]> git.proxmox.com Git - mirror_ovs.git/blob - lib/odp-util.c
Make it more obvious that OVS_KEY_ATTR_MPLS may be an array
[mirror_ovs.git] / lib / odp-util.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include <arpa/inet.h>
19 #include "odp-util.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <math.h>
23 #include <netinet/in.h>
24 #include <netinet/icmp6.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include "byte-order.h"
28 #include "coverage.h"
29 #include "dynamic-string.h"
30 #include "flow.h"
31 #include "netlink.h"
32 #include "ofpbuf.h"
33 #include "packets.h"
34 #include "simap.h"
35 #include "timeval.h"
36 #include "util.h"
37 #include "vlog.h"
38
39 VLOG_DEFINE_THIS_MODULE(odp_util);
40
41 /* The interface between userspace and kernel uses an "OVS_*" prefix.
42 * Since this is fairly non-specific for the OVS userspace components,
43 * "ODP_*" (Open vSwitch Datapath) is used as the prefix for
44 * interactions with the datapath.
45 */
46
47 /* The set of characters that may separate one action or one key attribute
48 * from another. */
49 static const char *delimiters = ", \t\r\n";
50
51 static int parse_odp_key_attr(const char *, const struct simap *port_names,
52 struct ofpbuf *);
53 static void format_odp_key_attr(const struct nlattr *a, struct ds *ds);
54
55 /* Returns one the following for the action with the given OVS_ACTION_ATTR_*
56 * 'type':
57 *
58 * - For an action whose argument has a fixed length, returned that
59 * nonnegative length in bytes.
60 *
61 * - For an action with a variable-length argument, returns -2.
62 *
63 * - For an invalid 'type', returns -1. */
64 static int
65 odp_action_len(uint16_t type)
66 {
67 if (type > OVS_ACTION_ATTR_MAX) {
68 return -1;
69 }
70
71 switch ((enum ovs_action_attr) type) {
72 case OVS_ACTION_ATTR_OUTPUT: return sizeof(uint32_t);
73 case OVS_ACTION_ATTR_USERSPACE: return -2;
74 case OVS_ACTION_ATTR_PUSH_VLAN: return sizeof(struct ovs_action_push_vlan);
75 case OVS_ACTION_ATTR_POP_VLAN: return 0;
76 case OVS_ACTION_ATTR_PUSH_MPLS: return sizeof(struct ovs_action_push_mpls);
77 case OVS_ACTION_ATTR_POP_MPLS: return sizeof(ovs_be16);
78 case OVS_ACTION_ATTR_SET: return -2;
79 case OVS_ACTION_ATTR_SAMPLE: return -2;
80
81 case OVS_ACTION_ATTR_UNSPEC:
82 case __OVS_ACTION_ATTR_MAX:
83 return -1;
84 }
85
86 return -1;
87 }
88
89 static const char *
90 ovs_key_attr_to_string(enum ovs_key_attr attr)
91 {
92 static char unknown_attr[3 + INT_STRLEN(unsigned int) + 1];
93
94 switch (attr) {
95 case OVS_KEY_ATTR_UNSPEC: return "unspec";
96 case OVS_KEY_ATTR_ENCAP: return "encap";
97 case OVS_KEY_ATTR_PRIORITY: return "skb_priority";
98 case OVS_KEY_ATTR_SKB_MARK: return "skb_mark";
99 case OVS_KEY_ATTR_TUNNEL: return "tunnel";
100 case OVS_KEY_ATTR_IN_PORT: return "in_port";
101 case OVS_KEY_ATTR_ETHERNET: return "eth";
102 case OVS_KEY_ATTR_VLAN: return "vlan";
103 case OVS_KEY_ATTR_ETHERTYPE: return "eth_type";
104 case OVS_KEY_ATTR_IPV4: return "ipv4";
105 case OVS_KEY_ATTR_IPV6: return "ipv6";
106 case OVS_KEY_ATTR_TCP: return "tcp";
107 case OVS_KEY_ATTR_UDP: return "udp";
108 case OVS_KEY_ATTR_ICMP: return "icmp";
109 case OVS_KEY_ATTR_ICMPV6: return "icmpv6";
110 case OVS_KEY_ATTR_ARP: return "arp";
111 case OVS_KEY_ATTR_ND: return "nd";
112 case OVS_KEY_ATTR_MPLS: return "mpls";
113
114 case __OVS_KEY_ATTR_MAX:
115 default:
116 snprintf(unknown_attr, sizeof unknown_attr, "key%u",
117 (unsigned int) attr);
118 return unknown_attr;
119 }
120 }
121
122 static void
123 format_generic_odp_action(struct ds *ds, const struct nlattr *a)
124 {
125 size_t len = nl_attr_get_size(a);
126
127 ds_put_format(ds, "action%"PRId16, nl_attr_type(a));
128 if (len) {
129 const uint8_t *unspec;
130 unsigned int i;
131
132 unspec = nl_attr_get(a);
133 for (i = 0; i < len; i++) {
134 ds_put_char(ds, i ? ' ': '(');
135 ds_put_format(ds, "%02x", unspec[i]);
136 }
137 ds_put_char(ds, ')');
138 }
139 }
140
141 static void
142 format_odp_sample_action(struct ds *ds, const struct nlattr *attr)
143 {
144 static const struct nl_policy ovs_sample_policy[] = {
145 [OVS_SAMPLE_ATTR_PROBABILITY] = { .type = NL_A_U32 },
146 [OVS_SAMPLE_ATTR_ACTIONS] = { .type = NL_A_NESTED }
147 };
148 struct nlattr *a[ARRAY_SIZE(ovs_sample_policy)];
149 double percentage;
150 const struct nlattr *nla_acts;
151 int len;
152
153 ds_put_cstr(ds, "sample");
154
155 if (!nl_parse_nested(attr, ovs_sample_policy, a, ARRAY_SIZE(a))) {
156 ds_put_cstr(ds, "(error)");
157 return;
158 }
159
160 percentage = (100.0 * nl_attr_get_u32(a[OVS_SAMPLE_ATTR_PROBABILITY])) /
161 UINT32_MAX;
162
163 ds_put_format(ds, "(sample=%.1f%%,", percentage);
164
165 ds_put_cstr(ds, "actions(");
166 nla_acts = nl_attr_get(a[OVS_SAMPLE_ATTR_ACTIONS]);
167 len = nl_attr_get_size(a[OVS_SAMPLE_ATTR_ACTIONS]);
168 format_odp_actions(ds, nla_acts, len);
169 ds_put_format(ds, "))");
170 }
171
172 static const char *
173 slow_path_reason_to_string(uint32_t data)
174 {
175 enum slow_path_reason bit = (enum slow_path_reason) data;
176
177 switch (bit) {
178 case SLOW_CFM:
179 return "cfm";
180 case SLOW_LACP:
181 return "lacp";
182 case SLOW_STP:
183 return "stp";
184 case SLOW_IN_BAND:
185 return "in_band";
186 case SLOW_CONTROLLER:
187 return "controller";
188 case SLOW_MATCH:
189 return "match";
190 default:
191 return NULL;
192 }
193 }
194
195 static int
196 parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
197 uint32_t *res)
198 {
199 uint32_t result = 0;
200 int n = 0;
201
202 if (s[n] != '(') {
203 return -EINVAL;
204 }
205 n++;
206
207 while (s[n] != ')') {
208 unsigned long long int flags;
209 uint32_t bit;
210 int n0;
211
212 if (sscanf(&s[n], "%lli%n", &flags, &n0) > 0 && n0 > 0) {
213 n += n0 + (s[n + n0] == ',');
214 result |= flags;
215 continue;
216 }
217
218 for (bit = 1; bit; bit <<= 1) {
219 const char *name = bit_to_string(bit);
220 size_t len;
221
222 if (!name) {
223 continue;
224 }
225
226 len = strlen(name);
227 if (!strncmp(s + n, name, len) &&
228 (s[n + len] == ',' || s[n + len] == ')')) {
229 result |= bit;
230 n += len + (s[n + len] == ',');
231 break;
232 }
233 }
234
235 if (!bit) {
236 return -EINVAL;
237 }
238 }
239 n++;
240
241 *res = result;
242 return n;
243 }
244
245 static void
246 format_odp_userspace_action(struct ds *ds, const struct nlattr *attr)
247 {
248 static const struct nl_policy ovs_userspace_policy[] = {
249 [OVS_USERSPACE_ATTR_PID] = { .type = NL_A_U32 },
250 [OVS_USERSPACE_ATTR_USERDATA] = { .type = NL_A_UNSPEC,
251 .optional = true },
252 };
253 struct nlattr *a[ARRAY_SIZE(ovs_userspace_policy)];
254 const struct nlattr *userdata_attr;
255
256 if (!nl_parse_nested(attr, ovs_userspace_policy, a, ARRAY_SIZE(a))) {
257 ds_put_cstr(ds, "userspace(error)");
258 return;
259 }
260
261 ds_put_format(ds, "userspace(pid=%"PRIu32,
262 nl_attr_get_u32(a[OVS_USERSPACE_ATTR_PID]));
263
264 userdata_attr = a[OVS_USERSPACE_ATTR_USERDATA];
265
266 if (userdata_attr) {
267 const uint8_t *userdata = nl_attr_get(userdata_attr);
268 size_t userdata_len = nl_attr_get_size(userdata_attr);
269 bool userdata_unspec = true;
270 union user_action_cookie cookie;
271
272 if (userdata_len >= sizeof cookie.type
273 && userdata_len <= sizeof cookie) {
274
275 memset(&cookie, 0, sizeof cookie);
276 memcpy(&cookie, userdata, userdata_len);
277
278 userdata_unspec = false;
279
280 if (userdata_len == sizeof cookie.sflow
281 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
282 ds_put_format(ds, ",sFlow("
283 "vid=%"PRIu16",pcp=%"PRIu8",output=%"PRIu32")",
284 vlan_tci_to_vid(cookie.sflow.vlan_tci),
285 vlan_tci_to_pcp(cookie.sflow.vlan_tci),
286 cookie.sflow.output);
287 } else if (userdata_len == sizeof cookie.slow_path
288 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
289 ds_put_cstr(ds, ",slow_path(");
290 format_flags(ds, slow_path_reason_to_string,
291 cookie.slow_path.reason, ',');
292 ds_put_format(ds, ")");
293 } else if (userdata_len == sizeof cookie.flow_sample
294 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
295 ds_put_format(ds, ",flow_sample(probability=%"PRIu16
296 ",collector_set_id=%"PRIu32
297 ",obs_domain_id=%"PRIu32
298 ",obs_point_id=%"PRIu32")",
299 cookie.flow_sample.probability,
300 cookie.flow_sample.collector_set_id,
301 cookie.flow_sample.obs_domain_id,
302 cookie.flow_sample.obs_point_id);
303 } else if (userdata_len == sizeof cookie.ipfix
304 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
305 ds_put_format(ds, ",ipfix");
306 } else {
307 userdata_unspec = true;
308 }
309 }
310
311 if (userdata_unspec) {
312 size_t i;
313 ds_put_format(ds, ",userdata(");
314 for (i = 0; i < userdata_len; i++) {
315 ds_put_format(ds, "%02x", userdata[i]);
316 }
317 ds_put_char(ds, ')');
318 }
319 }
320
321 ds_put_char(ds, ')');
