock)
1034 {
1035 #ifdef _WIN32
1036 return 0;
1037 #else
1038 return drain_rcvbuf(sock->fd);
1039 #endif
1040 }
1041
1042 /* Starts a Netlink "dump" operation, by sending 'request' to the kernel on a
1043 * Netlink socket created with the given 'protocol', and initializes 'dump' to
1044 * reflect the state of the operation.
1045 *
1046 * 'request' must contain a Netlink message. Before sending the message,
1047 * nlmsg_len will be finalized to match request->size, and nlmsg_pid will be
1048 * set to the Netlink socket's pid. NLM_F_DUMP and NLM_F_ACK will be set in
1049 * nlmsg_flags.
1050 *
1051 * The design of this Netlink socket library ensures that the dump is reliable.
1052 *
1053 * This function provides no status indication. nl_dump_done() provides an
1054 * error status for the entire dump operation.
1055 *
1056 * The caller must eventually destroy 'request'.
1057 */
1058 void
1059 nl_dump_start(struct nl_dump *dump, int protocol, const struct ofpbuf *request)
1060 {
1061 nl_msg_nlmsghdr(request)->nlmsg_flags |= NLM_F_DUMP | NLM_F_ACK;
1062
1063 ovs_mutex_init(&dump->mutex);
1064 ovs_mutex_lock(&dump->mutex);
1065 dump->status = nl_pool_alloc(protocol, &dump->sock);
1066 if (!dump->status) {
1067 dump->status = nl_sock_send__(dump->sock, request,
1068 nl_sock_allocate_seq(dump->sock, 1),
1069 true);
1070 }
1071 dump->nl_seq = nl_msg_nlmsghdr(request)->nlmsg_seq;
1072 ovs_mutex_unlock(&dump->mutex);
1073 }
1074
1075 static int
1076 nl_dump_refill(struct nl_dump *dump, struct ofpbuf *buffer)
1077 OVS_REQUIRES(dump->mutex)
1078 {
1079 struct nlmsghdr *nlmsghdr;
1080 int error;
1081
1082 while (!buffer->size) {
1083 error = nl_sock_recv__(dump->sock, buffer, false);
1084 if (error) {
1085 /* The kernel never blocks providing the results of a dump, so
1086 * error == EAGAIN means that we've read the whole thing, and
1087 * therefore transform it into EOF. (The kernel always provides
1088 * NLMSG_DONE as a sentinel. Some other thread must have received
1089 * that already but not yet signaled it in 'status'.)
1090 *
1091 * Any other error is just an error. */
1092 return error == EAGAIN ? EOF : error;
1093 }
1094
1095 nlmsghdr = nl_msg_nlmsghdr(buffer);
1096 if (dump->nl_seq != nlmsghdr->nlmsg_seq) {
1097 VLOG_DBG_RL(&rl, "ignoring seq %#"PRIx32" != expected %#"PRIx32,
1098 nlmsghdr->nlmsg_seq, dump->nl_seq);
1099 ofpbuf_clear(buffer);
1100 }
1101 }
1102
1103 if (nl_msg_nlmsgerr(buffer, &error) && error) {
1104 VLOG_INFO_RL(&rl, "netlink dump request error (%s)",
1105 ovs_strerror(error));
1106 ofpbuf_clear(buffer);
1107 return error;
1108 }
1109
1110 return 0;
1111 }
1112
1113 static int
1114 nl_dump_next__(struct ofpbuf *reply, struct ofpbuf *buffer)
1115 {
1116 struct nlmsghdr *nlmsghdr = nl_msg_next(buffer, reply);
1117 if (!nlmsghdr) {
1118 VLOG_WARN_RL(&rl, "netlink dump contains message fragment");
1119 return EPROTO;
1120 } else if (nlmsghdr->nlmsg_type == NLMSG_DONE) {
1121 return EOF;
1122 } else {
1123 return 0;
1124 }
1125 }
1126
1127 /* Attempts to retrieve another reply from 'dump' into 'buffer'. 'dump' must
1128 * have been initialized with nl_dump_start(), and 'buffer' must have been
1129 * initialized. 'buffer' should be at least NL_DUMP_BUFSIZE bytes long.
1130 *
1131 * If successful, returns true and points 'reply->data' and
1132 * 'reply->size' to the message that was retrieved. The caller must not
1133 * modify 'reply' (because it points within 'buffer', which will be used by
1134 * future calls to this function).
1135 *
1136 * On failure, returns false and sets 'reply->data' to NULL and
1137 * 'reply->size' to 0. Failure might indicate an actual error or merely
1138 * the end of replies. An error status for the entire dump operation is
1139 * provided when it is completed by calling nl_dump_done().
