]> git.proxmox.com Git - mirror_ovs.git/blob - lib/odp-util.c
odp-util: Use switch for checking values of an enum.
[mirror_ovs.git] / lib / odp-util.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <arpa/inet.h>
18 #include <config.h>
19 #include "odp-util.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <math.h>
23 #include <netinet/in.h>
24 #include <netinet/icmp6.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include "byte-order.h"
28 #include "coverage.h"
29 #include "dynamic-string.h"
30 #include "flow.h"
31 #include "netlink.h"
32 #include "ofpbuf.h"
33 #include "openvswitch/tunnel.h"
34 #include "packets.h"
35 #include "shash.h"
36 #include "timeval.h"
37 #include "util.h"
38 #include "vlog.h"
39
40 VLOG_DEFINE_THIS_MODULE(odp_util);
41
42 /* The interface between userspace and kernel uses an "OVS_*" prefix.
43 * Since this is fairly non-specific for the OVS userspace components,
44 * "ODP_*" (Open vSwitch Datapath) is used as the prefix for
45 * interactions with the datapath.
46 */
47
48 /* The set of characters that may separate one action or one key attribute
49 * from another. */
50 static const char *delimiters = ", \t\r\n";
51
52 static int parse_odp_key_attr(const char *, const struct shash *port_names,
53 struct ofpbuf *);
54 static void format_odp_key_attr(const struct nlattr *a, struct ds *ds);
55
56 /* Returns one the following for the action with the given OVS_ACTION_ATTR_*
57 * 'type':
58 *
59 * - For an action whose argument has a fixed length, returned that
60 * nonnegative length in bytes.
61 *
62 * - For an action with a variable-length argument, returns -2.
63 *
64 * - For an invalid 'type', returns -1. */
65 static int
66 odp_action_len(uint16_t type)
67 {
68 if (type > OVS_ACTION_ATTR_MAX) {
69 return -1;
70 }
71
72 switch ((enum ovs_action_attr) type) {
73 case OVS_ACTION_ATTR_OUTPUT: return sizeof(uint32_t);
74 case OVS_ACTION_ATTR_USERSPACE: return -2;
75 case OVS_ACTION_ATTR_PUSH_VLAN: return sizeof(struct ovs_action_push_vlan);
76 case OVS_ACTION_ATTR_POP_VLAN: return 0;
77 case OVS_ACTION_ATTR_SET: return -2;
78 case OVS_ACTION_ATTR_SAMPLE: return -2;
79
80 case OVS_ACTION_ATTR_UNSPEC:
81 case __OVS_ACTION_ATTR_MAX:
82 return -1;
83 }
84
85 return -1;
86 }
87
88 static const char *
89 ovs_key_attr_to_string(enum ovs_key_attr attr)
90 {
91 static char unknown_attr[3 + INT_STRLEN(unsigned int) + 1];
92
93 switch (attr) {
94 case OVS_KEY_ATTR_UNSPEC: return "unspec";
95 case OVS_KEY_ATTR_ENCAP: return "encap";
96 case OVS_KEY_ATTR_PRIORITY: return "priority";
97 case OVS_KEY_ATTR_IN_PORT: return "in_port";
98 case OVS_KEY_ATTR_ETHERNET: return "eth";
99 case OVS_KEY_ATTR_VLAN: return "vlan";
100 case OVS_KEY_ATTR_ETHERTYPE: return "eth_type";
101 case OVS_KEY_ATTR_IPV4: return "ipv4";
102 case OVS_KEY_ATTR_IPV6: return "ipv6";
103 case OVS_KEY_ATTR_TCP: return "tcp";
104 case OVS_KEY_ATTR_UDP: return "udp";
105 case OVS_KEY_ATTR_ICMP: return "icmp";
106 case OVS_KEY_ATTR_ICMPV6: return "icmpv6";
107 case OVS_KEY_ATTR_ARP: return "arp";
108 case OVS_KEY_ATTR_ND: return "nd";
109 case OVS_KEY_ATTR_TUN_ID: return "tun_id";
110
111 case __OVS_KEY_ATTR_MAX:
112 default:
113 snprintf(unknown_attr, sizeof unknown_attr, "key%u",
114 (unsigned int) attr);
115 return unknown_attr;
116 }
117 }
118
119 static void
120 format_generic_odp_action(struct ds *ds, const struct nlattr *a)
121 {
122 size_t len = nl_attr_get_size(a);
123
124 ds_put_format(ds, "action%"PRId16, nl_attr_type(a));
125 if (len) {
126 const uint8_t *unspec;
127 unsigned int i;
128
129 unspec = nl_attr_get(a);
130 for (i = 0; i < len; i++) {
131 ds_put_char(ds, i ? ' ': '(');
132 ds_put_format(ds, "%02x", unspec[i]);
133 }
134 ds_put_char(ds, ')');
135 }
136 }
137
138 static void
139 format_odp_sample_action(struct ds *ds, const struct nlattr *attr)
140 {
141 static const struct nl_policy ovs_sample_policy[] = {
142 [OVS_SAMPLE_ATTR_PROBABILITY] = { .type = NL_A_U32 },
143 [OVS_SAMPLE_ATTR_ACTIONS] = { .type = NL_A_NESTED }
144 };
145 struct nlattr *a[ARRAY_SIZE(ovs_sample_policy)];
146 double percentage;
147 const struct nlattr *nla_acts;
148 int len;
149
150 ds_put_cstr(ds, "sample");
151
152 if (!nl_parse_nested(attr, ovs_sample_policy, a, ARRAY_SIZE(a))) {
153 ds_put_cstr(ds, "(error)");
154 return;
155 }
156
157 percentage = (100.0 * nl_attr_get_u32(a[OVS_SAMPLE_ATTR_PROBABILITY])) /
158 UINT32_MAX;
159
160 ds_put_format(ds, "(sample=%.1f%%,", percentage);
161
162 ds_put_cstr(ds, "actions(");
163 nla_acts = nl_attr_get(a[OVS_SAMPLE_ATTR_ACTIONS]);
164 len = nl_attr_get_size(a[OVS_SAMPLE_ATTR_ACTIONS]);
165 format_odp_actions(ds, nla_acts, len);
166 ds_put_format(ds, "))");
167 }
168
169 static void
170 format_odp_userspace_action(struct ds *ds, const struct nlattr *attr)
171 {
172 static const struct nl_policy ovs_userspace_policy[] = {
173 [OVS_USERSPACE_ATTR_PID] = { .type = NL_A_U32 },
174 [OVS_USERSPACE_ATTR_USERDATA] = { .type = NL_A_U64, .optional = true },
175 };
176 struct nlattr *a[ARRAY_SIZE(ovs_userspace_policy)];
177
178 if (!nl_parse_nested(attr, ovs_userspace_policy, a, ARRAY_SIZE(a))) {
179 ds_put_cstr(ds, "userspace(error)");
180 return;
181 }
182
183 ds_put_format(ds, "userspace(pid=%"PRIu32,