322 }
323
324 static void
325 format_vlan_tci(struct ds *ds, ovs_be16 vlan_tci)
326 {
327 ds_put_format(ds, "vid=%"PRIu16",pcp=%d",
328 vlan_tci_to_vid(vlan_tci),
329 vlan_tci_to_pcp(vlan_tci));
330 if (!(vlan_tci & htons(VLAN_CFI))) {
331 ds_put_cstr(ds, ",cfi=0");
332 }
333 }
334
335 static void
336 format_mpls_lse(struct ds *ds, ovs_be32 mpls_lse)
337 {
338 ds_put_format(ds, "label=%"PRIu32",tc=%d,ttl=%d,bos=%d",
339 mpls_lse_to_label(mpls_lse),
340 mpls_lse_to_tc(mpls_lse),
341 mpls_lse_to_ttl(mpls_lse),
342 mpls_lse_to_bos(mpls_lse));
343 }
344
345 static void
346 format_odp_action(struct ds *ds, const struct nlattr *a)
347 {
348 int expected_len;
349 enum ovs_action_attr type = nl_attr_type(a);
350 const struct ovs_action_push_vlan *vlan;
351
352 expected_len = odp_action_len(nl_attr_type(a));
353 if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
354 ds_put_format(ds, "bad length %zu, expected %d for: ",
355 nl_attr_get_size(a), expected_len);
356 format_generic_odp_action(ds, a);
357 return;
358 }
359
360 switch (type) {
361 case OVS_ACTION_ATTR_OUTPUT:
362 ds_put_format(ds, "%"PRIu16, nl_attr_get_u32(a));
363 break;
364 case OVS_ACTION_ATTR_USERSPACE:
365 format_odp_userspace_action(ds, a);
366 break;
367 case OVS_ACTION_ATTR_SET:
368 ds_put_cstr(ds, "set(");
369 format_odp_key_attr(nl_attr_get(a), ds);
370 ds_put_cstr(ds, ")");
371 break;
372 case OVS_ACTION_ATTR_PUSH_VLAN:
373 vlan = nl_attr_get(a);
374 ds_put_cstr(ds, "push_vlan(");
375 if (vlan->vlan_tpid != htons(ETH_TYPE_VLAN)) {
376 ds_put_format(ds, "tpid=0x%04"PRIx16",", ntohs(vlan->vlan_tpid));
377 }
378 format_vlan_tci(ds, vlan->vlan_tci);
379 ds_put_char(ds, ')');
380 break;
381 case OVS_ACTION_ATTR_POP_VLAN:
382 ds_put_cstr(ds, "pop_vlan");
383 break;
384 case OVS_ACTION_ATTR_PUSH_MPLS: {
385 const struct ovs_action_push_mpls *mpls = nl_attr_get(a);
386 ds_put_cstr(ds, "push_mpls(");
387 format_mpls_lse(ds, mpls->mpls_lse);
388 ds_put_format(ds, ",eth_type=0x%"PRIx16")", ntohs(mpls->mpls_ethertype));
389 break;
390 }
391 case OVS_ACTION_ATTR_POP_MPLS: {
392 ovs_be16 ethertype = nl_attr_get_be16(a);
393 ds_put_format(ds, "pop_mpls(eth_type=0x%"PRIx16")", ntohs(ethertype));
394 break;
395 }
396 case OVS_ACTION_ATTR_SAMPLE:
397 format_odp_sample_action(ds, a);
398 break;
399 case OVS_ACTION_ATTR_UNSPEC:
400 case __OVS_ACTION_ATTR_MAX:
401 default:
402 format_generic_odp_action(ds, a);
403 break;
404 }
405 }
406
407 void
408 format_odp_actions(struct ds *ds, const struct nlattr *actions,
409 size_t actions_len)
410 {
411 if (actions_len) {
412 const struct nlattr *a;
413 unsigned int left;
414
415 NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
416 if (a != actions) {
417 ds_put_char(ds, ',');
418 }
419 format_odp_action(ds, a);
420 }
421 if (left) {
422 int i;
423
424 if (left == actions_len) {
425 ds_put_cstr(ds, "<empty>");
426 }
427 ds_put_format(ds, ",***%u leftover bytes*** (", left);
428 for (i = 0; i < left; i++) {
429 ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
430 }
431 ds_put_char(ds, ')');
432 }
433 } else {
434 ds_put_cstr(ds, "drop");
435 }
436 }
437
438 static int
439 parse_odp_action(const char *s, const struct simap *port_names,
440 struct ofpbuf *actions)
441 {
442 /* Many of the sscanf calls in this function use oversized destination
443 * fields because some sscanf() implementations truncate the range of %i
444 * directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a
445 * value of 0x7fff. The other alternatives are to allow only a single
446 * radix (e.g. decimal or hexadecimal) or to write more sophisticated
447 * parsers.
448 *
449 * The tun_id parser has to use an alternative approach because there is no
450 * type larger than 64 bits. */
451
452 {
453 unsigned long long int port;
454 int n = -1;
455
456 if (sscanf(s, "%lli%n", &port, &n) > 0 && n > 0) {
457 nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, port);
458 return n;
459 }
460 }
461
462 if (port_names) {
463 int len = strcspn(s, delimiters);
464 struct simap_node *node;
465
466 node = simap_find_len(port_names, s, len);
467 if (node) {
468 nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, node->data);
469 return len;
470 }
471 }
472
473 {
474 unsigned long long int pid;
475 unsigned long long int output;
476 unsigned long long int probability;
477 unsigned long long int collector_set_id;
478 unsigned long long int obs_domain_id;
479 unsigned long long int obs_point_id;
480 int vid, pcp;
481 int n = -1;
482
483 if (sscanf(s, "userspace(pid=%lli)%n", &pid, &n) > 0 && n > 0) {
484 odp_put_userspace_action(pid, NULL, 0, actions);
485 return n;
486 } else if (sscanf(s, "userspace(pid=%lli,sFlow(vid=%i,"
487 "pcp=%i,output=%lli))%n",
488 &pid, &vid, &pcp, &output, &n) > 0 && n > 0) {
489 union user_action_cookie cookie;
490 uint16_t tci;
491
492 tci = vid | (pcp << VLAN_PCP_SHIFT);
493 if (tci) {
494 tci |= VLAN_CFI;
495 }
496
497 cookie.type = USER_ACTION_COOKIE_SFLOW;
498 cookie.sflow.vlan_tci = htons(tci);
499 cookie.sflow.output = output;
500 odp_put_userspace_action(pid, &cookie, sizeof cookie.sflow,
501 actions);
502 return n;
503 } else if (sscanf(s, "userspace(pid=%lli,slow_path%n", &pid, &n) > 0
504 && n > 0) {
505 union user_action_cookie cookie;
506 int res;
507
508 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
509 cookie.slow_path.unused = 0;
510 cookie.slow_path.reason = 0;
511
512 res = parse_flags(&s[n], slow_path_reason_to_string,
513 &cookie.slow_path.reason);
514 if (res < 0) {
515 return res;
516 }
517 n += res;
518 if (s[n] != ')') {
519 return -EINVAL;
520 }
521 n++;
522
523 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path,
524 actions);
525 return n;
526 } else if (sscanf(s, "userspace(pid=%lli,flow_sample(probability=%lli,"
527 "collector_set_id=%lli,obs_domain_id=%lli,"
528 "obs_point_id=%lli))%n",
529 &pid, &probability, &collector_set_id,
530 &obs_domain_id, &obs_point_id, &n) > 0 && n > 0) {
531 union user_action_cookie cookie;
532
533 cookie.type = USER_ACTION_COOKIE_FLOW_SAMPLE;
534 cookie.flow_sample.probability = probability;
535 cookie.flow_sample.collector_set_id = collector_set_id;
536 cookie.flow_sample.obs_domain_id = obs_domain_id;
537 cookie.flow_sample.obs_point_id = obs_point_id;
538 odp_put_userspace_action(pid, &cookie, sizeof cookie.flow_sample,
539 actions);
540 return n;
541 } else if (sscanf(s, "userspace(pid=%lli,ipfix)%n", &pid, &n) > 0
542 && n > 0) {
543 union user_action_cookie cookie;
544
545 cookie.type = USER_ACTION_COOKIE_IPFIX;
546 odp_put_userspace_action(pid, &cookie, sizeof cookie.ipfix,
547 actions);
548 return n;
549 } else if (sscanf(s, "userspace(pid=%lli,userdata(%n", &pid, &n) > 0
550 && n > 0) {
551 struct ofpbuf buf;
552 char *end;
553
554 ofpbuf_init(&buf, 16);
555 end = ofpbuf_put_hex(&buf, &s[n], NULL);
556 if (end[0] == ')' && end[1] == ')') {
557 odp_put_userspace_action(pid, buf.data, buf.size, actions);
558 ofpbuf_uninit(&buf);
559 return (end + 2) - s;
560 }
561 }
562 }
563
564 if (!strncmp(s, "set(", 4)) {
565 size_t start_ofs;
566 int retval;
567
568 start_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SET);
569 retval = parse_odp_key_attr(s + 4, port_names, actions);
570 if (retval < 0) {
571 return retval;
572 }
573 if (s[retval + 4] != ')') {
574 return -EINVAL;
575 }
576 nl_msg_end_nested(actions, start_ofs);
577 return retval + 5;
578 }
579
580 {
581 struct ovs_action_push_vlan push;
582 int tpid = ETH_TYPE_VLAN;
583 int vid, pcp;
584 int cfi = 1;
585 int n = -1;
586
587 if ((sscanf(s, "push_vlan(vid=%i,pcp=%i)%n", &vid, &pcp, &n) > 0
588 && n > 0)
589 || (sscanf(s, "push_vlan(vid=%i,pcp=%i,cfi=%i)%n",
590 &vid, &pcp, &cfi, &n) > 0 && n > 0)
591 || (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i)%n",
592 &tpid, &vid, &pcp, &n) > 0 && n > 0)
593 || (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i,cfi=%i)%n",
594 &tpid, &vid, &pcp, &cfi, &n) > 0 && n > 0)) {
595 push.vlan_tpid = htons(tpid);
596 push.vlan_tci = htons((vid << VLAN_VID_SHIFT)
597 | (pcp << VLAN_PCP_SHIFT)
598 | (cfi ? VLAN_CFI : 0));
599 nl_msg_put_unspec(actions, OVS_ACTION_ATTR_PUSH_VLAN,
600 &push, sizeof push);
601
602 return n;
603 }
604 }
605
606 if (!strncmp(s, "pop_vlan", 8)) {
607 nl_msg_put_flag(actions, OVS_ACTION_ATTR_POP_VLAN);
608 return 8;
609 }
610
611 {
612 double percentage;
613 int n = -1;
614
615 if (sscanf(s, "sample(sample=%lf%%,actions(%n", &percentage, &n) > 0
616 && percentage >= 0. && percentage <= 100.0
617 && n > 0) {
618 size_t sample_ofs, actions_ofs;
619 double probability;
620
621 probability = floor(UINT32_MAX * (percentage / 100.0) + .5);
622 sample_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE);
623 nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY,