1140 *
1141 * Multiple threads may call this function, passing the same nl_dump, however
1142 * each must provide independent buffers. This function may cache multiple
1143 * replies in the buffer, and these will be processed before more replies are
1144 * fetched. When this function returns false, other threads may continue to
1145 * process replies in their buffers, but they will not fetch more replies.
1146 */
1147 bool
1148 nl_dump_next(struct nl_dump *dump, struct ofpbuf *reply, struct ofpbuf *buffer)
1149 {
1150 int retval = 0;
1151
1152 /* If the buffer is empty, refill it.
1153 *
1154 * If the buffer is not empty, we don't check the dump's status.
1155 * Otherwise, we could end up skipping some of the dump results if thread A
1156 * hits EOF while thread B is in the midst of processing a batch. */
1157 if (!buffer->size) {
1158 ovs_mutex_lock(&dump->mutex);
1159 if (!dump->status) {
1160 /* Take the mutex here to avoid an in-kernel race. If two threads
1161 * try to read from a Netlink dump socket at once, then the socket
1162 * error can be set to EINVAL, which will be encountered on the
1163 * next recv on that socket, which could be anywhere due to the way
1164 * that we pool Netlink sockets. Serializing the recv calls avoids
1165 * the issue. */
1166 dump->status = nl_dump_refill(dump, buffer);
1167 }
1168 retval = dump->status;
1169 ovs_mutex_unlock(&dump->mutex);
1170 }
1171
1172 /* Fetch the next message from the buffer. */
1173 if (!retval) {
1174 retval = nl_dump_next__(reply, buffer);
1175 if (retval) {
1176 /* Record 'retval' as the dump status, but don't overwrite an error
1177 * with EOF. */
1178 ovs_mutex_lock(&dump->mutex);
1179 if (dump->status <= 0) {
1180 dump->status = retval;
1181 }
1182 ovs_mutex_unlock(&dump->mutex);
1183 }
1184 }
1185
1186 if (retval) {
1187 reply->data = NULL;
1188 reply->size = 0;
1189 }
1190 return !retval;
1191 }
1192
1193 /* Completes Netlink dump operation 'dump', which must have been initialized
1194 * with nl_dump_start(). Returns 0 if the dump operation was error-free,
1195 * otherwise a positive errno value describing the problem. */
1196 int
1197 nl_dump_done(struct nl_dump *dump)
1198 {
1199 int status;
1200
1201 ovs_mutex_lock(&dump->mutex);
1202 status = dump->status;
1203 ovs_mutex_unlock(&dump->mutex);
1204
1205 /* Drain any remaining messages that the client didn't read. Otherwise the
1206 * kernel will continue to queue them up and waste buffer space.
1207 *
1208 * XXX We could just destroy and discard the socket in this case. */
1209 if (!status) {
1210 uint64_t tmp_reply_stub[NL_DUMP_BUFSIZE / 8];
1211 struct ofpbuf reply, buf;
1212
1213 ofpbuf_use_stub(&buf, tmp_reply_stub, sizeof tmp_reply_stub);
1214 while (nl_dump_next(dump, &reply, &buf)) {
1215 /* Nothing to do. */
1216 }
1217 ofpbuf_uninit(&buf);
1218
1219 ovs_mutex_lock(&dump->mutex);
1220 status = dump->status;
1221 ovs_mutex_unlock(&dump->mutex);
1222 ovs_assert(status);
1223 }
1224
1225 nl_pool_release(dump->sock);
1226 ovs_mutex_destroy(&dump->mutex);
1227
1228 return status == EOF ? 0 : status;
1229 }
1230
1231 #ifdef _WIN32
1232 /* Pend an I/O request in the driver. The driver completes the I/O whenever