184 nl_attr_get_u32(a[OVS_USERSPACE_ATTR_PID]));
185
186 if (a[OVS_USERSPACE_ATTR_USERDATA]) {
187 uint64_t userdata = nl_attr_get_u64(a[OVS_USERSPACE_ATTR_USERDATA]);
188 struct user_action_cookie cookie;
189
190 memcpy(&cookie, &userdata, sizeof cookie);
191
192 switch (cookie.type) {
193 case USER_ACTION_COOKIE_SFLOW:
194 ds_put_format(ds, ",sFlow,n_output=%"PRIu8","
195 "vid=%"PRIu16",pcp=%"PRIu8",ifindex=%"PRIu32,
196 cookie.n_output, vlan_tci_to_vid(cookie.vlan_tci),
197 vlan_tci_to_pcp(cookie.vlan_tci), cookie.data);
198 break;
199
200 case USER_ACTION_COOKIE_UNSPEC:
201 default:
202 ds_put_format(ds, ",userdata=0x%"PRIx64, userdata);
203 }
204 }
205
206 ds_put_char(ds, ')');
207 }
208
209 static void
210 format_vlan_tci(struct ds *ds, ovs_be16 vlan_tci)
211 {
212 ds_put_format(ds, "vid=%"PRIu16",pcp=%d",
213 vlan_tci_to_vid(vlan_tci),
214 vlan_tci_to_pcp(vlan_tci));
215 if (!(vlan_tci & htons(VLAN_CFI))) {
216 ds_put_cstr(ds, ",cfi=0");
217 }
218 }
219
220 static void
221 format_odp_action(struct ds *ds, const struct nlattr *a)
222 {
223 int expected_len;
224 enum ovs_action_attr type = nl_attr_type(a);
225 const struct ovs_action_push_vlan *vlan;
226
227 expected_len = odp_action_len(nl_attr_type(a));
228 if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
229 ds_put_format(ds, "bad length %zu, expected %d for: ",
230 nl_attr_get_size(a), expected_len);
231 format_generic_odp_action(ds, a);
232 return;
233 }
234
235 switch (type) {
236 case OVS_ACTION_ATTR_OUTPUT:
237 ds_put_format(ds, "%"PRIu16, nl_attr_get_u32(a));
238 break;
239 case OVS_ACTION_ATTR_USERSPACE:
240 format_odp_userspace_action(ds, a);
241 break;
242 case OVS_ACTION_ATTR_SET:
243 ds_put_cstr(ds, "set(");
244 format_odp_key_attr(nl_attr_get(a), ds);
245 ds_put_cstr(ds, ")");
246 break;
247 case OVS_ACTION_ATTR_PUSH_VLAN:
248 vlan = nl_attr_get(a);
249 ds_put_cstr(ds, "push_vlan(");
250 if (vlan->vlan_tpid != htons(ETH_TYPE_VLAN)) {
251 ds_put_format(ds, "tpid=0x%04"PRIx16",", ntohs(vlan->vlan_tpid));
252 }
253 format_vlan_tci(ds, vlan->vlan_tci);
254 ds_put_char(ds, ')');
255 break;
256 case OVS_ACTION_ATTR_POP_VLAN:
257 ds_put_cstr(ds, "pop_vlan");
258 break;
259 case OVS_ACTION_ATTR_SAMPLE:
260 format_odp_sample_action(ds, a);
261 break;
262 case OVS_ACTION_ATTR_UNSPEC:
263 case __OVS_ACTION_ATTR_MAX:
264 default:
265 format_generic_odp_action(ds, a);
266 break;
267 }
268 }
269
270 void
271 format_odp_actions(struct ds *ds, const struct nlattr *actions,
272 size_t actions_len)
273 {
274 if (actions_len) {
275 const struct nlattr *a;
276 unsigned int left;
277
278 NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
279 if (a != actions) {
280 ds_put_char(ds, ',');
281 }
282 format_odp_action(ds, a);
283 }
284 if (left) {
285 int i;
286
287 if (left == actions_len) {
288 ds_put_cstr(ds, "<empty>");
289 }
290 ds_put_format(ds, ",***%u leftover bytes*** (", left);
291 for (i = 0; i < left; i++) {
292 ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
293 }
294 ds_put_char(ds, ')');
295 }
296 } else {
297 ds_put_cstr(ds, "drop");
298 }
299 }
300
301 static int
302 parse_odp_action(const char *s, const struct shash *port_names,
303 struct ofpbuf *actions)
304 {
305 /* Many of the sscanf calls in this function use oversized destination
306 * fields because some sscanf() implementations truncate the range of %i
307 * directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a
308 * value of 0x7fff. The other alternatives are to allow only a single
309 * radix (e.g. decimal or hexadecimal) or to write more sophisticated
310 * parsers.
311 *
312 * The tun_id parser has to use an alternative approach because there is no
313 * type larger than 64 bits. */
314
315 {
316 unsigned long long int port;
317 int n = -1;
318
319 if (sscanf(s, "%lli%n", &port, &n) > 0 && n > 0) {
320 nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, port);
321 return n;
322 }
323 }
324
325 if (port_names) {
326 int len = strcspn(s, delimiters);
327 struct shash_node *node;
328
329 node = shash_find_len(port_names, s, len);
330 if (node) {
331 nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT,
332 (uintptr_t) node->data);
333 return len;
334 }
335 }
336
337 {
338 unsigned long long int pid;
339 unsigned long long int ifindex;
340 char userdata_s[32];
341 int n_output;
342 int vid, pcp;
343 int n = -1;
344
345 if (sscanf(s, "userspace(pid=%lli)%n", &pid, &n) > 0 && n > 0) {
346 odp_put_userspace_action(pid, NULL, actions);
347 return n;
348 } else if (sscanf(s, "userspace(pid=%lli,sFlow,n_output=%i,vid=%i,"
349 "pcp=%i,ifindex=%lli)%n", &pid, &n_output,
350 &vid, &pcp, &ifindex, &n) > 0 && n > 0) {
351 struct user_action_cookie cookie;
352 uint16_t tci;
353
354 tci = vid | (pcp << VLAN_PCP_SHIFT);
355 if (tci) {
356 tci |= VLAN_CFI;
357 }
358
359 cookie.type = USER_ACTION_COOKIE_SFLOW;
360 cookie.n_output = n_output;
361 cookie.vlan_tci = htons(tci);
362 cookie.data = ifindex;
363 odp_put_userspace_action(pid, &cookie, actions);
364 return n;
365 } else if (sscanf(s, "userspace(pid=%lli,userdata="
366 "%31[x0123456789abcdefABCDEF])%n", &pid, userdata_s,
367 &n) > 0 && n > 0) {
368 struct user_action_cookie cookie;
369 uint64_t userdata;
370
371 userdata = strtoull(userdata_s, NULL, 0);