624 (probability <= 0 ? 0
625 : probability >= UINT32_MAX ? UINT32_MAX
626 : probability));
627
628 actions_ofs = nl_msg_start_nested(actions,
629 OVS_SAMPLE_ATTR_ACTIONS);
630 for (;;) {
631 int retval;
632
633 n += strspn(s + n, delimiters);
634 if (s[n] == ')') {
635 break;
636 }
637
638 retval = parse_odp_action(s + n, port_names, actions);
639 if (retval < 0) {
640 return retval;
641 }
642 n += retval;
643 }
644 nl_msg_end_nested(actions, actions_ofs);
645 nl_msg_end_nested(actions, sample_ofs);
646
647 return s[n + 1] == ')' ? n + 2 : -EINVAL;
648 }
649 }
650
651 return -EINVAL;
652 }
653
654 /* Parses the string representation of datapath actions, in the format output
655 * by format_odp_action(). Returns 0 if successful, otherwise a positive errno
656 * value. On success, the ODP actions are appended to 'actions' as a series of
657 * Netlink attributes. On failure, no data is appended to 'actions'. Either
658 * way, 'actions''s data might be reallocated. */
659 int
660 odp_actions_from_string(const char *s, const struct simap *port_names,
661 struct ofpbuf *actions)
662 {
663 size_t old_size;
664
665 if (!strcasecmp(s, "drop")) {
666 return 0;
667 }
668
669 old_size = actions->size;
670 for (;;) {
671 int retval;
672
673 s += strspn(s, delimiters);
674 if (!*s) {
675 return 0;
676 }
677
678 retval = parse_odp_action(s, port_names, actions);
679 if (retval < 0 || !strchr(delimiters, s[retval])) {
680 actions->size = old_size;
681 return -retval;
682 }
683 s += retval;
684 }
685
686 return 0;
687 }
688 \f
689 /* Returns the correct length of the payload for a flow key attribute of the
690 * specified 'type', -1 if 'type' is unknown, or -2 if the attribute's payload
691 * is variable length. */
692 static int
693 odp_flow_key_attr_len(uint16_t type)
694 {
695 if (type > OVS_KEY_ATTR_MAX) {
696 return -1;
697 }
698
699 switch ((enum ovs_key_attr) type) {
700 case OVS_KEY_ATTR_ENCAP: return -2;
701 case OVS_KEY_ATTR_PRIORITY: return 4;
702 case OVS_KEY_ATTR_SKB_MARK: return 4;
703 case OVS_KEY_ATTR_TUNNEL: return -2;
704 case OVS_KEY_ATTR_IN_PORT: return 4;
705 case OVS_KEY_ATTR_ETHERNET: return sizeof(struct ovs_key_ethernet);
706 case OVS_KEY_ATTR_VLAN: return sizeof(ovs_be16);
707 case OVS_KEY_ATTR_ETHERTYPE: return 2;
708 case OVS_KEY_ATTR_MPLS: return sizeof(struct ovs_key_mpls);
709 case OVS_KEY_ATTR_IPV4: return sizeof(struct ovs_key_ipv4);
710 case OVS_KEY_ATTR_IPV6: return sizeof(struct ovs_key_ipv6);
711 case OVS_KEY_ATTR_TCP: return sizeof(struct ovs_key_tcp);
712 case OVS_KEY_ATTR_UDP: return sizeof(struct ovs_key_udp);
713 case OVS_KEY_ATTR_ICMP: return sizeof(struct ovs_key_icmp);
714 case OVS_KEY_ATTR_ICMPV6: return sizeof(struct ovs_key_icmpv6);
715 case OVS_KEY_ATTR_ARP: return sizeof(struct ovs_key_arp);
716 case OVS_KEY_ATTR_ND: return sizeof(struct ovs_key_nd);
717
718 case OVS_KEY_ATTR_UNSPEC:
719 case __OVS_KEY_ATTR_MAX:
720 return -1;
721 }
722
723 return -1;
724 }
725
726 static void
727 format_generic_odp_key(const struct nlattr *a, struct ds *ds)
728 {
729 size_t len = nl_attr_get_size(a);
730 if (len) {
731 const uint8_t *unspec;
732 unsigned int i;
733
734 unspec = nl_attr_get(a);
735 for (i = 0; i < len; i++) {
736 ds_put_char(ds, i ? ' ': '(');
737 ds_put_format(ds, "%02x", unspec[i]);
738 }
739 ds_put_char(ds, ')');
740 }
741 }
742
743 static const char *
744 ovs_frag_type_to_string(enum ovs_frag_type type)
745 {
746 switch (type) {
747 case OVS_FRAG_TYPE_NONE:
748 return "no";
749 case OVS_FRAG_TYPE_FIRST:
750 return "first";
751 case OVS_FRAG_TYPE_LATER:
752 return "later";
753 case __OVS_FRAG_TYPE_MAX:
754 default:
755 return "<error>";
756 }
757 }
758
759 static int
760 tunnel_key_attr_len(int type)
761 {
762 switch (type) {
763 case OVS_TUNNEL_KEY_ATTR_ID: return 8;
764 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: return 4;
765 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: return 4;
766 case OVS_TUNNEL_KEY_ATTR_TOS: return 1;
767 case OVS_TUNNEL_KEY_ATTR_TTL: return 1;
768 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: return 0;
769 case OVS_TUNNEL_KEY_ATTR_CSUM: return 0;
770 case __OVS_TUNNEL_KEY_ATTR_MAX:
771 return -1;
772 }
773 return -1;
774 }
775
776 static enum odp_key_fitness
777 tun_key_from_attr(const struct nlattr *attr, struct flow_tnl *tun)
778 {
779 unsigned int left;
780 const struct nlattr *a;
781 bool ttl = false;
782 bool unknown = false;
783
784 NL_NESTED_FOR_EACH(a, left, attr) {
785 uint16_t type = nl_attr_type(a);
786 size_t len = nl_attr_get_size(a);
787 int expected_len = tunnel_key_attr_len(type);
788
789 if (len != expected_len && expected_len >= 0) {
790 return ODP_FIT_ERROR;
791 }
792
793 switch (type) {
794 case OVS_TUNNEL_KEY_ATTR_ID:
795 tun->tun_id = nl_attr_get_be64(a);
796 tun->flags |= FLOW_TNL_F_KEY;
797 break;
798 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
799 tun->ip_src = nl_attr_get_be32(a);
800 break;
801 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
802 tun->ip_dst = nl_attr_get_be32(a);
803 break;
804 case OVS_TUNNEL_KEY_ATTR_TOS:
805 tun->ip_tos = nl_attr_get_u8(a);
806 break;
807 case OVS_TUNNEL_KEY_ATTR_TTL:
808 tun->ip_ttl = nl_attr_get_u8(a);
809 ttl = true;
810 break;
811 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
812 tun->flags |= FLOW_TNL_F_DONT_FRAGMENT;
813 break;
814 case OVS_TUNNEL_KEY_ATTR_CSUM:
815 tun->flags |= FLOW_TNL_F_CSUM;
816 break;
817 default:
818 /* Allow this to show up as unexpected, if there are unknown
819 * tunnel attribute, eventually resulting in ODP_FIT_TOO_MUCH. */
820 unknown = true;
821 break;
822 }
823 }
824
825 if (!ttl) {
826 return ODP_FIT_ERROR;
827 }
828 if (unknown) {
829 return ODP_FIT_TOO_MUCH;
830 }
831 return ODP_FIT_PERFECT;
832 }
833
834 static void
835 tun_key_to_attr(struct ofpbuf *a, const struct flow_tnl *tun_key)
836 {
837 size_t tun_key_ofs;
838
839 tun_key_ofs = nl_msg_start_nested(a, OVS_KEY_ATTR_TUNNEL);
840
841 if (tun_key->flags & FLOW_TNL_F_KEY) {
842 nl_msg_put_be64(a, OVS_TUNNEL_KEY_ATTR_ID, tun_key->tun_id);
843 }
844 if (tun_key->ip_src) {
845 nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, tun_key->ip_src);
846 }
847 if (tun_key->ip_dst) {
848 nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_DST, tun_key->ip_dst);
849 }
850 if (tun_key->ip_tos) {
851 nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TOS, tun_key->ip_tos);
852 }
853 nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TTL, tun_key->ip_ttl);
854 if (tun_key->flags & FLOW_TNL_F_DONT_FRAGMENT) {
855 nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT);
856 }
857 if (tun_key->flags & FLOW_TNL_F_CSUM) {
858 nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_CSUM);
859 }
860
861 nl_msg_end_nested(a, tun_key_ofs);
862 }
863
864 static void
865 format_odp_key_attr(const struct nlattr *a, struct ds *ds)
866 {
867 const struct ovs_key_ethernet *eth_key;
868 const struct ovs_key_ipv4 *ipv4_key;
869 const struct ovs_key_ipv6 *ipv6_key;
870 const struct ovs_key_tcp *tcp_key;
871 const struct ovs_key_udp *udp_key;
872 const struct ovs_key_icmp *icmp_key;
873 const struct ovs_key_icmpv6 *icmpv6_key;
874 const struct ovs_key_arp *arp_key;
875 const struct ovs_key_nd *nd_key;
876 struct flow_tnl tun_key;
877 enum ovs_key_attr attr = nl_attr_type(a);
878 int expected_len;
879
880 ds_put_cstr(ds, ovs_key_attr_to_string(attr));
881 expected_len = odp_flow_key_attr_len(nl_attr_type(a));
882 if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
883 ds_put_format(ds, "(bad length %zu, expected %d)",
884 nl_attr_get_size(a),
885 odp_flow_key_attr_len(nl_attr_type(a)));
886 format_generic_odp_key(a, ds);
887 return;
888 }
889
890 switch (attr) {
891 case OVS_KEY_ATTR_ENCAP:
892 ds_put_cstr(ds, "(");
893 if (nl_attr_get_size(a)) {
894 odp_flow_key_format(nl_attr_get(a), nl_attr_get_size(a), ds);
895 }
896 ds_put_char(ds, ')');
897 break;
898
899 case OVS_KEY_ATTR_PRIORITY:
900 ds_put_format(ds, "(%#"PRIx32")", nl_attr_get_u32(a));
901 break;
902
903 case OVS_KEY_ATTR_SKB_MARK:
904 ds_put_format(ds, "(%#"PRIx32")", nl_attr_get_u32(a));
905 break;
906
907 case OVS_KEY_ATTR_TUNNEL:
908 memset(&tun_key, 0, sizeof tun_key);
909 if (tun_key_from_attr(a, &tun_key) == ODP_FIT_ERROR) {
910 ds_put_format(ds, "(error)");
911 } else {
912 ds_put_format(ds, "(tun_id=0x%"PRIx64",src="IP_FMT",dst="IP_FMT","
913 "tos=0x%"PRIx8",ttl=%"PRIu8",flags(",
914 ntohll(tun_key.tun_id),
915 IP_ARGS(tun_key.ip_src),
916 IP_ARGS(tun_key.ip_dst),
917 tun_key.ip_tos, tun_key.ip_ttl);
918
919 format_flags(ds, flow_tun_flag_to_string,
920 (uint32_t) tun_key.flags, ',');
921 ds_put_format(ds, "))");
922 }
923 break;
924
925 case OVS_KEY_ATTR_IN_PORT:
926 ds_put_format(ds, "(%"PRIu32")", nl_attr_get_u32(a));