1233 * an event or a packet is ready to be read. Once the I/O is completed
1234 * the overlapped structure event associated with the pending I/O will be set
1235 */
1236 static int
1237 pend_io_request(struct nl_sock *sock)
1238 {
1239 struct ofpbuf request;
1240 uint64_t request_stub[128];
1241 struct ovs_header *ovs_header;
1242 struct nlmsghdr *nlmsg;
1243 uint32_t seq;
1244 int retval = 0;
1245 int error;
1246 DWORD bytes;
1247 OVERLAPPED *overlapped = CONST_CAST(OVERLAPPED *, &sock->overlapped);
1248 uint16_t cmd = OVS_CTRL_CMD_WIN_PEND_PACKET_REQ;
1249
1250 ovs_assert(sock->read_ioctl == OVS_IOCTL_READ_PACKET ||
1251 sock->read_ioctl == OVS_IOCTL_READ_EVENT);
1252 if (sock->read_ioctl == OVS_IOCTL_READ_EVENT) {
1253 cmd = OVS_CTRL_CMD_WIN_PEND_REQ;
1254 }
1255
1256 int ovs_msg_size = sizeof (struct nlmsghdr) + sizeof (struct genlmsghdr) +
1257 sizeof (struct ovs_header);
1258
1259 ofpbuf_use_stub(&request, request_stub, sizeof request_stub);
1260
1261 seq = nl_sock_allocate_seq(sock, 1);
1262 nl_msg_put_genlmsghdr(&request, 0, OVS_WIN_NL_CTRL_FAMILY_ID, 0,
1263 cmd, OVS_WIN_CONTROL_VERSION);
1264 nlmsg = nl_msg_nlmsghdr(&request);
1265 nlmsg->nlmsg_seq = seq;
1266 nlmsg->nlmsg_pid = sock->pid;
1267
1268 ovs_header = ofpbuf_put_uninit(&request, sizeof *ovs_header);
1269 ovs_header->dp_ifindex = 0;
1270 nlmsg->nlmsg_len = request.size;
1271
1272 if (!DeviceIoControl(sock->handle, OVS_IOCTL_WRITE,
1273 request.data, request.size,
1274 NULL, 0, &bytes, overlapped)) {
1275 error = GetLastError();
1276 /* Check if the I/O got pended */
1277 if (error != ERROR_IO_INCOMPLETE && error != ERROR_IO_PENDING) {
1278 VLOG_ERR("nl_sock_wait failed - %s\n", ovs_format_message(error));
1279 retval = EINVAL;
1280 }
1281 } else {
1282 retval = EAGAIN;
1283 }
1284
1285 done:
1286 ofpbuf_uninit(&request);
1287 return retval;
1288 }
1289 #endif /* _WIN32 */
1290
1291 /* Causes poll_block() to wake up when any of the specified 'events' (which is
1292 * a OR'd combination of POLLIN, POLLOUT, etc.) occur on 'sock'.
1293 * On Windows, 'sock' is not treated as const, and may be modified. */
1294 void
1295 nl_sock_wait(const struct nl_sock *sock, short int events)
1296 {
1297 #ifdef _WIN32
1298 if (sock->overlapped.Internal != STATUS_PENDING) {
1299 int ret = pend_io_request(CONST_CAST(struct nl_sock *, sock));
1300 if (ret == 0) {
1301 poll_wevent_wait(sock->overlapped.hEvent);
1302 } else {
1303 poll_immediate_wake();
1304 }
1305 } else {
1306 poll_wevent_wait(sock->overlapped.hEvent);
1307 }
1308 #else
1309 poll_fd_wait(sock->fd, events);
1310 #endif
1311 }
1312
1313 #ifndef _WIN32
1314 /* Returns the underlying fd for 'sock', for use in "poll()"-like operations
1315 * that can't use nl_sock_wait().
1316 *
1317 * It's a little tricky to use the returned fd correctly, because nl_sock does
1318 * "copy on write" to allow a single nl_sock to be used for notifications,
1319 * transactions, and dumps. If 'sock' is used only for notifications and
1320 * transactions (and never for dump) then the usage is safe. */
1321 int
1322 nl_sock_fd(const struct nl_sock *sock)
1323 {
1324 return sock->fd;
1325 }
1326 #endif
1327