372 memcpy(&cookie, &userdata, sizeof cookie);
373 odp_put_userspace_action(pid, &cookie, actions);
374 return n;
375 }
376 }
377
378 if (!strncmp(s, "set(", 4)) {
379 size_t start_ofs;
380 int retval;
381
382 start_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SET);
383 retval = parse_odp_key_attr(s + 4, port_names, actions);
384 if (retval < 0) {
385 return retval;
386 }
387 if (s[retval + 4] != ')') {
388 return -EINVAL;
389 }
390 nl_msg_end_nested(actions, start_ofs);
391 return retval + 5;
392 }
393
394 {
395 struct ovs_action_push_vlan push;
396 int tpid = ETH_TYPE_VLAN;
397 int vid, pcp;
398 int cfi = 1;
399 int n = -1;
400
401 if ((sscanf(s, "push_vlan(vid=%i,pcp=%i)%n", &vid, &pcp, &n) > 0
402 && n > 0)
403 || (sscanf(s, "push_vlan(vid=%i,pcp=%i,cfi=%i)%n",
404 &vid, &pcp, &cfi, &n) > 0 && n > 0)
405 || (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i)%n",
406 &tpid, &vid, &pcp, &n) > 0 && n > 0)
407 || (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i,cfi=%i)%n",
408 &tpid, &vid, &pcp, &cfi, &n) > 0 && n > 0)) {
409 push.vlan_tpid = htons(tpid);
410 push.vlan_tci = htons((vid << VLAN_VID_SHIFT)
411 | (pcp << VLAN_PCP_SHIFT)
412 | (cfi ? VLAN_CFI : 0));
413 nl_msg_put_unspec(actions, OVS_ACTION_ATTR_PUSH_VLAN,
414 &push, sizeof push);
415
416 return n;
417 }
418 }
419
420 if (!strncmp(s, "pop_vlan", 8)) {
421 nl_msg_put_flag(actions, OVS_ACTION_ATTR_POP_VLAN);
422 return 8;
423 }
424
425 {
426 double percentage;
427 int n = -1;
428
429 if (sscanf(s, "sample(sample=%lf%%,actions(%n", &percentage, &n) > 0
430 && percentage >= 0. && percentage <= 100.0
431 && n > 0) {
432 size_t sample_ofs, actions_ofs;
433 double probability;
434
435 probability = floor(UINT32_MAX * (percentage / 100.0) + .5);
436 sample_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE);
437 nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY,
438 (probability <= 0 ? 0
439 : probability >= UINT32_MAX ? UINT32_MAX
440 : probability));
441
442 actions_ofs = nl_msg_start_nested(actions,
443 OVS_SAMPLE_ATTR_ACTIONS);
444 for (;;) {
445 int retval;
446
447 s += strspn(s, delimiters);
448 if (s[n] == ')') {
449 break;
450 }
451
452 retval = parse_odp_action(s + n, port_names, actions);
453 if (retval < 0) {
454 return retval;
455 }
456 n += retval;
457
458 }
459 nl_msg_end_nested(actions, actions_ofs);
460 nl_msg_end_nested(actions, sample_ofs);
461
462 return s[n + 1] == ')' ? n + 2 : -EINVAL;
463 }
464 }
465
466 return -EINVAL;
467 }
468
469 /* Parses the string representation of datapath actions, in the format output
470 * by format_odp_action(). Returns 0 if successful, otherwise a positive errno
471 * value. On success, the ODP actions are appended to 'actions' as a series of
472 * Netlink attributes. On failure, no data is appended to 'actions'. Either
473 * way, 'actions''s data might be reallocated. */
474 int
475 odp_actions_from_string(const char *s, const struct shash *port_names,
476 struct ofpbuf *actions)
477 {
478 size_t old_size;
479
480 if (!strcasecmp(s, "drop")) {
481 return 0;
482 }
483
484 old_size = actions->size;
485 for (;;) {
486 int retval;
487
488 s += strspn(s, delimiters);
489 if (!*s) {
490 return 0;
491 }
492
493 retval = parse_odp_action(s, port_names, actions);
494 if (retval < 0 || !strchr(delimiters, s[retval])) {
495 actions->size = old_size;
496 return -retval;
497 }
498 s += retval;
499 }
500
501 return 0;
502 }
503 \f
504 /* Returns the correct length of the payload for a flow key attribute of the
505 * specified 'type', -1 if 'type' is unknown, or -2 if the attribute's payload
506 * is variable length. */
507 static int
508 odp_flow_key_attr_len(uint16_t type)
509 {
510 if (type > OVS_KEY_ATTR_MAX) {
511 return -1;
512 }
513
514 switch ((enum ovs_key_attr) type) {
515 case OVS_KEY_ATTR_ENCAP: return -2;
516 case OVS_KEY_ATTR_PRIORITY: return 4;
517 case OVS_KEY_ATTR_TUN_ID: return 8;
518 case OVS_KEY_ATTR_IN_PORT: return 4;
519 case OVS_KEY_ATTR_ETHERNET: return sizeof(struct ovs_key_ethernet);
520 case OVS_KEY_ATTR_VLAN: return sizeof(ovs_be16);
521 case OVS_KEY_ATTR_ETHERTYPE: return 2;
522 case OVS_KEY_ATTR_IPV4: return sizeof(struct ovs_key_ipv4);
523 case OVS_KEY_ATTR_IPV6: return sizeof(struct ovs_key_ipv6);
524 case OVS_KEY_ATTR_TCP: return sizeof(struct ovs_key_tcp);
525 case OVS_KEY_ATTR_UDP: return sizeof(struct ovs_key_udp);
526 case OVS_KEY_ATTR_ICMP: return sizeof(struct ovs_key_icmp);
527 case OVS_KEY_ATTR_ICMPV6: return sizeof(struct ovs_key_icmpv6);
528 case OVS_KEY_ATTR_ARP: return sizeof(struct ovs_key_arp);
529 case OVS_KEY_ATTR_ND: return sizeof(struct ovs_key_nd);
530
531 case OVS_KEY_ATTR_UNSPEC:
532 case __OVS_KEY_ATTR_MAX:
533 return -1;
534 }
535
536 return -1;
537 }
538
539 static void
540 format_generic_odp_key(const struct nlattr *a, struct ds *ds)
541 {
542 size_t len = nl_attr_get_size(a);
543 if (len) {
544 const uint8_t *unspec;
545 unsigned int i;
546
547 unspec = nl_attr_get(a);
548 for (i = 0; i < len; i++) {
549 ds_put_char(ds, i ? ' ': '(');
550 ds_put_format(ds, "%02x", unspec[i]);
551 }
552 ds_put_char(ds, ')');
553 }
554 }
555
556 static const char *
557 ovs_frag_type_to_string(enum ovs_frag_type type)
558 {
559 switch (type) {
560 case OVS_FRAG_TYPE_NONE:
561 return "no";
562 case OVS_FRAG_TYPE_FIRST:
563 return "first";
564 case OVS_FRAG_TYPE_LATER:
565 return "later";
566 case __OVS_FRAG_TYPE_MAX:
567 default:
568 return "<error>";
569 }
570 }
571
572 static void
573 format_odp_key_attr(const struct nlattr *a, struct ds *ds)
574 {
575 const struct ovs_key_ethernet *eth_key;
576 const struct ovs_key_ipv4 *ipv4_key;
577 const struct ovs_key_ipv6 *ipv6_key;
578 const struct ovs_key_tcp *tcp_key;
579 const struct ovs_key_udp *udp_key;
580 const struct ovs_key_icmp *icmp_key;
581 const struct ovs_key_icmpv6 *icmpv6_key;
582 const struct ovs_key_arp *arp_key;
583 const struct ovs_key_nd *nd_key;
584 enum ovs_key_attr attr = nl_attr_type(a);
585 int expected_len;
586
587 ds_put_cstr(ds, ovs_key_attr_to_string(attr));
588 expected_len = odp_flow_key_attr_len(nl_attr_type(a));
589 if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
590 ds_put_format(ds, "(bad length %zu, expected %d)",
591 nl_attr_get_size(a),
592 odp_flow_key_attr_len(nl_attr_type(a)));
593 format_generic_odp_key(a, ds);
594 return;
595 }
596
597 switch (attr) {
598 case OVS_KEY_ATTR_ENCAP:
599 ds_put_cstr(ds, "(");
600 if (nl_attr_get_size(a)) {
601 odp_flow_key_format(nl_attr_get(a), nl_attr_get_size(a), ds);
602 }
603 ds_put_char(ds, ')');
604 break;
605
606 case OVS_KEY_ATTR_PRIORITY:
607 ds_put_format(ds, "(%"PRIu32")", nl_attr_get_u32(a));
608 break;
609
610 case OVS_KEY_ATTR_TUN_ID:
611 ds_put_format(ds, "(%#"PRIx64")", ntohll(nl_attr_get_be64(a)));
612 break;
613
614 case OVS_KEY_ATTR_IN_PORT:
615 ds_put_format(ds, "(%"PRIu32")", nl_attr_get_u32(a));
616 break;
617
618 case OVS_KEY_ATTR_ETHERNET:
619 eth_key = nl_attr_get(a);
620 ds_put_format(ds, "(src="ETH_ADDR_FMT",dst="ETH_ADDR_FMT")",
621 ETH_ADDR_ARGS(eth_key->eth_src),
622 ETH_ADDR_ARGS(eth_key->eth_dst));
623 break;
624
625 case OVS_KEY_ATTR_VLAN:
626 ds_put_char(ds, '(');
627 format_vlan_tci(ds, nl_attr_get_be16(a));
628 ds_put_char(ds, ')');
629 break;
630
631 case OVS_KEY_ATTR_ETHERTYPE:
632 ds_put_format(ds, "(0x%04"PRIx16")",
633 ntohs(nl_attr_get_be16(a)));
634 break;
635
636 case OVS_KEY_ATTR_IPV4:
637 ipv4_key = nl_attr_get(a);
638 ds_put_format(ds, "(src="IP_FMT",dst="IP_FMT",proto=%"PRIu8
639 ",tos=%#"PRIx8",ttl=%"PRIu8",frag=%s)",
640 IP_ARGS(&ipv4_key->ipv4_src),
641 IP_ARGS(&ipv4_key->ipv4_dst),
642 ipv4_key->ipv4_proto, ipv4_key->ipv4_tos,
643 ipv4_key->ipv4_ttl,
644 ovs_frag_type_to_string(ipv4_key->ipv4_frag));
645 break;
646
647 case OVS_KEY_ATTR_IPV6: {
648 char src_str[INET6_ADDRSTRLEN];
649 char dst_str[INET6_ADDRSTRLEN];
650
651 ipv6_key = nl_attr_get(a);
652 inet_ntop(AF_INET6, ipv6_key->ipv6_src, src_str, sizeof src_str);
653 inet_ntop(AF_INET6, ipv6_key->ipv6_dst, dst_str, sizeof dst_str);
654
655 ds_put_format(ds, "(src=%s,dst=%s,label=%#"PRIx32",proto=%"PRIu8
656 ",tclass=%#"PRIx8",hlimit=%"PRIu8",frag=%s)",
657 src_str, dst_str, ntohl(ipv6_key->ipv6_label),
658 ipv6_key->ipv6_proto, ipv6_key->ipv6_tclass,
659 ipv6_key->ipv6_hlimit,
660 ovs_frag_type_to_string(ipv6_key->ipv6_frag));
661 break;
662 }
663
664 case OVS_KEY_ATTR_TCP:
665 tcp_key = nl_attr_get(a);
666 ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")",
667 ntohs(tcp_key->tcp_src), ntohs(tcp_key->tcp_dst));
668 break;
669
670 case OVS_KEY_ATTR_UDP:
671 udp_key = nl_attr_get(a);
672 ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")",
673 ntohs(udp_key->udp_src), ntohs(udp_key->udp_dst));
674 break;
675
676 case OVS_KEY_ATTR_ICMP:
677 icmp_key = nl_attr_get(a);
678 ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")",
679 icmp_key->icmp_type, icmp_key->icmp_code);
680 break;
681
682 case OVS_KEY_ATTR_ICMPV6:
683 icmpv6_key = nl_attr_get(a);
684 ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")",
685 icmpv6_key->icmpv6_type, icmpv6_key->icmpv6_code);
686 break;
687
688 case OVS_KEY_ATTR_ARP:
689 arp_key = nl_attr_get(a);
690 ds_put_format(ds, "(sip="IP_FMT",tip="IP_FMT",op=%"PRIu16","
691 "sha="ETH_ADDR_FMT",tha="ETH_ADDR_FMT")",
692 IP_ARGS(&arp_key->arp_sip), IP_ARGS(&arp_key->arp_tip),
693 ntohs(arp_key->arp_op), ETH_ADDR_ARGS(arp_key->arp_sha),
694 ETH_ADDR_ARGS(arp_key->arp_tha));
695 break;
696
697 case OVS_KEY_ATTR_ND: {
698 char target[INET6_ADDRSTRLEN];
699
700 nd_key = nl_attr_get(a);
701 inet_ntop(AF_INET6, nd_key->nd_target, target, sizeof target);
702
703 ds_put_format(ds, "(target=%s", target);
704 if (!eth_addr_is_zero(nd_key->nd_sll)) {
705 ds_put_format(ds, ",sll="ETH_ADDR_FMT,
706 ETH_ADDR_ARGS(nd_key->nd_sll));
707 }
708 if (!eth_addr_is_zero(nd_key->nd_tll)) {
709 ds_put_format(ds, ",tll="ETH_ADDR_FMT,
710 ETH_ADDR_ARGS(nd_key->nd_tll));
711 }
712 ds_put_char(ds, ')');
713 break;
714 }
715
716 case OVS_KEY_ATTR_UNSPEC:
717 case __OVS_KEY_ATTR_MAX:
718 default:
719 format_generic_odp_key(a, ds);
720 break;
721 }
722 }
723
724 /* Appends to 'ds' a string representation of the 'key_len' bytes of
725 * OVS_KEY_ATTR_* attributes in 'key'. */
726 void
727 odp_flow_key_format(const struct nlattr *key, size_t key_len, struct ds *ds)
728 {
729 if (key_len) {
730 const struct nlattr *a;
731 unsigned int left;
732
733 NL_ATTR_FOR_EACH (a, left, key, key_len) {
734 if (a != key) {
735 ds_put_char(ds, ',');
736 }
737 format_odp_key_attr(a, ds);