927 break;
928
929 case OVS_KEY_ATTR_ETHERNET:
930 eth_key = nl_attr_get(a);
931 ds_put_format(ds, "(src="ETH_ADDR_FMT",dst="ETH_ADDR_FMT")",
932 ETH_ADDR_ARGS(eth_key->eth_src),
933 ETH_ADDR_ARGS(eth_key->eth_dst));
934 break;
935
936 case OVS_KEY_ATTR_VLAN:
937 ds_put_char(ds, '(');
938 format_vlan_tci(ds, nl_attr_get_be16(a));
939 ds_put_char(ds, ')');
940 break;
941
942 case OVS_KEY_ATTR_MPLS: {
943 const struct ovs_key_mpls *mpls_key = nl_attr_get(a);
944 ds_put_char(ds, '(');
945 format_mpls_lse(ds, mpls_key->mpls_lse);
946 ds_put_char(ds, ')');
947 break;
948 }
949
950 case OVS_KEY_ATTR_ETHERTYPE:
951 ds_put_format(ds, "(0x%04"PRIx16")",
952 ntohs(nl_attr_get_be16(a)));
953 break;
954
955 case OVS_KEY_ATTR_IPV4:
956 ipv4_key = nl_attr_get(a);
957 ds_put_format(ds, "(src="IP_FMT",dst="IP_FMT",proto=%"PRIu8
958 ",tos=%#"PRIx8",ttl=%"PRIu8",frag=%s)",
959 IP_ARGS(ipv4_key->ipv4_src),
960 IP_ARGS(ipv4_key->ipv4_dst),
961 ipv4_key->ipv4_proto, ipv4_key->ipv4_tos,
962 ipv4_key->ipv4_ttl,
963 ovs_frag_type_to_string(ipv4_key->ipv4_frag));
964 break;
965
966 case OVS_KEY_ATTR_IPV6: {
967 char src_str[INET6_ADDRSTRLEN];
968 char dst_str[INET6_ADDRSTRLEN];
969
970 ipv6_key = nl_attr_get(a);
971 inet_ntop(AF_INET6, ipv6_key->ipv6_src, src_str, sizeof src_str);
972 inet_ntop(AF_INET6, ipv6_key->ipv6_dst, dst_str, sizeof dst_str);
973
974 ds_put_format(ds, "(src=%s,dst=%s,label=%#"PRIx32",proto=%"PRIu8
975 ",tclass=%#"PRIx8",hlimit=%"PRIu8",frag=%s)",
976 src_str, dst_str, ntohl(ipv6_key->ipv6_label),
977 ipv6_key->ipv6_proto, ipv6_key->ipv6_tclass,
978 ipv6_key->ipv6_hlimit,
979 ovs_frag_type_to_string(ipv6_key->ipv6_frag));
980 break;
981 }
982
983 case OVS_KEY_ATTR_TCP:
984 tcp_key = nl_attr_get(a);
985 ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")",
986 ntohs(tcp_key->tcp_src), ntohs(tcp_key->tcp_dst));
987 break;
988
989 case OVS_KEY_ATTR_UDP:
990 udp_key = nl_attr_get(a);
991 ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")",
992 ntohs(udp_key->udp_src), ntohs(udp_key->udp_dst));
993 break;
994
995 case OVS_KEY_ATTR_ICMP:
996 icmp_key = nl_attr_get(a);
997 ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")",
998 icmp_key->icmp_type, icmp_key->icmp_code);
999 break;
1000
1001 case OVS_KEY_ATTR_ICMPV6:
1002 icmpv6_key = nl_attr_get(a);
1003 ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")",
1004 icmpv6_key->icmpv6_type, icmpv6_key->icmpv6_code);
1005 break;
1006
1007 case OVS_KEY_ATTR_ARP:
1008 arp_key = nl_attr_get(a);
1009 ds_put_format(ds, "(sip="IP_FMT",tip="IP_FMT",op=%"PRIu16","
1010 "sha="ETH_ADDR_FMT",tha="ETH_ADDR_FMT")",
1011 IP_ARGS(arp_key->arp_sip), IP_ARGS(arp_key->arp_tip),
1012 ntohs(arp_key->arp_op), ETH_ADDR_ARGS(arp_key->arp_sha),
1013 ETH_ADDR_ARGS(arp_key->arp_tha));
1014 break;
1015
1016 case OVS_KEY_ATTR_ND: {
1017 char target[INET6_ADDRSTRLEN];
1018
1019 nd_key = nl_attr_get(a);
1020 inet_ntop(AF_INET6, nd_key->nd_target, target, sizeof target);
1021
1022 ds_put_format(ds, "(target=%s", target);
1023 if (!eth_addr_is_zero(nd_key->nd_sll)) {
1024 ds_put_format(ds, ",sll="ETH_ADDR_FMT,
1025 ETH_ADDR_ARGS(nd_key->nd_sll));
1026 }
1027 if (!eth_addr_is_zero(nd_key->nd_tll)) {
1028 ds_put_format(ds, ",tll="ETH_ADDR_FMT,
1029 ETH_ADDR_ARGS(nd_key->nd_tll));
1030 }
1031 ds_put_char(ds, ')');
1032 break;
1033 }
1034
1035 case OVS_KEY_ATTR_UNSPEC:
1036 case __OVS_KEY_ATTR_MAX:
1037 default:
1038 format_generic_odp_key(a, ds);
1039 break;
1040 }
1041 }
1042
1043 /* Appends to 'ds' a string representation of the 'key_len' bytes of
1044 * OVS_KEY_ATTR_* attributes in 'key'. */
1045 void
1046 odp_flow_key_format(const struct nlattr *key, size_t key_len, struct ds *ds)
1047 {
1048 if (key_len) {
1049 const struct nlattr *a;
1050 unsigned int left;
1051
1052 NL_ATTR_FOR_EACH (a, left, key, key_len) {
1053 if (a != key) {
1054 ds_put_char(ds, ',');
1055 }
1056 format_odp_key_attr(a, ds);
1057 }
1058 if (left) {
1059 int i;
1060
1061 if (left == key_len) {
1062 ds_put_cstr(ds, "<empty>");
1063 }
1064 ds_put_format(ds, ",***%u leftover bytes*** (", left);
1065 for (i = 0; i < left; i++) {
1066 ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
1067 }
1068 ds_put_char(ds, ')');
1069 }
1070 } else {
1071 ds_put_cstr(ds, "<empty>");
1072 }
1073 }
1074
1075 static int
1076 put_nd_key(int n, const char *nd_target_s,
1077 const uint8_t *nd_sll, const uint8_t *nd_tll, struct ofpbuf *key)
1078 {
1079 struct ovs_key_nd nd_key;
1080
1081 memset(&nd_key, 0, sizeof nd_key);
1082 if (inet_pton(AF_INET6, nd_target_s, nd_key.nd_target) != 1) {
1083 return -EINVAL;
1084 }
1085 if (nd_sll) {
1086 memcpy(nd_key.nd_sll, nd_sll, ETH_ADDR_LEN);
1087 }
1088 if (nd_tll) {
1089 memcpy(nd_key.nd_tll, nd_tll, ETH_ADDR_LEN);
1090 }
1091 nl_msg_put_unspec(key, OVS_KEY_ATTR_ND, &nd_key, sizeof nd_key);
1092 return n;
1093 }
1094
1095 static bool
1096 ovs_frag_type_from_string(const char *s, enum ovs_frag_type *type)
1097 {
1098 if (!strcasecmp(s, "no")) {
1099 *type = OVS_FRAG_TYPE_NONE;
1100 } else if (!strcasecmp(s, "first")) {
1101 *type = OVS_FRAG_TYPE_FIRST;
1102 } else if (!strcasecmp(s, "later")) {
1103 *type = OVS_FRAG_TYPE_LATER;
1104 } else {
1105 return false;
1106 }
1107 return true;
1108 }
1109
1110 static ovs_be32
1111 mpls_lse_from_components(int mpls_label, int mpls_tc, int mpls_ttl, int mpls_bos)
1112 {
1113 return (htonl((mpls_label << MPLS_LABEL_SHIFT) |
1114 (mpls_tc << MPLS_TC_SHIFT) |
1115 (mpls_ttl << MPLS_TTL_SHIFT) |
1116 (mpls_bos << MPLS_BOS_SHIFT)));
1117 }
1118
1119 static int
1120 parse_odp_key_attr(const char *s, const struct simap *port_names,
1121 struct ofpbuf *key)
1122 {
1123 /* Many of the sscanf calls in this function use oversized destination
1124 * fields because some sscanf() implementations truncate the range of %i
1125 * directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a
1126 * value of 0x7fff. The other alternatives are to allow only a single
1127 * radix (e.g. decimal or hexadecimal) or to write more sophisticated
1128 * parsers.
1129 *
1130 * The tun_id parser has to use an alternative approach because there is no
1131 * type larger than 64 bits. */
1132
1133 {
1134 unsigned long long int priority;
1135 int n = -1;
1136
1137 if (sscanf(s, "skb_priority(%llx)%n", &priority, &n) > 0 && n > 0) {
1138 nl_msg_put_u32(key, OVS_KEY_ATTR_PRIORITY, priority);
1139 return n;
1140 }
1141 }
1142
1143 {
1144 unsigned long long int mark;
1145 int n = -1;
1146
1147 if (sscanf(s, "skb_mark(%llx)%n", &mark, &n) > 0 && n > 0) {
1148 nl_msg_put_u32(key, OVS_KEY_ATTR_SKB_MARK, mark);
1149 return n;
1150 }
1151 }
1152
1153 {
1154 char tun_id_s[32];
1155 int tos, ttl;
1156 struct flow_tnl tun_key;
1157 int n = -1;
1158
1159 if (sscanf(s, "tunnel(tun_id=%31[x0123456789abcdefABCDEF],"
1160 "src="IP_SCAN_FMT",dst="IP_SCAN_FMT
1161 ",tos=%i,ttl=%i,flags%n", tun_id_s,
1162 IP_SCAN_ARGS(&tun_key.ip_src),
1163 IP_SCAN_ARGS(&tun_key.ip_dst), &tos, &ttl,
1164 &n) > 0 && n > 0) {
1165 int res;
1166 uint32_t flags;
1167
1168 tun_key.tun_id = htonll(strtoull(tun_id_s, NULL, 0));
1169 tun_key.ip_tos = tos;
1170 tun_key.ip_ttl = ttl;
1171 res = parse_flags(&s[n], flow_tun_flag_to_string, &flags);
1172 tun_key.flags = (uint16_t) flags;
1173
1174 if (res < 0) {
1175 return res;
1176 }
1177 n += res;
1178 if (s[n] != ')') {
1179 return -EINVAL;
1180 }
1181 n++;
1182 tun_key_to_attr(key, &tun_key);
1183 return n;
1184 }
1185 }
1186
1187 {
1188 unsigned long long int in_port;
1189 int n = -1;
1190
1191 if (sscanf(s, "in_port(%lli)%n", &in_port, &n) > 0 && n > 0) {
1192 nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, in_port);
1193 return n;
1194 }
1195 }
1196
1197 if (port_names && !strncmp(s, "in_port(", 8)) {
1198 const char *name;
1199 const struct simap_node *node;
1200 int name_len;
1201
1202 name = s + 8;
1203 name_len = strcspn(s, ")");
1204 node = simap_find_len(port_names, name, name_len);
1205 if (node) {
1206 nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, node->data);
1207 return 8 + name_len + 1;
1208 }
1209 }
1210
1211 {
1212 struct ovs_key_ethernet eth_key;
1213 int n = -1;
1214
1215 if (sscanf(s,
1216 "eth(src="ETH_ADDR_SCAN_FMT",dst="ETH_ADDR_SCAN_FMT")%n",
1217 ETH_ADDR_SCAN_ARGS(eth_key.eth_src),
1218 ETH_ADDR_SCAN_ARGS(eth_key.eth_dst), &n) > 0 && n > 0) {
1219 nl_msg_put_unspec(key, OVS_KEY_ATTR_ETHERNET,
1220 &eth_key, sizeof eth_key);
1221 return n;
1222 }
1223 }
1224
1225 {
1226 uint16_t vid;
1227 int pcp;
1228 int cfi;
1229 int n = -1;
1230
1231 if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i)%n", &vid, &pcp, &n) > 0
1232 && n > 0)) {
1233 nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN,
1234 htons((vid << VLAN_VID_SHIFT) |
1235 (pcp << VLAN_PCP_SHIFT) |
1236 VLAN_CFI));