1328 /* Returns the PID associated with this socket. */
1329 uint32_t
1330 nl_sock_pid(const struct nl_sock *sock)
1331 {
1332 return sock->pid;
1333 }
1334 \f
1335 /* Miscellaneous. */
1336
1337 struct genl_family {
1338 struct hmap_node hmap_node;
1339 uint16_t id;
1340 char *name;
1341 };
1342
1343 static struct hmap genl_families = HMAP_INITIALIZER(&genl_families);
1344
1345 static const struct nl_policy family_policy[CTRL_ATTR_MAX + 1] = {
1346 [CTRL_ATTR_FAMILY_ID] = {.type = NL_A_U16},
1347 [CTRL_ATTR_MCAST_GROUPS] = {.type = NL_A_NESTED, .optional = true},
1348 };
1349
1350 static struct genl_family *
1351 find_genl_family_by_id(uint16_t id)
1352 {
1353 struct genl_family *family;
1354
1355 HMAP_FOR_EACH_IN_BUCKET (family, hmap_node, hash_int(id, 0),
1356 &genl_families) {
1357 if (family->id == id) {
1358 return family;
1359 }
1360 }
1361 return NULL;
1362 }
1363
1364 static void
1365 define_genl_family(uint16_t id, const char *name)
1366 {
1367 struct genl_family *family = find_genl_family_by_id(id);
1368
1369 if (family) {
1370 if (!strcmp(family->name, name)) {
1371 return;
1372 }
1373 free(family->name);
1374 } else {
1375 family = xmalloc(sizeof *family);
1376 family->id = id;
1377 hmap_insert(&genl_families, &family->hmap_node, hash_int(id, 0));
1378 }
1379 family->name = xstrdup(name);
1380 }
1381
1382 static const char *
1383 genl_family_to_name(uint16_t id)
1384 {
1385 if (id == GENL_ID_CTRL) {
1386 return "control";
1387 } else {
1388 struct genl_family *family = find_genl_family_by_id(id);
1389 return family ? family->name : "unknown";
1390 }
1391 }
1392
1393 #ifndef _WIN32
1394 static int
1395 do_lookup_genl_family(const char *name, struct nlattr **attrs,
1396 struct ofpbuf **replyp)
1397 {
1398 struct nl_sock *sock;
1399 struct ofpbuf request, *reply;
1400 int error;
1401
1402 *replyp = NULL;
1403 error = nl_sock_create(NETLINK_GENERIC, &sock);
1404 if (error) {
1405 return error;
1406 }
1407
1408 ofpbuf_init(&request, 0);
1409 nl_msg_put_genlmsghdr(&request, 0, GENL_ID_CTRL, NLM_F_REQUEST,
1410 CTRL_CMD_GETFAMILY, 1);
1411 nl_msg_put_string(&request, CTRL_ATTR_FAMILY_NAME, name);
1412 error = nl_sock_transact(sock, &request, &reply);
1413 ofpbuf_uninit(&request);
1414 if (error) {
1415 nl_sock_destroy(sock);
1416 return error;
1417 }
1418
1419 if (!nl_policy_parse(reply, NLMSG_HDRLEN + GENL_HDRLEN,
1420 family_policy, attrs, ARRAY_SIZE(family_policy))
1421 || nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]) == 0) {
1422 nl_sock_destroy(sock);
1423 ofpbuf_delete(reply);
1424 return EPROTO;
1425 }
1426
1427 nl_sock_destroy(sock);
1428 *replyp = reply;
1429 return 0;
1430 }
1431 #else
1432 static int
1433 do_lookup_genl_family(const char *name, struct nlattr **attrs,
1434 struct ofpbuf **replyp)
1435 {
1436 struct nlmsghdr *nlmsg;
1437 struct ofpbuf *reply;
1438 int error;
1439 uint16_t family_id;
1440 const char *family_name;
1441 uint32_t family_version;
1442 uint32_t family_attrmax;
1443 uint32_t mcgrp_id = OVS_WIN_NL_INVALID_MCGRP_ID;
1444 const char *mcgrp_name = NULL;
1445
1446 *replyp = NULL;
1447 reply = ofpbuf_new(1024);
1448
1449 /* CTRL_ATTR_MCAST_GROUPS is supported only for VPORT family. */