738 }
739 if (left) {
740 int i;
741
742 if (left == key_len) {
743 ds_put_cstr(ds, "<empty>");
744 }
745 ds_put_format(ds, ",***%u leftover bytes*** (", left);
746 for (i = 0; i < left; i++) {
747 ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
748 }
749 ds_put_char(ds, ')');
750 }
751 } else {
752 ds_put_cstr(ds, "<empty>");
753 }
754 }
755
756 static int
757 put_nd_key(int n, const char *nd_target_s,
758 const uint8_t *nd_sll, const uint8_t *nd_tll, struct ofpbuf *key)
759 {
760 struct ovs_key_nd nd_key;
761
762 memset(&nd_key, 0, sizeof nd_key);
763 if (inet_pton(AF_INET6, nd_target_s, nd_key.nd_target) != 1) {
764 return -EINVAL;
765 }
766 if (nd_sll) {
767 memcpy(nd_key.nd_sll, nd_sll, ETH_ADDR_LEN);
768 }
769 if (nd_tll) {
770 memcpy(nd_key.nd_tll, nd_tll, ETH_ADDR_LEN);
771 }
772 nl_msg_put_unspec(key, OVS_KEY_ATTR_ND, &nd_key, sizeof nd_key);
773 return n;
774 }
775
776 static bool
777 ovs_frag_type_from_string(const char *s, enum ovs_frag_type *type)
778 {
779 if (!strcasecmp(s, "no")) {
780 *type = OVS_FRAG_TYPE_NONE;
781 } else if (!strcasecmp(s, "first")) {
782 *type = OVS_FRAG_TYPE_FIRST;
783 } else if (!strcasecmp(s, "later")) {
784 *type = OVS_FRAG_TYPE_LATER;
785 } else {
786 return false;
787 }
788 return true;
789 }
790
791 static int
792 parse_odp_key_attr(const char *s, const struct shash *port_names,
793 struct ofpbuf *key)
794 {
795 /* Many of the sscanf calls in this function use oversized destination
796 * fields because some sscanf() implementations truncate the range of %i
797 * directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a
798 * value of 0x7fff. The other alternatives are to allow only a single
799 * radix (e.g. decimal or hexadecimal) or to write more sophisticated
800 * parsers.
801 *
802 * The tun_id parser has to use an alternative approach because there is no
803 * type larger than 64 bits. */
804
805 {
806 unsigned long long int priority;
807 int n = -1;
808
809 if (sscanf(s, "priority(%lli)%n", &priority, &n) > 0 && n > 0) {
810 nl_msg_put_u32(key, OVS_KEY_ATTR_PRIORITY, priority);
811 return n;
812 }
813 }
814
815 {
816 char tun_id_s[32];
817 int n = -1;
818
819 if (sscanf(s, "tun_id(%31[x0123456789abcdefABCDEF])%n",
820 tun_id_s, &n) > 0 && n > 0) {
821 uint64_t tun_id = strtoull(tun_id_s, NULL, 0);
822 nl_msg_put_be64(key, OVS_KEY_ATTR_TUN_ID, htonll(tun_id));
823 return n;
824 }
825 }
826
827 {
828 unsigned long long int in_port;
829 int n = -1;
830
831 if (sscanf(s, "in_port(%lli)%n", &in_port, &n) > 0 && n > 0) {
832 nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, in_port);
833 return n;
834 }
835 }
836
837 if (port_names && !strncmp(s, "in_port(", 8)) {
838 const char *name;
839 const struct shash_node *node;
840 int name_len;
841
842 name = s + 8;
843 name_len = strcspn(s, ")");
844 node = shash_find_len(port_names, name, name_len);
845 if (node) {
846 nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, (uintptr_t) node->data);
847 return 8 + name_len + 1;
848 }
849 }
850
851 {
852 struct ovs_key_ethernet eth_key;
853 int n = -1;
854
855 if (sscanf(s,
856 "eth(src="ETH_ADDR_SCAN_FMT",dst="ETH_ADDR_SCAN_FMT")%n",
857 ETH_ADDR_SCAN_ARGS(eth_key.eth_src),
858 ETH_ADDR_SCAN_ARGS(eth_key.eth_dst), &n) > 0 && n > 0) {
859 nl_msg_put_unspec(key, OVS_KEY_ATTR_ETHERNET,
860 &eth_key, sizeof eth_key);
861 return n;
862 }
863 }
864
865 {
866 uint16_t vid;
867 int pcp;
868 int cfi;
869 int n = -1;
870
871 if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i)%n", &vid, &pcp, &n) > 0
872 && n > 0)) {
873 nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN,
874 htons((vid << VLAN_VID_SHIFT) |
875 (pcp << VLAN_PCP_SHIFT) |
876 VLAN_CFI));
877 return n;
878 } else if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i,cfi=%i)%n",
879 &vid, &pcp, &cfi, &n) > 0
880 && n > 0)) {
881 nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN,
882 htons((vid << VLAN_VID_SHIFT) |
883 (pcp << VLAN_PCP_SHIFT) |
884 (cfi ? VLAN_CFI : 0)));
885 return n;
886 }
887 }
888
889 {
890 int eth_type;
891 int n = -1;
892
893 if (sscanf(s, "eth_type(%i)%n", &eth_type, &n) > 0 && n > 0) {
894 nl_msg_put_be16(key, OVS_KEY_ATTR_ETHERTYPE, htons(eth_type));
895 return n;
896 }
897 }
898
899 {
900 ovs_be32 ipv4_src;
901 ovs_be32 ipv4_dst;
902 int ipv4_proto;
903 int ipv4_tos;
904 int ipv4_ttl;
905 char frag[8];
906 enum ovs_frag_type ipv4_frag;
907 int n = -1;
908
909 if (sscanf(s, "ipv4(src="IP_SCAN_FMT",dst="IP_SCAN_FMT","
910 "proto=%i,tos=%i,ttl=%i,frag=%7[a-z])%n",
911 IP_SCAN_ARGS(&ipv4_src), IP_SCAN_ARGS(&ipv4_dst),
912 &ipv4_proto, &ipv4_tos, &ipv4_ttl, frag, &n) > 0
913 && n > 0
914 && ovs_frag_type_from_string(frag, &ipv4_frag)) {
915 struct ovs_key_ipv4 ipv4_key;
916
917 ipv4_key.ipv4_src = ipv4_src;
918 ipv4_key.ipv4_dst = ipv4_dst;
919 ipv4_key.ipv4_proto = ipv4_proto;
920 ipv4_key.ipv4_tos = ipv4_tos;
921 ipv4_key.ipv4_ttl = ipv4_ttl;
922 ipv4_key.ipv4_frag = ipv4_frag;
923 nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV4,
924 &ipv4_key, sizeof ipv4_key);
925 return n;
926 }
927 }
928
929 {
930 char ipv6_src_s[IPV6_SCAN_LEN + 1];
931 char ipv6_dst_s[IPV6_SCAN_LEN + 1];
932 int ipv6_label;
933 int ipv6_proto;
934 int ipv6_tclass;
935 int ipv6_hlimit;