1237 return n;
1238 } else if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i,cfi=%i)%n",
1239 &vid, &pcp, &cfi, &n) > 0
1240 && n > 0)) {
1241 nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN,
1242 htons((vid << VLAN_VID_SHIFT) |
1243 (pcp << VLAN_PCP_SHIFT) |
1244 (cfi ? VLAN_CFI : 0)));
1245 return n;
1246 }
1247 }
1248
1249 {
1250 int eth_type;
1251 int n = -1;
1252
1253 if (sscanf(s, "eth_type(%i)%n", &eth_type, &n) > 0 && n > 0) {
1254 nl_msg_put_be16(key, OVS_KEY_ATTR_ETHERTYPE, htons(eth_type));
1255 return n;
1256 }
1257 }
1258
1259 {
1260 int label, tc, ttl, bos;
1261 int n = -1;
1262
1263 if (sscanf(s, "mpls(label=%"SCNi32",tc=%i,ttl=%i,bos=%i)%n",
1264 &label, &tc, &ttl, &bos, &n) > 0 &&
1265 n > 0) {
1266 struct ovs_key_mpls *mpls;
1267
1268 mpls = nl_msg_put_unspec_uninit(key, OVS_KEY_ATTR_MPLS,
1269 sizeof *mpls);
1270 mpls->mpls_lse = mpls_lse_from_components(label, tc, ttl, bos);
1271 return n;
1272 }
1273 }
1274
1275 {
1276 ovs_be32 ipv4_src;
1277 ovs_be32 ipv4_dst;
1278 int ipv4_proto;
1279 int ipv4_tos;
1280 int ipv4_ttl;
1281 char frag[8];
1282 enum ovs_frag_type ipv4_frag;
1283 int n = -1;
1284
1285 if (sscanf(s, "ipv4(src="IP_SCAN_FMT",dst="IP_SCAN_FMT","
1286 "proto=%i,tos=%i,ttl=%i,frag=%7[a-z])%n",
1287 IP_SCAN_ARGS(&ipv4_src), IP_SCAN_ARGS(&ipv4_dst),
1288 &ipv4_proto, &ipv4_tos, &ipv4_ttl, frag, &n) > 0
1289 && n > 0
1290 && ovs_frag_type_from_string(frag, &ipv4_frag)) {
1291 struct ovs_key_ipv4 ipv4_key;
1292
1293 ipv4_key.ipv4_src = ipv4_src;
1294 ipv4_key.ipv4_dst = ipv4_dst;
1295 ipv4_key.ipv4_proto = ipv4_proto;
1296 ipv4_key.ipv4_tos = ipv4_tos;
1297 ipv4_key.ipv4_ttl = ipv4_ttl;
1298 ipv4_key.ipv4_frag = ipv4_frag;
1299 nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV4,
1300 &ipv4_key, sizeof ipv4_key);
1301 return n;
1302 }
1303 }
1304
1305 {
1306 char ipv6_src_s[IPV6_SCAN_LEN + 1];
1307 char ipv6_dst_s[IPV6_SCAN_LEN + 1];
1308 int ipv6_label;
1309 int ipv6_proto;
1310 int ipv6_tclass;
1311 int ipv6_hlimit;
1312 char frag[8];
1313 enum ovs_frag_type ipv6_frag;
1314 int n = -1;
1315
1316 if (sscanf(s, "ipv6(src="IPV6_SCAN_FMT",dst="IPV6_SCAN_FMT","
1317 "label=%i,proto=%i,tclass=%i,hlimit=%i,frag=%7[a-z])%n",
1318 ipv6_src_s, ipv6_dst_s, &ipv6_label,
1319 &ipv6_proto, &ipv6_tclass, &ipv6_hlimit, frag, &n) > 0
1320 && n > 0
1321 && ovs_frag_type_from_string(frag, &ipv6_frag)) {
1322 struct ovs_key_ipv6 ipv6_key;
1323
1324 if (inet_pton(AF_INET6, ipv6_src_s, &ipv6_key.ipv6_src) != 1 ||
1325 inet_pton(AF_INET6, ipv6_dst_s, &ipv6_key.ipv6_dst) != 1) {
1326 return -EINVAL;
1327 }
1328 ipv6_key.ipv6_label = htonl(ipv6_label);
1329 ipv6_key.ipv6_proto = ipv6_proto;
1330 ipv6_key.ipv6_tclass = ipv6_tclass;
1331 ipv6_key.ipv6_hlimit = ipv6_hlimit;
1332 ipv6_key.ipv6_frag = ipv6_frag;
1333 nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV6,
1334 &ipv6_key, sizeof ipv6_key);
1335 return n;
1336 }
1337 }
1338
1339 {
1340 int tcp_src;
1341 int tcp_dst;
1342 int n = -1;
1343
1344 if (sscanf(s, "tcp(src=%i,dst=%i)%n",&tcp_src, &tcp_dst, &n) > 0
1345 && n > 0) {
1346 struct ovs_key_tcp tcp_key;
1347
1348 tcp_key.tcp_src = htons(tcp_src);
1349 tcp_key.tcp_dst = htons(tcp_dst);
1350 nl_msg_put_unspec(key, OVS_KEY_ATTR_TCP, &tcp_key, sizeof tcp_key);
1351 return n;
1352 }
1353 }
1354
1355 {
1356 int udp_src;
1357 int udp_dst;
1358 int n = -1;
1359
1360 if (sscanf(s, "udp(src=%i,dst=%i)%n", &udp_src, &udp_dst, &n) > 0
1361 && n > 0) {
1362 struct ovs_key_udp udp_key;
1363
1364 udp_key.udp_src = htons(udp_src);
1365 udp_key.udp_dst = htons(udp_dst);
1366 nl_msg_put_unspec(key, OVS_KEY_ATTR_UDP, &udp_key, sizeof udp_key);
1367 return n;
1368 }
1369 }
1370
1371 {
1372 int icmp_type;
1373 int icmp_code;
1374 int n = -1;
1375
1376 if (sscanf(s, "icmp(type=%i,code=%i)%n",
1377 &icmp_type, &icmp_code, &n) > 0
1378 && n > 0) {
1379 struct ovs_key_icmp icmp_key;
1380
1381 icmp_key.icmp_type = icmp_type;
1382 icmp_key.icmp_code = icmp_code;
1383 nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMP,
1384 &icmp_key, sizeof icmp_key);
1385 return n;
1386 }
1387 }
1388
1389 {
1390 struct ovs_key_icmpv6 icmpv6_key;
1391 int n = -1;
1392
1393 if (sscanf(s, "icmpv6(type=%"SCNi8",code=%"SCNi8")%n",
1394 &icmpv6_key.icmpv6_type, &icmpv6_key.icmpv6_code,&n) > 0
1395 && n > 0) {
1396 nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMPV6,
1397 &icmpv6_key, sizeof icmpv6_key);
1398 return n;
1399 }
1400 }
1401
1402 {
1403 ovs_be32 arp_sip;
1404 ovs_be32 arp_tip;
1405 int arp_op;
1406 uint8_t arp_sha[ETH_ADDR_LEN];
1407 uint8_t arp_tha[ETH_ADDR_LEN];
1408 int n = -1;
1409
1410 if (sscanf(s, "arp(sip="IP_SCAN_FMT",tip="IP_SCAN_FMT","
1411 "op=%i,sha="ETH_ADDR_SCAN_FMT",tha="ETH_ADDR_SCAN_FMT")%n",
1412 IP_SCAN_ARGS(&arp_sip),
1413 IP_SCAN_ARGS(&arp_tip),
1414 &arp_op,
1415 ETH_ADDR_SCAN_ARGS(arp_sha),
1416 ETH_ADDR_SCAN_ARGS(arp_tha), &n) > 0 && n > 0) {
1417 struct ovs_key_arp arp_key;
1418
1419 memset(&arp_key, 0, sizeof arp_key);
1420 arp_key.arp_sip = arp_sip;
1421 arp_key.arp_tip = arp_tip;
1422 arp_key.arp_op = htons(arp_op);
1423 memcpy(arp_key.arp_sha, arp_sha, ETH_ADDR_LEN);
1424 memcpy(arp_key.arp_tha, arp_tha, ETH_ADDR_LEN);
1425 nl_msg_put_unspec(key, OVS_KEY_ATTR_ARP, &arp_key, sizeof arp_key);
1426 return n;
1427 }
1428 }
1429
1430 {
1431 char nd_target_s[IPV6_SCAN_LEN + 1];
1432 uint8_t nd_sll[ETH_ADDR_LEN];
1433 uint8_t nd_tll[ETH_ADDR_LEN];
1434 int n = -1;
1435
1436 if (sscanf(s, "nd(target="IPV6_SCAN_FMT")%n",
1437 nd_target_s, &n) > 0 && n > 0) {
1438 return put_nd_key(n, nd_target_s, NULL, NULL, key);
1439 }
1440 if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT")%n",
1441 nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll), &n) > 0
1442 && n > 0) {
1443 return put_nd_key(n, nd_target_s, nd_sll, NULL, key);
1444 }
1445 if (sscanf(s, "nd(target="IPV6_SCAN_FMT",tll="ETH_ADDR_SCAN_FMT")%n",
1446 nd_target_s, ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0
1447 && n > 0) {
1448 return put_nd_key(n, nd_target_s, NULL, nd_tll, key);
1449 }
1450 if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT","
1451 "tll="ETH_ADDR_SCAN_FMT")%n",
1452 nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll),
1453 ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0
1454 && n > 0) {
1455 return put_nd_key(n, nd_target_s, nd_sll, nd_tll, key);
1456 }
1457 }
1458
1459 if (!strncmp(s, "encap(", 6)) {
1460 const char *start = s;
1461 size_t encap;
1462
1463 encap = nl_msg_start_nested(key, OVS_KEY_ATTR_ENCAP);
1464
1465 s += 6;
1466 for (;;) {
1467 int retval;
1468
1469 s += strspn(s, ", \t\r\n");
1470 if (!*s) {
1471 return -EINVAL;
1472 } else if (*s == ')') {
1473 break;
1474 }
1475
1476 retval = parse_odp_key_attr(s, port_names, key);
1477 if (retval < 0) {
1478 return retval;
1479 }
1480 s += retval;
1481 }
1482 s++;
1483
1484 nl_msg_end_nested(key, encap);
1485
1486 return s - start;
1487 }
1488
1489 return -EINVAL;
1490 }
1491
1492 /* Parses the string representation of a datapath flow key, in the
1493 * format output by odp_flow_key_format(). Returns 0 if successful,
1494 * otherwise a positive errno value. On success, the flow key is
1495 * appended to 'key' as a series of Netlink attributes. On failure, no
1496 * data is appended to 'key'. Either way, 'key''s data might be
1497 * reallocated.
1498 *
1499 * If 'port_names' is nonnull, it points to an simap that maps from a port name
1500 * to a port number. (Port names may be used instead of port numbers in
1501 * in_port.)
1502 *
1503 * On success, the attributes appended to 'key' are individually syntactically
1504 * valid, but they may not be valid as a sequence. 'key' might, for example,
1505 * have duplicated keys. odp_flow_key_to_flow() will detect those errors. */
1506 int
1507 odp_flow_key_from_string(const char *s, const struct simap *port_names,
1508 struct ofpbuf *key)
1509 {
1510 const size_t old_size = key->size;
1511 for (;;) {
1512 int retval;
1513
1514 s += strspn(s, delimiters);
1515 if (!*s) {
1516 return 0;
1517 }
1518
1519 retval = parse_odp_key_attr(s, port_names, key);
1520 if (retval < 0) {
1521 key->size = old_size;
1522 return -retval;
1523 }
1524 s += retval;
1525 }
1526
1527 return 0;
1528 }
1529
1530 static uint8_t
1531 ovs_to_odp_frag(uint8_t nw_frag)
1532 {
1533 return (nw_frag == 0 ? OVS_FRAG_TYPE_NONE
1534 : nw_frag == FLOW_NW_FRAG_ANY ? OVS_FRAG_TYPE_FIRST
1535 : OVS_FRAG_TYPE_LATER);
1536 }
1537
1538 /* Appends a representation of 'flow' as OVS_KEY_ATTR_* attributes to 'buf'.
1539 * 'flow->in_port' is ignored (since it is likely to be an OpenFlow port
1540 * number rather than a datapath port number). Instead, if 'odp_in_port'
1541 * is anything other than OVSP_NONE, it is included in 'buf' as the input
1542 * port.