1450 if (!strcmp(name, OVS_WIN_CONTROL_FAMILY)) {
1451 family_id = OVS_WIN_NL_CTRL_FAMILY_ID;
1452 family_name = OVS_WIN_CONTROL_FAMILY;
1453 family_version = OVS_WIN_CONTROL_VERSION;
1454 family_attrmax = OVS_WIN_CONTROL_ATTR_MAX;
1455 } else if (!strcmp(name, OVS_DATAPATH_FAMILY)) {
1456 family_id = OVS_WIN_NL_DATAPATH_FAMILY_ID;
1457 family_name = OVS_DATAPATH_FAMILY;
1458 family_version = OVS_DATAPATH_VERSION;
1459 family_attrmax = OVS_DP_ATTR_MAX;
1460 } else if (!strcmp(name, OVS_PACKET_FAMILY)) {
1461 family_id = OVS_WIN_NL_PACKET_FAMILY_ID;
1462 family_name = OVS_PACKET_FAMILY;
1463 family_version = OVS_PACKET_VERSION;
1464 family_attrmax = OVS_PACKET_ATTR_MAX;
1465 } else if (!strcmp(name, OVS_VPORT_FAMILY)) {
1466 family_id = OVS_WIN_NL_VPORT_FAMILY_ID;
1467 family_name = OVS_VPORT_FAMILY;
1468 family_version = OVS_VPORT_VERSION;
1469 family_attrmax = OVS_VPORT_ATTR_MAX;
1470 mcgrp_id = OVS_WIN_NL_VPORT_MCGRP_ID;
1471 mcgrp_name = OVS_VPORT_MCGROUP;
1472 } else if (!strcmp(name, OVS_FLOW_FAMILY)) {
1473 family_id = OVS_WIN_NL_FLOW_FAMILY_ID;
1474 family_name = OVS_FLOW_FAMILY;
1475 family_version = OVS_FLOW_VERSION;
1476 family_attrmax = OVS_FLOW_ATTR_MAX;
1477 } else if (!strcmp(name, OVS_WIN_NETDEV_FAMILY)) {
1478 family_id = OVS_WIN_NL_NETDEV_FAMILY_ID;
1479 family_name = OVS_WIN_NETDEV_FAMILY;
1480 family_version = OVS_WIN_NETDEV_VERSION;
1481 family_attrmax = OVS_WIN_NETDEV_ATTR_MAX;
1482 } else {
1483 ofpbuf_delete(reply);
1484 return EINVAL;
1485 }
1486
1487 nl_msg_put_genlmsghdr(reply, 0, GENL_ID_CTRL, 0,
1488 CTRL_CMD_NEWFAMILY, family_version);
1489 /* CTRL_ATTR_HDRSIZE and CTRL_ATTR_OPS are not populated, but the
1490 * callers do not seem to need them. */
1491 nl_msg_put_u16(reply, CTRL_ATTR_FAMILY_ID, family_id);
1492 nl_msg_put_string(reply, CTRL_ATTR_FAMILY_NAME, family_name);
1493 nl_msg_put_u32(reply, CTRL_ATTR_VERSION, family_version);
1494 nl_msg_put_u32(reply, CTRL_ATTR_MAXATTR, family_attrmax);
1495
1496 if (mcgrp_id != OVS_WIN_NL_INVALID_MCGRP_ID) {
1497 size_t mcgrp_ofs1 = nl_msg_start_nested(reply, CTRL_ATTR_MCAST_GROUPS);
1498 size_t mcgrp_ofs2= nl_msg_start_nested(reply,
1499 OVS_WIN_NL_VPORT_MCGRP_ID - OVS_WIN_NL_MCGRP_START_ID);
1500 nl_msg_put_u32(reply, CTRL_ATTR_MCAST_GRP_ID, mcgrp_id);
1501 ovs_assert(mcgrp_name != NULL);
1502 nl_msg_put_string(reply, CTRL_ATTR_MCAST_GRP_NAME, mcgrp_name);
1503 nl_msg_end_nested(reply, mcgrp_ofs2);
1504 nl_msg_end_nested(reply, mcgrp_ofs1);
1505 }
1506
1507 /* Set the total length of the netlink message. */
1508 nlmsg = nl_msg_nlmsghdr(reply);
1509 nlmsg->nlmsg_len = reply->size;
1510
1511 if (!nl_policy_parse(reply, NLMSG_HDRLEN + GENL_HDRLEN,
1512 family_policy, attrs, ARRAY_SIZE(family_policy))
1513 || nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]) == 0) {
1514 ofpbuf_delete(reply);
1515 return EPROTO;
1516 }
1517
1518 *replyp = reply;
1519 return 0;
1520 }
1521 #endif
1522
1523 /* Finds the multicast group called 'group_name' in genl family 'family_name'.
1524 * When successful, writes its result to 'multicast_group' and returns 0.
1525 * Otherwise, clears 'multicast_group' and returns a positive error code.