936 char frag[8];
937 enum ovs_frag_type ipv6_frag;
938 int n = -1;
939
940 if (sscanf(s, "ipv6(src="IPV6_SCAN_FMT",dst="IPV6_SCAN_FMT","
941 "label=%i,proto=%i,tclass=%i,hlimit=%i,frag=%7[a-z])%n",
942 ipv6_src_s, ipv6_dst_s, &ipv6_label,
943 &ipv6_proto, &ipv6_tclass, &ipv6_hlimit, frag, &n) > 0
944 && n > 0
945 && ovs_frag_type_from_string(frag, &ipv6_frag)) {
946 struct ovs_key_ipv6 ipv6_key;
947
948 if (inet_pton(AF_INET6, ipv6_src_s, &ipv6_key.ipv6_src) != 1 ||
949 inet_pton(AF_INET6, ipv6_dst_s, &ipv6_key.ipv6_dst) != 1) {
950 return -EINVAL;
951 }
952 ipv6_key.ipv6_label = htonl(ipv6_label);
953 ipv6_key.ipv6_proto = ipv6_proto;
954 ipv6_key.ipv6_tclass = ipv6_tclass;
955 ipv6_key.ipv6_hlimit = ipv6_hlimit;
956 ipv6_key.ipv6_frag = ipv6_frag;
957 nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV6,
958 &ipv6_key, sizeof ipv6_key);
959 return n;
960 }
961 }
962
963 {
964 int tcp_src;
965 int tcp_dst;
966 int n = -1;
967
968 if (sscanf(s, "tcp(src=%i,dst=%i)%n",&tcp_src, &tcp_dst, &n) > 0
969 && n > 0) {
970 struct ovs_key_tcp tcp_key;
971
972 tcp_key.tcp_src = htons(tcp_src);
973 tcp_key.tcp_dst = htons(tcp_dst);
974 nl_msg_put_unspec(key, OVS_KEY_ATTR_TCP, &tcp_key, sizeof tcp_key);
975 return n;
976 }
977 }
978
979 {
980 int udp_src;
981 int udp_dst;
982 int n = -1;
983
984 if (sscanf(s, "udp(src=%i,dst=%i)%n", &udp_src, &udp_dst, &n) > 0
985 && n > 0) {
986 struct ovs_key_udp udp_key;
987
988 udp_key.udp_src = htons(udp_src);
989 udp_key.udp_dst = htons(udp_dst);
990 nl_msg_put_unspec(key, OVS_KEY_ATTR_UDP, &udp_key, sizeof udp_key);
991 return n;
992 }
993 }
994
995 {
996 int icmp_type;
997 int icmp_code;
998 int n = -1;
999
1000 if (sscanf(s, "icmp(type=%i,code=%i)%n",
1001 &icmp_type, &icmp_code, &n) > 0
1002 && n > 0) {
1003 struct ovs_key_icmp icmp_key;
1004
1005 icmp_key.icmp_type = icmp_type;
1006 icmp_key.icmp_code = icmp_code;
1007 nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMP,
1008 &icmp_key, sizeof icmp_key);
1009 return n;
1010 }
1011 }
1012
1013 {
1014 struct ovs_key_icmpv6 icmpv6_key;
1015 int n = -1;
1016
1017 if (sscanf(s, "icmpv6(type=%"SCNi8",code=%"SCNi8")%n",
1018 &icmpv6_key.icmpv6_type, &icmpv6_key.icmpv6_code,&n) > 0
1019 && n > 0) {
1020 nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMPV6,
1021 &icmpv6_key, sizeof icmpv6_key);
1022 return n;
1023 }
1024 }
1025
1026 {
1027 ovs_be32 arp_sip;
1028 ovs_be32 arp_tip;
1029 int arp_op;
1030 uint8_t arp_sha[ETH_ADDR_LEN];
1031 uint8_t arp_tha[ETH_ADDR_LEN];
1032 int n = -1;
1033
1034 if (sscanf(s, "arp(sip="IP_SCAN_FMT",tip="IP_SCAN_FMT","
1035 "op=%i,sha="ETH_ADDR_SCAN_FMT",tha="ETH_ADDR_SCAN_FMT")%n",
1036 IP_SCAN_ARGS(&arp_sip),
1037 IP_SCAN_ARGS(&arp_tip),
1038 &arp_op,
1039 ETH_ADDR_SCAN_ARGS(arp_sha),
1040 ETH_ADDR_SCAN_ARGS(arp_tha), &n) > 0 && n > 0) {
1041 struct ovs_key_arp arp_key;
1042
1043 memset(&arp_key, 0, sizeof arp_key);
1044 arp_key.arp_sip = arp_sip;
1045 arp_key.arp_tip = arp_tip;
1046 arp_key.arp_op = htons(arp_op);
1047 memcpy(arp_key.arp_sha, arp_sha, ETH_ADDR_LEN);
1048 memcpy(arp_key.arp_tha, arp_tha, ETH_ADDR_LEN);
1049 nl_msg_put_unspec(key, OVS_KEY_ATTR_ARP, &arp_key, sizeof arp_key);
1050 return n;
1051 }
1052 }
1053
1054 {
1055 char nd_target_s[IPV6_SCAN_LEN + 1];
1056 uint8_t nd_sll[ETH_ADDR_LEN];
1057 uint8_t nd_tll[ETH_ADDR_LEN];
1058 int n = -1;
1059
1060 if (sscanf(s, "nd(target="IPV6_SCAN_FMT")%n",
1061 nd_target_s, &n) > 0 && n > 0) {
1062 return put_nd_key(n, nd_target_s, NULL, NULL, key);
1063 }
1064 if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT")%n",
1065 nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll), &n) > 0
1066 && n > 0) {
1067 return put_nd_key(n, nd_target_s, nd_sll, NULL, key);
1068 }
1069 if (sscanf(s, "nd(target="IPV6_SCAN_FMT",tll="ETH_ADDR_SCAN_FMT")%n",
1070 nd_target_s, ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0
1071 && n > 0) {
1072 return put_nd_key(n, nd_target_s, NULL, nd_tll, key);
1073 }
1074 if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT","
1075 "tll="ETH_ADDR_SCAN_FMT")%n",
1076 nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll),
1077 ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0
1078 && n > 0) {
1079 return put_nd_key(n, nd_target_s, nd_sll, nd_tll, key);
1080 }
1081 }
1082
1083 if (!strncmp(s, "encap(", 6)) {
1084 const char *start = s;
1085 size_t encap;
1086
1087 encap = nl_msg_start_nested(key, OVS_KEY_ATTR_ENCAP);
1088
1089 s += 6;
1090 for (;;) {
1091 int retval;
1092
1093 s += strspn(s, ", \t\r\n");
1094 if (!*s) {
1095 return -EINVAL;
1096 } else if (*s == ')') {
1097 break;
1098 }
1099
1100 retval = parse_odp_key_attr(s, port_names, key);
1101 if (retval < 0) {
1102 return retval;
1103 }
1104 s += retval;
1105 }
1106 s++;
1107
1108 nl_msg_end_nested(key, encap);
1109
1110 return s - start;
1111 }
1112
1113 return -EINVAL;
1114 }
1115
1116 /* Parses the string representation of a datapath flow key, in the
1117 * format output by odp_flow_key_format(). Returns 0 if successful,
1118 * otherwise a positive errno value. On success, the flow key is
1119 * appended to 'key' as a series of Netlink attributes. On failure, no
1120 * data is appended to 'key'. Either way, 'key''s data might be
1121 * reallocated.