1543 *
1544 * 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be
1545 * capable of being expanded to allow for that much space. */
1546 void
1547 odp_flow_key_from_flow(struct ofpbuf *buf, const struct flow *flow,
1548 uint32_t odp_in_port)
1549 {
1550 struct ovs_key_ethernet *eth_key;
1551 size_t encap;
1552
1553 if (flow->skb_priority) {
1554 nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, flow->skb_priority);
1555 }
1556
1557 if (flow->tunnel.ip_dst) {
1558 tun_key_to_attr(buf, &flow->tunnel);
1559 }
1560
1561 if (flow->skb_mark) {
1562 nl_msg_put_u32(buf, OVS_KEY_ATTR_SKB_MARK, flow->skb_mark);
1563 }
1564
1565 if (odp_in_port != OVSP_NONE) {
1566 nl_msg_put_u32(buf, OVS_KEY_ATTR_IN_PORT, odp_in_port);
1567 }
1568
1569 eth_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ETHERNET,
1570 sizeof *eth_key);
1571 memcpy(eth_key->eth_src, flow->dl_src, ETH_ADDR_LEN);
1572 memcpy(eth_key->eth_dst, flow->dl_dst, ETH_ADDR_LEN);
1573
1574 if (flow->vlan_tci != htons(0) || flow->dl_type == htons(ETH_TYPE_VLAN)) {
1575 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_TYPE_VLAN));
1576 nl_msg_put_be16(buf, OVS_KEY_ATTR_VLAN, flow->vlan_tci);
1577 encap = nl_msg_start_nested(buf, OVS_KEY_ATTR_ENCAP);
1578 if (flow->vlan_tci == htons(0)) {
1579 goto unencap;
1580 }
1581 } else {
1582 encap = 0;
1583 }
1584
1585 if (ntohs(flow->dl_type) < ETH_TYPE_MIN) {
1586 goto unencap;
1587 }
1588
1589 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, flow->dl_type);
1590
1591 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1592 struct ovs_key_ipv4 *ipv4_key;
1593
1594 ipv4_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV4,
1595 sizeof *ipv4_key);
1596 ipv4_key->ipv4_src = flow->nw_src;
1597 ipv4_key->ipv4_dst = flow->nw_dst;
1598 ipv4_key->ipv4_proto = flow->nw_proto;
1599 ipv4_key->ipv4_tos = flow->nw_tos;
1600 ipv4_key->ipv4_ttl = flow->nw_ttl;
1601 ipv4_key->ipv4_frag = ovs_to_odp_frag(flow->nw_frag);
1602 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1603 struct ovs_key_ipv6 *ipv6_key;
1604
1605 ipv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV6,
1606 sizeof *ipv6_key);
1607 memcpy(ipv6_key->ipv6_src, &flow->ipv6_src, sizeof ipv6_key->ipv6_src);
1608 memcpy(ipv6_key->ipv6_dst, &flow->ipv6_dst, sizeof ipv6_key->ipv6_dst);
1609 ipv6_key->ipv6_label = flow->ipv6_label;
1610 ipv6_key->ipv6_proto = flow->nw_proto;
1611 ipv6_key->ipv6_tclass = flow->nw_tos;
1612 ipv6_key->ipv6_hlimit = flow->nw_ttl;
1613 ipv6_key->ipv6_frag = ovs_to_odp_frag(flow->nw_frag);
1614 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1615 flow->dl_type == htons(ETH_TYPE_RARP)) {
1616 struct ovs_key_arp *arp_key;
1617
1618 arp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ARP,
1619 sizeof *arp_key);
1620 memset(arp_key, 0, sizeof *arp_key);
1621 arp_key->arp_sip = flow->nw_src;
1622 arp_key->arp_tip = flow->nw_dst;
1623 arp_key->arp_op = htons(flow->nw_proto);
1624 memcpy(arp_key->arp_sha, flow->arp_sha, ETH_ADDR_LEN);
1625 memcpy(arp_key->arp_tha, flow->arp_tha, ETH_ADDR_LEN);
1626 }
1627
1628 if (flow->mpls_depth) {
1629 struct ovs_key_mpls *mpls_key;
1630
1631 mpls_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_MPLS,
1632 sizeof *mpls_key);
1633 mpls_key->mpls_lse = flow->mpls_lse;
1634 }
1635
1636 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1637 if (flow->nw_proto == IPPROTO_TCP) {
1638 struct ovs_key_tcp *tcp_key;
1639
1640 tcp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_TCP,
1641 sizeof *tcp_key);
1642 tcp_key->tcp_src = flow->tp_src;
1643 tcp_key->tcp_dst = flow->tp_dst;
1644 } else if (flow->nw_proto == IPPROTO_UDP) {
1645 struct ovs_key_udp *udp_key;
1646
1647 udp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_UDP,
1648 sizeof *udp_key);
1649 udp_key->udp_src = flow->tp_src;
1650 udp_key->udp_dst = flow->tp_dst;
1651 } else if (flow->dl_type == htons(ETH_TYPE_IP)
1652 && flow->nw_proto == IPPROTO_ICMP) {
1653 struct ovs_key_icmp *icmp_key;
1654
1655 icmp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMP,
1656 sizeof *icmp_key);
1657 icmp_key->icmp_type = ntohs(flow->tp_src);
1658 icmp_key->icmp_code = ntohs(flow->tp_dst);
1659 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)
1660 && flow->nw_proto == IPPROTO_ICMPV6) {
1661 struct ovs_key_icmpv6 *icmpv6_key;
1662
1663 icmpv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMPV6,
1664 sizeof *icmpv6_key);
1665 icmpv6_key->icmpv6_type = ntohs(flow->tp_src);
1666 icmpv6_key->icmpv6_code = ntohs(flow->tp_dst);
1667
1668 if (icmpv6_key->icmpv6_type == ND_NEIGHBOR_SOLICIT
1669 || icmpv6_key->icmpv6_type == ND_NEIGHBOR_ADVERT) {
1670 struct ovs_key_nd *nd_key;
1671
1672 nd_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ND,
1673 sizeof *nd_key);
1674 memcpy(nd_key->nd_target, &flow->nd_target,
1675 sizeof nd_key->nd_target);
1676 memcpy(nd_key->nd_sll, flow->arp_sha, ETH_ADDR_LEN);
1677 memcpy(nd_key->nd_tll, flow->arp_tha, ETH_ADDR_LEN);
1678 }
1679 }
1680 }
1681
1682 unencap:
1683 if (encap) {
1684 nl_msg_end_nested(buf, encap);
1685 }
1686 }
1687
1688 uint32_t
1689 odp_flow_key_hash(const struct nlattr *key, size_t key_len)
1690 {
1691 BUILD_ASSERT_DECL(!(NLA_ALIGNTO % sizeof(uint32_t)));
1692 return hash_words((const uint32_t *) key, key_len / sizeof(uint32_t), 0);
1693 }
1694
1695 static void
1696 log_odp_key_attributes(struct vlog_rate_limit *rl, const char *title,
1697 uint64_t attrs, int out_of_range_attr,
1698 const struct nlattr *key, size_t key_len)
1699 {
1700 struct ds s;
1701 int i;
1702
1703 if (VLOG_DROP_DBG(rl)) {
1704 return;
1705 }
1706
1707 ds_init(&s);
1708 for (i = 0; i < 64; i++) {
1709 if (attrs & (UINT64_C(1) << i)) {
1710 ds_put_format(&s, " %s", ovs_key_attr_to_string(i));
1711 }
1712 }
1713 if (out_of_range_attr) {
1714 ds_put_format(&s, " %d (and possibly others)", out_of_range_attr);
1715 }
1716
1717 ds_put_cstr(&s, ": ");
1718 odp_flow_key_format(key, key_len, &s);
1719
1720 VLOG_DBG("%s:%s", title, ds_cstr(&s));
1721 ds_destroy(&s);
1722 }
1723
1724 static bool
1725 odp_to_ovs_frag(uint8_t odp_frag, struct flow *flow)
1726 {
1727 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1728
1729 if (odp_frag > OVS_FRAG_TYPE_LATER) {
1730 VLOG_ERR_RL(&rl, "invalid frag %"PRIu8" in flow key", odp_frag);
1731 return false;
1732 }
1733
1734 if (odp_frag != OVS_FRAG_TYPE_NONE) {
1735 flow->nw_frag |= FLOW_NW_FRAG_ANY;
1736 if (odp_frag == OVS_FRAG_TYPE_LATER) {
1737 flow->nw_frag |= FLOW_NW_FRAG_LATER;
1738 }
1739 }
1740 return true;
1741 }
1742
1743 static bool
1744 parse_flow_nlattrs(const struct nlattr *key, size_t key_len,
1745 const struct nlattr *attrs[], uint64_t *present_attrsp,
1746 int *out_of_range_attrp)
1747 {
1748 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
1749 const struct nlattr *nla;
1750 uint64_t present_attrs;
1751 size_t left;
1752
1753 BUILD_ASSERT(OVS_KEY_ATTR_MAX < CHAR_BIT * sizeof present_attrs);
1754 present_attrs = 0;
1755 *out_of_range_attrp = 0;
1756 NL_ATTR_FOR_EACH (nla, left, key, key_len) {
1757 uint16_t type = nl_attr_type(nla);
1758 size_t len = nl_attr_get_size(nla);
1759 int expected_len = odp_flow_key_attr_len(type);
1760
1761 if (len != expected_len && expected_len >= 0) {
1762 VLOG_ERR_RL(&rl, "attribute %s has length %zu but should have "
1763 "length %d", ovs_key_attr_to_string(type),
1764 len, expected_len);
1765 return false;
1766 }
1767
1768 if (type > OVS_KEY_ATTR_MAX) {
1769 *out_of_range_attrp = type;
1770 } else {
1771 if (present_attrs & (UINT64_C(1) << type)) {
1772 VLOG_ERR_RL(&rl, "duplicate %s attribute in flow key",
1773 ovs_key_attr_to_string(type));
1774 return false;
1775 }
1776
1777 present_attrs |= UINT64_C(1) << type;
1778 attrs[type] = nla;
1779 }
1780 }
1781 if (left) {
1782 VLOG_ERR_RL(&rl, "trailing garbage in flow key");
1783 return false;
1784 }
1785
1786 *present_attrsp = present_attrs;
1787 return true;
1788 }
1789
1790 static enum odp_key_fitness
1791 check_expectations(uint64_t present_attrs, int out_of_range_attr,
1792 uint64_t expected_attrs,
1793 const struct nlattr *key, size_t key_len)
1794 {
1795 uint64_t missing_attrs;
1796 uint64_t extra_attrs;
1797
1798 missing_attrs = expected_attrs & ~present_attrs;
1799 if (missing_attrs) {
1800 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
1801 log_odp_key_attributes(&rl, "expected but not present",
1802 missing_attrs, 0, key, key_len);
1803 return ODP_FIT_TOO_LITTLE;
1804 }
1805
1806 extra_attrs = present_attrs & ~expected_attrs;
1807 if (extra_attrs || out_of_range_attr) {
1808 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
1809 log_odp_key_attributes(&rl, "present but not expected",
1810 extra_attrs, out_of_range_attr, key, key_len);
1811 return ODP_FIT_TOO_MUCH;
1812 }
1813
1814 return ODP_FIT_PERFECT;
1815 }
1816
1817 static bool
1818 parse_ethertype(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
1819 uint64_t present_attrs, uint64_t *expected_attrs,
1820 struct flow *flow)
1821 {
1822 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1823
1824 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE)) {
1825 flow->dl_type = nl_attr_get_be16(attrs[OVS_KEY_ATTR_ETHERTYPE]);
1826 if (ntohs(flow->dl_type) < 1536) {
1827 VLOG_ERR_RL(&rl, "invalid Ethertype %"PRIu16" in flow key",
1828 ntohs(flow->dl_type));
1829 return false;
1830 }
1831 *expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE;
1832 } else {
1833 flow->dl_type = htons(FLOW_DL_TYPE_NONE);
1834 }
1835 return true;
1836 }
1837
1838 static enum odp_key_fitness
1839 parse_l2_5_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
1840 uint64_t present_attrs, int out_of_range_attr,
1841 uint64_t expected_attrs, struct flow *flow,
1842 const struct nlattr *key, size_t key_len)
1843 {
1844 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1845
1846 if (eth_type_mpls(flow->dl_type)) {
1847 expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_MPLS);
1848
1849 if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_MPLS))) {
1850 return ODP_FIT_TOO_LITTLE;
1851 }
1852 flow->mpls_lse = nl_attr_get_be32(attrs[OVS_KEY_ATTR_MPLS]);
1853 flow->mpls_depth++;
1854 } else if (flow->dl_type == htons(ETH_TYPE_IP)) {
1855 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV4;
1856 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV4)) {
1857 const struct ovs_key_ipv4 *ipv4_key;
1858
1859 ipv4_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV4]);
1860 flow->nw_src = ipv4_key->ipv4_src;
1861 flow->nw_dst = ipv4_key->ipv4_dst;
1862 flow->nw_proto = ipv4_key->ipv4_proto;