1526 */
1527 int
1528 nl_lookup_genl_mcgroup(const char *family_name, const char *group_name,
1529 unsigned int *multicast_group)
1530 {
1531 struct nlattr *family_attrs[ARRAY_SIZE(family_policy)];
1532 const struct nlattr *mc;
1533 struct ofpbuf *reply;
1534 unsigned int left;
1535 int error;
1536
1537 *multicast_group = 0;
1538 error = do_lookup_genl_family(family_name, family_attrs, &reply);
1539 if (error) {
1540 return error;
1541 }
1542
1543 if (!family_attrs[CTRL_ATTR_MCAST_GROUPS]) {
1544 error = EPROTO;
1545 goto exit;
1546 }
1547
1548 NL_NESTED_FOR_EACH (mc, left, family_attrs[CTRL_ATTR_MCAST_GROUPS]) {
1549 static const struct nl_policy mc_policy[] = {
1550 [CTRL_ATTR_MCAST_GRP_ID] = {.type = NL_A_U32},
1551 [CTRL_ATTR_MCAST_GRP_NAME] = {.type = NL_A_STRING},
1552 };
1553
1554 struct nlattr *mc_attrs[ARRAY_SIZE(mc_policy)];
1555 const char *mc_name;
1556
1557 if (!nl_parse_nested(mc, mc_policy, mc_attrs, ARRAY_SIZE(mc_policy))) {
1558 error = EPROTO;
1559 goto exit;
1560 }
1561
1562 mc_name = nl_attr_get_string(mc_attrs[CTRL_ATTR_MCAST_GRP_NAME]);
1563 if (!strcmp(group_name, mc_name)) {
1564 *multicast_group =
1565 nl_attr_get_u32(mc_attrs[CTRL_ATTR_MCAST_GRP_ID]);
1566 error = 0;
1567 goto exit;
1568 }
1569 }
1570 error = EPROTO;
1571
1572 exit:
1573 ofpbuf_delete(reply);
1574 return error;
1575 }
1576
1577 /* If '*number' is 0, translates the given Generic Netlink family 'name' to a
1578 * number and stores it in '*number'. If successful, returns 0 and the caller
1579 * may use '*number' as the family number. On failure, returns a positive
1580 * errno value and '*number' caches the errno value. */
1581 int
1582 nl_lookup_genl_family(const char *name, int *number)
1583 {
1584 if (*number == 0) {
1585 struct nlattr *attrs[ARRAY_SIZE(family_policy)];
1586 struct ofpbuf *reply;
1587 int error;
1588
1589 error = do_lookup_genl_family(name, attrs, &reply);
1590 if (!error) {
1591 *number = nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]);
1592 define_genl_family(*number, name);
1593 } else {
1594 *number = -error;
1595 }
1596 ofpbuf_delete(reply);
1597
1598 ovs_assert(*number != 0);
1599 }
1600 return *number > 0 ? 0 : -*number;
1601 }
1602 \f
1603 struct nl_pool {
1604 struct nl_sock *socks[16];
1605 int n;
1606 };
1607
1608 static struct ovs_mutex pool_mutex = OVS_MUTEX_INITIALIZER;
1609 static struct nl_pool pools[MAX_LINKS] OVS_GUARDED_BY(pool_mutex);
1610
1611 static int
1612 nl_pool_alloc(int protocol, struct nl_sock **sockp)
1613 {
1614 struct nl_sock *sock = NULL;
1615 struct nl_pool *pool;
1616
1617 ovs_assert(protocol >= 0 && protocol < ARRAY_SIZE(pools));
1618
1619 ovs_mutex_lock(&pool_mutex);
1620 pool = &pools[protocol];
1621 if (pool->n > 0) {
1622 sock = pool->socks[--pool->n];
1623 }
1624 ovs_mutex_unlock(&pool_mutex);
1625
1626 if (sock) {
1627 *sockp = sock;
1628 return 0;
1629 } else {
1630 return nl_sock_create(protocol, sockp);
1631 }
1632 }
1633
1634 static void
1635 nl_pool_release(struct nl_sock *sock)
1636 {
1637 if (sock) {
1638 struct nl_pool *pool = &pools[sock->protocol];
1639
1640 ovs_mutex_lock(&pool_mutex);
1641 if (pool->n < ARRAY_SIZE(pool->socks)) {
1642 pool->socks[pool->n++] = sock;
1643 sock = NULL;
1644 }
1645 ovs_mutex_unlock(&pool_mutex);
1646
1647 nl_sock_destroy(sock);
1648 }
1649 }
1650
1651 /* Sends 'request' to the kernel on a Netlink socket for the given 'protocol'
1652 * (e.g. NETLINK_ROUTE or NETLINK_GENERIC) and waits for a response. If
1653 * successful, returns 0. On failure, returns a positive errno value.
1654 *
1655 * If 'replyp' is nonnull, then on success '*replyp' is set to the kernel's
1656 * reply, which the caller is responsible for freeing with ofpbuf_delete(), and
1657 * on failure '*replyp' is set to NULL. If 'replyp' is null, then the kernel's
1658 * reply, if any, is discarded.
1659 *
1660 * Before the message is sent, nlmsg_len in 'request' will be finalized to
1661 * match msg->size, nlmsg_pid will be set to the pid of the socket used
1662 * for sending the request, and nlmsg_seq will be initialized.
1663 *
1664 * The caller is responsible for destroying 'request'.
1665 *
1666 * Bare Netlink is an unreliable transport protocol. This function layers
1667 * reliable delivery and reply semantics on top of bare Netlink.
1668 *
1669 * In Netlink, sending a request to the kernel is reliable enough, because the
1670 * kernel will tell us if the message cannot be queued (and we will in that
1671 * case put it on the transmit queue and wait until it can be delivered).