1122 *
1123 * If 'port_names' is nonnull, it points to an shash that maps from a port name
1124 * to a port number cast to void *. (Port names may be used instead of port
1125 * numbers in in_port.)
1126 *
1127 * On success, the attributes appended to 'key' are individually syntactically
1128 * valid, but they may not be valid as a sequence. 'key' might, for example,
1129 * have duplicated keys. odp_flow_key_to_flow() will detect those errors. */
1130 int
1131 odp_flow_key_from_string(const char *s, const struct shash *port_names,
1132 struct ofpbuf *key)
1133 {
1134 const size_t old_size = key->size;
1135 for (;;) {
1136 int retval;
1137
1138 s += strspn(s, delimiters);
1139 if (!*s) {
1140 return 0;
1141 }
1142
1143 retval = parse_odp_key_attr(s, port_names, key);
1144 if (retval < 0) {
1145 key->size = old_size;
1146 return -retval;
1147 }
1148 s += retval;
1149 }
1150
1151 return 0;
1152 }
1153
1154 static uint8_t
1155 ovs_to_odp_frag(uint8_t nw_frag)
1156 {
1157 return (nw_frag == 0 ? OVS_FRAG_TYPE_NONE
1158 : nw_frag == FLOW_NW_FRAG_ANY ? OVS_FRAG_TYPE_FIRST
1159 : OVS_FRAG_TYPE_LATER);
1160 }
1161
1162 /* Appends a representation of 'flow' as OVS_KEY_ATTR_* attributes to 'buf'. */
1163 void
1164 odp_flow_key_from_flow(struct ofpbuf *buf, const struct flow *flow)
1165 {
1166 struct ovs_key_ethernet *eth_key;
1167 size_t encap;
1168
1169 if (flow->skb_priority) {
1170 nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, flow->skb_priority);
1171 }
1172
1173 if (flow->tun_id != htonll(0)) {
1174 nl_msg_put_be64(buf, OVS_KEY_ATTR_TUN_ID, flow->tun_id);
1175 }
1176
1177 if (flow->in_port != OFPP_NONE && flow->in_port != OFPP_CONTROLLER) {
1178 nl_msg_put_u32(buf, OVS_KEY_ATTR_IN_PORT,
1179 ofp_port_to_odp_port(flow->in_port));
1180 }
1181
1182 eth_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ETHERNET,
1183 sizeof *eth_key);
1184 memcpy(eth_key->eth_src, flow->dl_src, ETH_ADDR_LEN);
1185 memcpy(eth_key->eth_dst, flow->dl_dst, ETH_ADDR_LEN);
1186
1187 if (flow->vlan_tci != htons(0) || flow->dl_type == htons(ETH_TYPE_VLAN)) {
1188 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_TYPE_VLAN));
1189 nl_msg_put_be16(buf, OVS_KEY_ATTR_VLAN, flow->vlan_tci);
1190 encap = nl_msg_start_nested(buf, OVS_KEY_ATTR_ENCAP);
1191 if (flow->vlan_tci == htons(0)) {
1192 goto unencap;
1193 }
1194 } else {
1195 encap = 0;
1196 }
1197
1198 if (ntohs(flow->dl_type) < ETH_TYPE_MIN) {
1199 goto unencap;
1200 }
1201
1202 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, flow->dl_type);
1203
1204 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1205 struct ovs_key_ipv4 *ipv4_key;
1206
1207 ipv4_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV4,
1208 sizeof *ipv4_key);
1209 ipv4_key->ipv4_src = flow->nw_src;
1210 ipv4_key->ipv4_dst = flow->nw_dst;
1211 ipv4_key->ipv4_proto = flow->nw_proto;
1212 ipv4_key->ipv4_tos = flow->nw_tos;
1213 ipv4_key->ipv4_ttl = flow->nw_ttl;
1214 ipv4_key->ipv4_frag = ovs_to_odp_frag(flow->nw_frag);
1215 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1216 struct ovs_key_ipv6 *ipv6_key;
1217
1218 ipv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV6,
1219 sizeof *ipv6_key);
1220 memcpy(ipv6_key->ipv6_src, &flow->ipv6_src, sizeof ipv6_key->ipv6_src);
1221 memcpy(ipv6_key->ipv6_dst, &flow->ipv6_dst, sizeof ipv6_key->ipv6_dst);
1222 ipv6_key->ipv6_label = flow->ipv6_label;
1223 ipv6_key->ipv6_proto = flow->nw_proto;
1224 ipv6_key->ipv6_tclass = flow->nw_tos;
1225 ipv6_key->ipv6_hlimit = flow->nw_ttl;
1226 ipv6_key->ipv6_frag = ovs_to_odp_frag(flow->nw_frag);
1227 } else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
1228 struct ovs_key_arp *arp_key;
1229
1230 arp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ARP,
1231 sizeof *arp_key);
1232 memset(arp_key, 0, sizeof *arp_key);
1233 arp_key->arp_sip = flow->nw_src;
1234 arp_key->arp_tip = flow->nw_dst;
1235 arp_key->arp_op = htons(flow->nw_proto);
1236 memcpy(arp_key->arp_sha, flow->arp_sha, ETH_ADDR_LEN);
1237 memcpy(arp_key->arp_tha, flow->arp_tha, ETH_ADDR_LEN);
1238 }
1239
1240 if ((flow->dl_type == htons(ETH_TYPE_IP)
1241 || flow->dl_type == htons(ETH_TYPE_IPV6))
1242 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1243
1244 if (flow->nw_proto == IPPROTO_TCP) {
1245 struct ovs_key_tcp *tcp_key;
1246
1247 tcp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_TCP,
1248 sizeof *tcp_key);
1249 tcp_key->tcp_src = flow->tp_src;
1250 tcp_key->tcp_dst = flow->tp_dst;
1251 } else if (flow->nw_proto == IPPROTO_UDP) {
1252 struct ovs_key_udp *udp_key;
1253
1254 udp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_UDP,
1255 sizeof *udp_key);
1256 udp_key->udp_src = flow->tp_src;
1257 udp_key->udp_dst = flow->tp_dst;
1258 } else if (flow->dl_type == htons(ETH_TYPE_IP)
1259 && flow->nw_proto == IPPROTO_ICMP) {
1260 struct ovs_key_icmp *icmp_key;
1261
1262 icmp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMP,
1263 sizeof *icmp_key);
1264 icmp_key->icmp_type = ntohs(flow->tp_src);
1265 icmp_key->icmp_code = ntohs(flow->tp_dst);
1266 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)
1267 && flow->nw_proto == IPPROTO_ICMPV6) {