1863 flow->nw_tos = ipv4_key->ipv4_tos;
1864 flow->nw_ttl = ipv4_key->ipv4_ttl;
1865 if (!odp_to_ovs_frag(ipv4_key->ipv4_frag, flow)) {
1866 return ODP_FIT_ERROR;
1867 }
1868 }
1869 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1870 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV6;
1871 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV6)) {
1872 const struct ovs_key_ipv6 *ipv6_key;
1873
1874 ipv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV6]);
1875 memcpy(&flow->ipv6_src, ipv6_key->ipv6_src, sizeof flow->ipv6_src);
1876 memcpy(&flow->ipv6_dst, ipv6_key->ipv6_dst, sizeof flow->ipv6_dst);
1877 flow->ipv6_label = ipv6_key->ipv6_label;
1878 flow->nw_proto = ipv6_key->ipv6_proto;
1879 flow->nw_tos = ipv6_key->ipv6_tclass;
1880 flow->nw_ttl = ipv6_key->ipv6_hlimit;
1881 if (!odp_to_ovs_frag(ipv6_key->ipv6_frag, flow)) {
1882 return ODP_FIT_ERROR;
1883 }
1884 }
1885 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
1886 flow->dl_type == htons(ETH_TYPE_RARP)) {
1887 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ARP;
1888 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ARP)) {
1889 const struct ovs_key_arp *arp_key;
1890
1891 arp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ARP]);
1892 flow->nw_src = arp_key->arp_sip;
1893 flow->nw_dst = arp_key->arp_tip;
1894 if (arp_key->arp_op & htons(0xff00)) {
1895 VLOG_ERR_RL(&rl, "unsupported ARP opcode %"PRIu16" in flow "
1896 "key", ntohs(arp_key->arp_op));
1897 return ODP_FIT_ERROR;
1898 }
1899 flow->nw_proto = ntohs(arp_key->arp_op);
1900 memcpy(flow->arp_sha, arp_key->arp_sha, ETH_ADDR_LEN);
1901 memcpy(flow->arp_tha, arp_key->arp_tha, ETH_ADDR_LEN);
1902 }
1903 }
1904
1905 if (flow->nw_proto == IPPROTO_TCP
1906 && (flow->dl_type == htons(ETH_TYPE_IP) ||
1907 flow->dl_type == htons(ETH_TYPE_IPV6))
1908 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1909 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP;
1910 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP)) {
1911 const struct ovs_key_tcp *tcp_key;
1912
1913 tcp_key = nl_attr_get(attrs[OVS_KEY_ATTR_TCP]);
1914 flow->tp_src = tcp_key->tcp_src;
1915 flow->tp_dst = tcp_key->tcp_dst;
1916 }
1917 } else if (flow->nw_proto == IPPROTO_UDP
1918 && (flow->dl_type == htons(ETH_TYPE_IP) ||
1919 flow->dl_type == htons(ETH_TYPE_IPV6))
1920 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1921 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_UDP;
1922 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_UDP)) {
1923 const struct ovs_key_udp *udp_key;
1924
1925 udp_key = nl_attr_get(attrs[OVS_KEY_ATTR_UDP]);
1926 flow->tp_src = udp_key->udp_src;
1927 flow->tp_dst = udp_key->udp_dst;
1928 }
1929 } else if (flow->nw_proto == IPPROTO_ICMP
1930 && flow->dl_type == htons(ETH_TYPE_IP)
1931 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1932 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMP;
1933 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMP)) {
1934 const struct ovs_key_icmp *icmp_key;
1935
1936 icmp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMP]);
1937 flow->tp_src = htons(icmp_key->icmp_type);
1938 flow->tp_dst = htons(icmp_key->icmp_code);
1939 }
1940 } else if (flow->nw_proto == IPPROTO_ICMPV6
1941 && flow->dl_type == htons(ETH_TYPE_IPV6)
1942 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1943 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMPV6;
1944 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMPV6)) {
1945 const struct ovs_key_icmpv6 *icmpv6_key;
1946
1947 icmpv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMPV6]);
1948 flow->tp_src = htons(icmpv6_key->icmpv6_type);
1949 flow->tp_dst = htons(icmpv6_key->icmpv6_code);
1950
1951 if (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
1952 flow->tp_src == htons(ND_NEIGHBOR_ADVERT)) {
1953 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
1954 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ND)) {
1955 const struct ovs_key_nd *nd_key;
1956
1957 nd_key = nl_attr_get(attrs[OVS_KEY_ATTR_ND]);
1958 memcpy(&flow->nd_target, nd_key->nd_target,
1959 sizeof flow->nd_target);
1960 memcpy(flow->arp_sha, nd_key->nd_sll, ETH_ADDR_LEN);
1961 memcpy(flow->arp_tha, nd_key->nd_tll, ETH_ADDR_LEN);
1962 }
1963 }
1964 }
1965 }
1966
1967 return check_expectations(present_attrs, out_of_range_attr, expected_attrs,
1968 key, key_len);
1969 }
1970
1971 /* Parse 802.1Q header then encapsulated L3 attributes. */
1972 static enum odp_key_fitness
1973 parse_8021q_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
1974 uint64_t present_attrs, int out_of_range_attr,
1975 uint64_t expected_attrs, struct flow *flow,
1976 const struct nlattr *key, size_t key_len)
1977 {
1978 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1979
1980 const struct nlattr *encap
1981 = (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)
1982 ? attrs[OVS_KEY_ATTR_ENCAP] : NULL);
1983 enum odp_key_fitness encap_fitness;
1984 enum odp_key_fitness fitness;
1985 ovs_be16 tci;
1986
1987 /* Calulate fitness of outer attributes. */
1988 expected_attrs |= ((UINT64_C(1) << OVS_KEY_ATTR_VLAN) |
1989 (UINT64_C(1) << OVS_KEY_ATTR_ENCAP));
1990 fitness = check_expectations(present_attrs, out_of_range_attr,
1991 expected_attrs, key, key_len);
1992
1993 /* Get the VLAN TCI value. */
1994 if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN))) {
1995 return ODP_FIT_TOO_LITTLE;
1996 }
1997 tci = nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN]);
1998 if (tci == htons(0)) {
1999 /* Corner case for a truncated 802.1Q header. */
2000 if (fitness == ODP_FIT_PERFECT && nl_attr_get_size(encap)) {
2001 return ODP_FIT_TOO_MUCH;
2002 }
2003 return fitness;
2004 } else if (!(tci & htons(VLAN_CFI))) {
2005 VLOG_ERR_RL(&rl, "OVS_KEY_ATTR_VLAN 0x%04"PRIx16" is nonzero "
2006 "but CFI bit is not set", ntohs(tci));
2007 return ODP_FIT_ERROR;
2008 }
2009
2010 /* Set vlan_tci.
2011 * Remove the TPID from dl_type since it's not the real Ethertype. */
2012 flow->vlan_tci = tci;
2013 flow->dl_type = htons(0);
2014
2015 /* Now parse the encapsulated attributes. */
2016 if (!parse_flow_nlattrs(nl_attr_get(encap), nl_attr_get_size(encap),
2017 attrs, &present_attrs, &out_of_range_attr)) {
2018 return ODP_FIT_ERROR;
2019 }
2020 expected_attrs = 0;
2021
2022 if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) {
2023 return ODP_FIT_ERROR;
2024 }
2025 encap_fitness = parse_l2_5_onward(attrs, present_attrs, out_of_range_attr,
2026 expected_attrs, flow, key, key_len);
2027
2028 /* The overall fitness is the worse of the outer and inner attributes. */
2029 return MAX(fitness, encap_fitness);
2030 }
2031
2032 /* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a flow
2033 * structure in 'flow'. Returns an ODP_FIT_* value that indicates how well
2034 * 'key' fits our expectations for what a flow key should contain.
2035 *
2036 * The 'in_port' will be the datapath's understanding of the port. The
2037 * caller will need to translate with odp_port_to_ofp_port() if the
2038 * OpenFlow port is needed.
2039 *
2040 * This function doesn't take the packet itself as an argument because none of
2041 * the currently understood OVS_KEY_ATTR_* attributes require it. Currently,
2042 * it is always possible to infer which additional attribute(s) should appear
2043 * by looking at the attributes for lower-level protocols, e.g. if the network
2044 * protocol in OVS_KEY_ATTR_IPV4 or OVS_KEY_ATTR_IPV6 is IPPROTO_TCP then we
2045 * know that a OVS_KEY_ATTR_TCP attribute must appear and that otherwise it
2046 * must be absent. */
2047 enum odp_key_fitness
2048 odp_flow_key_to_flow(const struct nlattr *key, size_t key_len,
2049 struct flow *flow)
2050 {
2051 const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1];
2052 uint64_t expected_attrs;
2053 uint64_t present_attrs;
2054 int out_of_range_attr;
2055
2056 memset(flow, 0, sizeof *flow);
2057
2058 /* Parse attributes. */
2059 if (!parse_flow_nlattrs(key, key_len, attrs, &present_attrs,
2060 &out_of_range_attr)) {
2061 return ODP_FIT_ERROR;
2062 }
2063 expected_attrs = 0;
2064
2065 /* Metadata. */
2066 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_PRIORITY)) {
2067 flow->skb_priority = nl_attr_get_u32(attrs[OVS_KEY_ATTR_PRIORITY]);
2068 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_PRIORITY;
2069 }
2070
2071 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK)) {
2072 flow->skb_mark = nl_attr_get_u32(attrs[OVS_KEY_ATTR_SKB_MARK]);
2073 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK;
2074 }
2075
2076 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TUNNEL)) {
2077 enum odp_key_fitness res;
2078
2079 res = tun_key_from_attr(attrs[OVS_KEY_ATTR_TUNNEL], &flow->tunnel);
2080 if (res == ODP_FIT_ERROR) {
2081 return ODP_FIT_ERROR;
2082 } else if (res == ODP_FIT_PERFECT) {
2083 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TUNNEL;
2084 }
2085 }
2086
2087 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IN_PORT)) {
2088 flow->in_port = nl_attr_get_u32(attrs[OVS_KEY_ATTR_IN_PORT]);
2089 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IN_PORT;
2090 } else {
2091 flow->in_port = OVSP_NONE;
2092 }
2093
2094 /* Ethernet header. */
2095 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERNET)) {
2096 const struct ovs_key_ethernet *eth_key;
2097
2098 eth_key = nl_attr_get(attrs[OVS_KEY_ATTR_ETHERNET]);
2099 memcpy(flow->dl_src, eth_key->eth_src, ETH_ADDR_LEN);
2100 memcpy(flow->dl_dst, eth_key->eth_dst, ETH_ADDR_LEN);
2101 }
2102 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
2103
2104 /* Get Ethertype or 802.1Q TPID or FLOW_DL_TYPE_NONE. */
2105 if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) {
2106 return ODP_FIT_ERROR;
2107 }
2108
2109 if (flow->dl_type == htons(ETH_TYPE_VLAN)) {
2110 return parse_8021q_onward(attrs, present_attrs, out_of_range_attr,
2111 expected_attrs, flow, key, key_len);
2112 }
2113 return parse_l2_5_onward(attrs, present_attrs, out_of_range_attr,
2114 expected_attrs, flow, key, key_len);
2115 }
2116
2117 /* Returns 'fitness' as a string, for use in debug messages. */
2118 const char *
2119 odp_key_fitness_to_string(enum odp_key_fitness fitness)
2120 {
2121 switch (fitness) {
2122 case ODP_FIT_PERFECT:
2123 return "OK";
2124 case ODP_FIT_TOO_MUCH:
2125 return "too_much";
2126 case ODP_FIT_TOO_LITTLE:
2127 return "too_little";
2128 case ODP_FIT_ERROR:
2129 return "error";
2130 default:
2131 return "<unknown>";
2132 }
2133 }
2134
2135 /* Appends an OVS_ACTION_ATTR_USERSPACE action to 'odp_actions' that specifies