1672 *
1673 * Receiving the reply is the real problem: if the socket buffer is full when
1674 * the kernel tries to send the reply, the reply will be dropped. However, the
1675 * kernel sets a flag that a reply has been dropped. The next call to recv
1676 * then returns ENOBUFS. We can then re-send the request.
1677 *
1678 * Caveats:
1679 *
1680 * 1. Netlink depends on sequence numbers to match up requests and
1681 * replies. The sender of a request supplies a sequence number, and
1682 * the reply echos back that sequence number.
1683 *
1684 * This is fine, but (1) some kernel netlink implementations are
1685 * broken, in that they fail to echo sequence numbers and (2) this
1686 * function will drop packets with non-matching sequence numbers, so
1687 * that only a single request can be usefully transacted at a time.
1688 *
1689 * 2. Resending the request causes it to be re-executed, so the request
1690 * needs to be idempotent.
1691 */
1692 int
1693 nl_transact(int protocol, const struct ofpbuf *request,
1694 struct ofpbuf **replyp)
1695 {
1696 struct nl_sock *sock;
1697 int error;
1698
1699 error = nl_pool_alloc(protocol, &sock);
1700 if (error) {
1701 *replyp = NULL;
1702 return error;
1703 }
1704
1705 error = nl_sock_transact(sock, request, replyp);
1706
1707 nl_pool_release(sock);
1708 return error;
1709 }
1710
1711 /* Sends the 'request' member of the 'n' transactions in 'transactions' on a
1712 * Netlink socket for the given 'protocol' (e.g. NETLINK_ROUTE or
1713 * NETLINK_GENERIC), in order, and receives responses to all of them. Fills in
1714 * the 'error' member of each transaction with 0 if it was successful,
1715 * otherwise with a positive errno value. If 'reply' is nonnull, then it will
1716 * be filled with the reply if the message receives a detailed reply. In other
1717 * cases, i.e. where the request failed or had no reply beyond an indication of
1718 * success, 'reply' will be cleared if it is nonnull.
1719 *
1720 * The caller is responsible for destroying each request and reply, and the
1721 * transactions array itself.
1722 *
1723 * Before sending each message, this function will finalize nlmsg_len in each
1724 * 'request' to match the ofpbuf's size, set nlmsg_pid to the pid of the socket
1725 * used for the transaction, and initialize nlmsg_seq.
1726 *
1727 * Bare Netlink is an unreliable transport protocol. This function layers
1728 * reliable delivery and reply semantics on top of bare Netlink. See
1729 * nl_transact() for some caveats.
1730 */
1731 void
1732 nl_transact_multiple(int protocol,
1733 struct nl_transaction **transactions, size_t n)
1734 {
1735 struct nl_sock *sock;
1736 int error;
1737
1738 error = nl_pool_alloc(protocol, &sock);
1739 if (!error) {
1740 nl_sock_transact_multiple(sock, transactions, n);
1741 nl_pool_release(sock);
1742 } else {
1743 nl_sock_record_errors__(transactions, n, error);
1744 }
1745 }
1746
1747 \f
1748 static uint32_t
1749 nl_sock_allocate_seq(struct nl_sock *sock, unsigned int n)
1750 {
1751 uint32_t seq = sock->next_seq;
1752
1753 sock->next_seq += n;
1754
1755 /* Make it impossible for the next request for sequence numbers to wrap
1756 * around to 0. Start over with 1 to avoid ever using a sequence number of
1757 * 0, because the kernel uses sequence number 0 for notifications. */
1758 if (sock->next_seq >= UINT32_MAX / 2) {
1759 sock->next_seq = 1;
1760 }
1761
1762 return seq;
1763 }
1764
1765 static void
1766 nlmsghdr_to_string(const struct nlmsghdr *h, int protocol, struct ds *ds)
1767 {
1768 struct nlmsg_flag {
1769 unsigned int bits;
1770 const char *name;
1771 };
1772 static const struct nlmsg_flag flags[] = {
1773 { NLM_F_REQUEST, "REQUEST" },
1774 { NLM_F_MULTI, "MULTI" },
1775 { NLM_F_ACK, "ACK" },
1776 { NLM_F_ECHO, "ECHO" },
1777 { NLM_F_DUMP, "DUMP" },
1778 { NLM_F_ROOT, "ROOT" },
1779 { NLM_F_MATCH, "MATCH" },
1780 { NLM_F_ATOMIC, "ATOMIC" },
1781 };
1782 const struct nlmsg_flag *flag;
1783 uint16_t flags_left;
1784
1785 ds_put_format(ds, "nl(len:%"PRIu32", type=%"PRIu16,
1786 h->nlmsg_len, h->nlmsg_type);
1787 if (h->nlmsg_type == NLMSG_NOOP) {
1788 ds_put_cstr(ds, "(no-op)");
1789 } else if (h->nlmsg_type == NLMSG_ERROR) {
1790 ds_put_cstr(ds, "(error)");
1791 } else if (h->nlmsg_type == NLMSG_DONE) {
1792 ds_put_cstr(ds, "(done)");
1793 } else if (h->nlmsg_type == NLMSG_OVERRUN) {
1794 ds_put_cstr(ds, "(overrun)");
1795 } else if (h->nlmsg_type < NLMSG_MIN_TYPE) {
1796 ds_put_cstr(ds, "(reserved)");
1797 } else if (protocol == NETLINK_GENERIC) {
1798 ds_put_format(ds, "(%s)", genl_family_to_name(h->nlmsg_type));
1799 } else {
1800 ds_put_cstr(ds, "(family-defined)");
1801 }
1802 ds_put_format(ds, ", flags=%"PRIx16, h->nlmsg_flags);
1803 flags_left = h->nlmsg_flags;
1804 for (flag = flags; flag < &flags[ARRAY_SIZE(flags)]; flag++) {
1805 if ((flags_left & flag->bits) == flag->bits) {
1806 ds_put_format(ds, "[%s]", flag->name);
1807 flags_left &= ~flag->bits;
1808 }
1809 }
1810 if (flags_left) {
1811 ds_put_format(ds, "[OTHER:%"PRIx16"]", flags_left);
1812 }
1813 ds_put_format(ds, ", seq=%"PRIx32", pid=%"PRIu32,
1814 h->nlmsg_seq, h->nlmsg_pid);
1815 }
1816
1817 static char *
1818 nlmsg_to_string(const struct ofpbuf *buffer, int protocol)
1819 {
1820 struct ds ds = DS_EMPTY_INITIALIZER;
1821 const struct nlmsghdr *h = ofpbuf_at(buffer, 0, NLMSG_HDRLEN);
1822 if (h) {
1823 nlmsghdr_to_string(h, protocol, &ds);
1824 if (h->nlmsg_type == NLMSG_ERROR) {
1825 const struct nlmsgerr *e;
1826 e = ofpbuf_at(buffer, NLMSG_HDRLEN,
1827 NLMSG_ALIGN(sizeof(struct nlmsgerr)));
1828 if (e) {
1829 ds_put_format(&ds, " error(%d", e->error);
1830 if (e->error < 0) {
1831 ds_put_format(&ds, "(%s)", ovs_strerror(-e->error));
1832 }
1833 ds_put_cstr(&ds, ", in-reply-to(");
1834 nlmsghdr_to_string(&e->msg, protocol, &ds);
1835 ds_put_cstr(&ds, "))");
1836 } else {
1837 ds_put_cstr(&ds, " error(truncated)");
1838 }
1839 } else if (h->nlmsg_type == NLMSG_DONE) {
1840 int *error = ofpbuf_at(buffer, NLMSG_HDRLEN, sizeof *error);
1841 if (error) {
1842 ds_put_format(&ds, " done(%d", *error);
1843 if (*error < 0) {
1844 ds_put_format(&ds, "(%s)", ovs_strerror(-*error));
1845 }
1846 ds_put_cstr(&ds, ")");
1847 } else {
1848 ds_put_cstr(&ds, " done(truncated)");
1849 }
1850 } else if (protocol == NETLINK_GENERIC) {
1851 struct genlmsghdr *genl = nl_msg_genlmsghdr(buffer);
1852 if (genl) {
1853 ds_put_format(&ds, ",genl(cmd=%"PRIu8",version=%"PRIu8")",
1854 genl->cmd, genl->version);
1855 }
1856 }
1857 } else {
1858 ds_put_cstr(&ds, "nl(truncated)");
1859 }
1860 return ds.string;
1861 }
1862
1863 static void
1864 log_nlmsg(const char *function, int error,
1865 const void *message, size_t size, int protocol)
1866 {
1867 if (!VLOG_IS_DBG_ENABLED()) {
1868 return;
1869 }
1870
1871 struct ofpbuf buffer = ofpbuf_const_initializer(message, size);
1872 char *nlmsg = nlmsg_to_string(&buffer, protocol);
1873 VLOG_DBG_RL(&rl, "%s (%s): %s", function, ovs_strerror(error), nlmsg);
1874 free(nlmsg);
1875 }