2136 * Netlink PID 'pid'. If 'userdata' is nonnull, adds a userdata attribute
2137 * whose contents are the 'userdata_size' bytes at 'userdata' and returns the
2138 * offset within 'odp_actions' of the start of the cookie. (If 'userdata' is
2139 * null, then the return value is not meaningful.) */
2140 size_t
2141 odp_put_userspace_action(uint32_t pid,
2142 const void *userdata, size_t userdata_size,
2143 struct ofpbuf *odp_actions)
2144 {
2145 size_t userdata_ofs;
2146 size_t offset;
2147
2148 offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_USERSPACE);
2149 nl_msg_put_u32(odp_actions, OVS_USERSPACE_ATTR_PID, pid);
2150 if (userdata) {
2151 userdata_ofs = odp_actions->size + NLA_HDRLEN;
2152 nl_msg_put_unspec(odp_actions, OVS_USERSPACE_ATTR_USERDATA,
2153 userdata, userdata_size);
2154 } else {
2155 userdata_ofs = 0;
2156 }
2157 nl_msg_end_nested(odp_actions, offset);
2158
2159 return userdata_ofs;
2160 }
2161
2162 void
2163 odp_put_tunnel_action(const struct flow_tnl *tunnel,
2164 struct ofpbuf *odp_actions)
2165 {
2166 size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
2167 tun_key_to_attr(odp_actions, tunnel);
2168 nl_msg_end_nested(odp_actions, offset);
2169 }
2170 \f
2171 /* The commit_odp_actions() function and its helpers. */
2172
2173 static void
2174 commit_set_action(struct ofpbuf *odp_actions, enum ovs_key_attr key_type,
2175 const void *key, size_t key_size)
2176 {
2177 size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
2178 nl_msg_put_unspec(odp_actions, key_type, key, key_size);
2179 nl_msg_end_nested(odp_actions, offset);
2180 }
2181
2182 void
2183 odp_put_skb_mark_action(const uint32_t skb_mark,
2184 struct ofpbuf *odp_actions)
2185 {
2186 commit_set_action(odp_actions, OVS_KEY_ATTR_SKB_MARK, &skb_mark,
2187 sizeof(skb_mark));
2188 }
2189
2190 /* If any of the flow key data that ODP actions can modify are different in
2191 * 'base->tunnel' and 'flow->tunnel', appends a set_tunnel ODP action to
2192 * 'odp_actions' that change the flow tunneling information in key from
2193 * 'base->tunnel' into 'flow->tunnel', and then changes 'base->tunnel' in the
2194 * same way. In other words, operates the same as commit_odp_actions(), but
2195 * only on tunneling information. */
2196 void
2197 commit_odp_tunnel_action(const struct flow *flow, struct flow *base,
2198 struct ofpbuf *odp_actions)
2199 {
2200 /* A valid IPV4_TUNNEL must have non-zero ip_dst. */
2201 if (flow->tunnel.ip_dst) {
2202 if (!memcmp(&base->tunnel, &flow->tunnel, sizeof base->tunnel)) {
2203 return;
2204 }
2205 memcpy(&base->tunnel, &flow->tunnel, sizeof base->tunnel);
2206 odp_put_tunnel_action(&base->tunnel, odp_actions);
2207 }
2208 }
2209
2210 static void
2211 commit_set_ether_addr_action(const struct flow *flow, struct flow *base,
2212 struct ofpbuf *odp_actions)
2213 {
2214 struct ovs_key_ethernet eth_key;
2215
2216 if (eth_addr_equals(base->dl_src, flow->dl_src) &&
2217 eth_addr_equals(base->dl_dst, flow->dl_dst)) {
2218 return;
2219 }
2220
2221 memcpy(base->dl_src, flow->dl_src, ETH_ADDR_LEN);
2222 memcpy(base->dl_dst, flow->dl_dst, ETH_ADDR_LEN);
2223
2224 memcpy(eth_key.eth_src, base->dl_src, ETH_ADDR_LEN);
2225 memcpy(eth_key.eth_dst, base->dl_dst, ETH_ADDR_LEN);
2226
2227 commit_set_action(odp_actions, OVS_KEY_ATTR_ETHERNET,
2228 &eth_key, sizeof(eth_key));
2229 }
2230
2231 static void
2232 commit_vlan_action(const struct flow *flow, struct flow *base,
2233 struct ofpbuf *odp_actions)
2234 {
2235 if (base->vlan_tci == flow->vlan_tci) {
2236 return;
2237 }
2238
2239 if (base->vlan_tci & htons(VLAN_CFI)) {
2240 nl_msg_put_flag(odp_actions, OVS_ACTION_ATTR_POP_VLAN);
2241 }
2242
2243 if (flow->vlan_tci & htons(VLAN_CFI)) {
2244 struct ovs_action_push_vlan vlan;
2245
2246 vlan.vlan_tpid = htons(ETH_TYPE_VLAN);
2247 vlan.vlan_tci = flow->vlan_tci;
2248 nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_PUSH_VLAN,
2249 &vlan, sizeof vlan);
2250 }
2251 base->vlan_tci = flow->vlan_tci;
2252 }
2253
2254 static void
2255 commit_mpls_action(const struct flow *flow, struct flow *base,
2256 struct ofpbuf *odp_actions)
2257 {
2258 if (flow->mpls_lse == base->mpls_lse &&
2259 flow->mpls_depth == base->mpls_depth) {
2260 return;
2261 }
2262
2263 if (flow->mpls_depth < base->mpls_depth) {
2264 if (base->mpls_depth - flow->mpls_depth > 1) {
2265 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
2266 VLOG_WARN_RL(&rl, "Multiple mpls_pop actions reduced to "
2267 " a single mpls_pop action");
2268 }
2269
2270 nl_msg_put_be16(odp_actions, OVS_ACTION_ATTR_POP_MPLS, flow->dl_type);
2271 } else if (flow->mpls_depth > base->mpls_depth) {
2272 struct ovs_action_push_mpls *mpls;
2273
2274 if (flow->mpls_depth - base->mpls_depth > 1) {
2275 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
2276 VLOG_WARN_RL(&rl, "Multiple mpls_push actions reduced to "
2277 " a single mpls_push action");
2278 }
2279
2280 mpls = nl_msg_put_unspec_uninit(odp_actions, OVS_ACTION_ATTR_PUSH_MPLS,
2281 sizeof *mpls);
2282 memset(mpls, 0, sizeof *mpls);
2283 mpls->mpls_ethertype = flow->dl_type;
2284 mpls->mpls_lse = flow->mpls_lse;
2285 } else {
2286 struct ovs_key_mpls mpls_key;
2287
2288 mpls_key.mpls_lse = flow->mpls_lse;
2289 commit_set_action(odp_actions, OVS_KEY_ATTR_MPLS,
2290 &mpls_key, sizeof(mpls_key));
2291 }
2292
2293 base->dl_type = flow->dl_type;
2294 base->mpls_lse = flow->mpls_lse;
2295 base->mpls_depth = flow->mpls_depth;
2296 }
2297
2298 static void
2299 commit_set_ipv4_action(const struct flow *flow, struct flow *base,
2300 struct ofpbuf *odp_actions)
2301 {
2302 struct ovs_key_ipv4 ipv4_key;
2303
2304 if (base->nw_src == flow->nw_src &&
2305 base->nw_dst == flow->nw_dst &&
2306 base->nw_tos == flow->nw_tos &&
2307 base->nw_ttl == flow->nw_ttl &&
2308 base->nw_frag == flow->nw_frag) {
2309 return;
2310 }
2311
2312 ipv4_key.ipv4_src = base->nw_src = flow->nw_src;
2313 ipv4_key.ipv4_dst = base->nw_dst = flow->nw_dst;
2314 ipv4_key.ipv4_tos = base->nw_tos = flow->nw_tos;
2315 ipv4_key.ipv4_ttl = base->nw_ttl = flow->nw_ttl;
2316 ipv4_key.ipv4_proto = base->nw_proto;
2317 ipv4_key.ipv4_frag = ovs_to_odp_frag(base->nw_frag);
2318
2319 commit_set_action(odp_actions, OVS_KEY_ATTR_IPV4,
2320 &ipv4_key, sizeof(ipv4_key));
2321 }
2322
2323 static void
2324 commit_set_ipv6_action(const struct flow *flow, struct flow *base,
2325 struct ofpbuf *odp_actions)
2326 {
2327 struct ovs_key_ipv6 ipv6_key;
2328
2329 if (ipv6_addr_equals(&base->ipv6_src, &flow->ipv6_src) &&
2330 ipv6_addr_equals(&base->ipv6_dst, &flow->ipv6_dst) &&
2331 base->ipv6_label == flow->ipv6_label &&
2332 base->nw_tos == flow->nw_tos &&
2333 base->nw_ttl == flow->nw_ttl &&
2334 base->nw_frag == flow->nw_frag) {
2335 return;
2336 }
2337
2338 base->ipv6_src = flow->ipv6_src;
2339 memcpy(&ipv6_key.ipv6_src, &base->ipv6_src, sizeof(ipv6_key.ipv6_src));
2340 base->ipv6_dst = flow->ipv6_dst;
2341 memcpy(&ipv6_key.ipv6_dst, &base->ipv6_dst, sizeof(ipv6_key.ipv6_dst));
2342
2343 ipv6_key.ipv6_label = base->ipv6_label = flow->ipv6_label;
2344 ipv6_key.ipv6_tclass = base->nw_tos = flow->nw_tos;
2345 ipv6_key.ipv6_hlimit = base->nw_ttl = flow->nw_ttl;
2346 ipv6_key.ipv6_proto = base->nw_proto;
2347 ipv6_key.ipv6_frag = ovs_to_odp_frag(base->nw_frag);
2348
2349 commit_set_action(odp_actions, OVS_KEY_ATTR_IPV6,
2350 &ipv6_key, sizeof(ipv6_key));
2351 }
2352
2353 static void
2354 commit_set_nw_action(const struct flow *flow, struct flow *base,
2355 struct ofpbuf *odp_actions)
2356 {
2357 /* Check if flow really have an IP header. */
2358 if (!flow->nw_proto) {
2359 return;
2360 }
2361
2362 if (base->dl_type == htons(ETH_TYPE_IP)) {
2363 commit_set_ipv4_action(flow, base, odp_actions);
2364 } else if (base->dl_type == htons(ETH_TYPE_IPV6)) {
2365 commit_set_ipv6_action(flow, base, odp_actions);
2366 }
2367 }
2368
2369 static void
2370 commit_set_port_action(const struct flow *flow, struct flow *base,
2371 struct ofpbuf *odp_actions)
2372 {
2373 if (!is_ip_any(base) || (!base->tp_src && !base->tp_dst)) {
2374 return;
2375 }
2376
2377 if (base->tp_src == flow->tp_src &&
2378 base->tp_dst == flow->tp_dst) {
2379 return;
2380 }
2381
2382 if (flow->nw_proto == IPPROTO_TCP) {
2383 struct ovs_key_tcp port_key;
2384
2385 port_key.tcp_src = base->tp_src = flow->tp_src;
2386 port_key.tcp_dst = base->tp_dst = flow->tp_dst;
2387
2388 commit_set_action(odp_actions, OVS_KEY_ATTR_TCP,
2389 &port_key, sizeof(port_key));
2390
2391 } else if (flow->nw_proto == IPPROTO_UDP) {
2392 struct ovs_key_udp port_key;
2393
2394 port_key.udp_src = base->tp_src = flow->tp_src;
2395 port_key.udp_dst = base->tp_dst = flow->tp_dst;
2396
2397 commit_set_action(odp_actions, OVS_KEY_ATTR_UDP,
2398 &port_key, sizeof(port_key));
2399 }
2400 }
2401
2402 static void
2403 commit_set_priority_action(const struct flow *flow, struct flow *base,
2404 struct ofpbuf *odp_actions)
2405 {
2406 if (base->skb_priority == flow->skb_priority) {
2407 return;
2408 }
2409 base->skb_priority = flow->skb_priority;
2410
2411 commit_set_action(odp_actions, OVS_KEY_ATTR_PRIORITY,
2412 &base->skb_priority, sizeof(base->skb_priority));
2413 }
2414
2415 static void
2416 commit_set_skb_mark_action(const struct flow *flow, struct flow *base,
2417 struct ofpbuf *odp_actions)
2418 {
2419 if (base->skb_mark == flow->skb_mark) {
2420 return;
2421 }
2422 base->skb_mark = flow->skb_mark;
2423
2424 odp_put_skb_mark_action(base->skb_mark, odp_actions);
2425 }
2426 /* If any of the flow key data that ODP actions can modify are different in
2427 * 'base' and 'flow', appends ODP actions to 'odp_actions' that change the flow
2428 * key from 'base' into 'flow', and then changes 'base' the same way. Does not
2429 * commit set_tunnel actions. Users should call commit_odp_tunnel_action()
2430 * in addition to this function if needed. */
2431 void
2432 commit_odp_actions(const struct flow *flow, struct flow *base,
2433 struct ofpbuf *odp_actions)
2434 {
2435 commit_set_ether_addr_action(flow, base, odp_actions);
2436 commit_vlan_action(flow, base, odp_actions);
2437 commit_set_nw_action(flow, base, odp_actions);
2438 commit_set_port_action(flow, base, odp_actions);
2439 /* Commiting MPLS actions should occur after committing nw and port
2440 * actions. This is because committing MPLS actions may alter a packet so
2441 * that it is no longer IP and thus nw and port actions are no longer valid.
2442 */
2443 commit_mpls_action(flow, base, odp_actions);
2444 commit_set_priority_action(flow, base, odp_actions);
2445 commit_set_skb_mark_action(flow, base, odp_actions);
2446 }