1268 struct ovs_key_icmpv6 *icmpv6_key;
1269
1270 icmpv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMPV6,
1271 sizeof *icmpv6_key);
1272 icmpv6_key->icmpv6_type = ntohs(flow->tp_src);
1273 icmpv6_key->icmpv6_code = ntohs(flow->tp_dst);
1274
1275 if (icmpv6_key->icmpv6_type == ND_NEIGHBOR_SOLICIT
1276 || icmpv6_key->icmpv6_type == ND_NEIGHBOR_ADVERT) {
1277 struct ovs_key_nd *nd_key;
1278
1279 nd_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ND,
1280 sizeof *nd_key);
1281 memcpy(nd_key->nd_target, &flow->nd_target,
1282 sizeof nd_key->nd_target);
1283 memcpy(nd_key->nd_sll, flow->arp_sha, ETH_ADDR_LEN);
1284 memcpy(nd_key->nd_tll, flow->arp_tha, ETH_ADDR_LEN);
1285 }
1286 }
1287 }
1288
1289 unencap:
1290 if (encap) {
1291 nl_msg_end_nested(buf, encap);
1292 }
1293 }
1294
1295 uint32_t
1296 odp_flow_key_hash(const struct nlattr *key, size_t key_len)
1297 {
1298 BUILD_ASSERT_DECL(!(NLA_ALIGNTO % sizeof(uint32_t)));
1299 return hash_words((const uint32_t *) key, key_len / sizeof(uint32_t), 0);
1300 }
1301
1302 static void
1303 log_odp_key_attributes(struct vlog_rate_limit *rl, const char *title,
1304 uint64_t attrs, int out_of_range_attr,
1305 const struct nlattr *key, size_t key_len)
1306 {
1307 struct ds s;
1308 int i;
1309
1310 if (VLOG_DROP_DBG(rl)) {
1311 return;
1312 }
1313
1314 ds_init(&s);
1315 for (i = 0; i < 64; i++) {
1316 if (attrs & (UINT64_C(1) << i)) {
1317 ds_put_format(&s, " %s", ovs_key_attr_to_string(i));
1318 }
1319 }
1320 if (out_of_range_attr) {
1321 ds_put_format(&s, " %d (and possibly others)", out_of_range_attr);
1322 }
1323
1324 ds_put_cstr(&s, ": ");
1325 odp_flow_key_format(key, key_len, &s);
1326
1327 VLOG_DBG("%s:%s", title, ds_cstr(&s));
1328 ds_destroy(&s);
1329 }
1330
1331 static bool
1332 odp_to_ovs_frag(uint8_t odp_frag, struct flow *flow)
1333 {
1334 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1335
1336 if (odp_frag > OVS_FRAG_TYPE_LATER) {
1337 VLOG_ERR_RL(&rl, "invalid frag %"PRIu8" in flow key", odp_frag);
1338 return false;
1339 }
1340
1341 if (odp_frag != OVS_FRAG_TYPE_NONE) {
1342 flow->nw_frag |= FLOW_NW_FRAG_ANY;
1343 if (odp_frag == OVS_FRAG_TYPE_LATER) {
1344 flow->nw_frag |= FLOW_NW_FRAG_LATER;
1345 }
1346 }
1347 return true;
1348 }
1349
1350 static bool
1351 parse_flow_nlattrs(const struct nlattr *key, size_t key_len,
1352 const struct nlattr *attrs[], uint64_t *present_attrsp,
1353 int *out_of_range_attrp)
1354 {
1355 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
1356 const struct nlattr *nla;
1357 uint64_t present_attrs;
1358 size_t left;
1359
1360 present_attrs = 0;
1361 *out_of_range_attrp = 0;
1362 NL_ATTR_FOR_EACH (nla, left, key, key_len) {
1363 uint16_t type = nl_attr_type(nla);
1364 size_t len = nl_attr_get_size(nla);
1365 int expected_len = odp_flow_key_attr_len(type);
1366
1367 if (len != expected_len && expected_len >= 0) {
1368 VLOG_ERR_RL(&rl, "attribute %s has length %zu but should have "
1369 "length %d", ovs_key_attr_to_string(type),
1370 len, expected_len);
1371 return false;
1372 }
1373
1374 if (type >= CHAR_BIT * sizeof present_attrs) {
1375 *out_of_range_attrp = type;
1376 } else {
1377 if (present_attrs & (UINT64_C(1) << type)) {
1378 VLOG_ERR_RL(&rl, "duplicate %s attribute in flow key",
1379 ovs_key_attr_to_string(type));
1380 return false;
1381 }
1382
1383 present_attrs |= UINT64_C(1) << type;
1384 attrs[type] = nla;
1385 }
1386 }
1387 if (left) {
1388 VLOG_ERR_RL(&rl, "trailing garbage in flow key");
1389 return false;
1390 }
1391
1392 *present_attrsp = present_attrs;
1393 return true;
1394 }
1395
1396 static enum odp_key_fitness
1397 check_expectations(uint64_t present_attrs, int out_of_range_attr,
1398 uint64_t expected_attrs,
1399 const struct nlattr *key, size_t key_len)
1400 {
1401 uint64_t missing_attrs;
1402 uint64_t extra_attrs;
1403
1404 missing_attrs = expected_attrs & ~present_attrs;
1405 if (missing_attrs) {
1406 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
1407 log_odp_key_attributes(&rl, "expected but not present",
1408 missing_attrs, 0, key, key_len);
1409 return ODP_FIT_TOO_LITTLE;
1410 }
1411
1412 extra_attrs = present_attrs & ~expected_attrs;
1413 if (extra_attrs || out_of_range_attr) {
1414 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
1415 log_odp_key_attributes(&rl, "present but not expected",
1416 extra_attrs, out_of_range_attr, key, key_len);
1417 return ODP_FIT_TOO_MUCH;
1418 }
1419
1420 return ODP_FIT_PERFECT;
1421 }
1422
1423 static bool
1424 parse_ethertype(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
1425 uint64_t present_attrs, uint64_t *expected_attrs,
1426 struct flow *flow)
1427 {
1428 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1429
1430 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE)) {
1431 flow->dl_type = nl_attr_get_be16(attrs[OVS_KEY_ATTR_ETHERTYPE]);
1432 if (ntohs(flow->dl_type) < 1536) {
1433 VLOG_ERR_RL(&rl, "invalid Ethertype %"PRIu16" in flow key",
1434 ntohs(flow->dl_type));
1435 return false;
1436 }
1437 *expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE;
1438 } else {
1439 flow->dl_type = htons(FLOW_DL_TYPE_NONE);
1440 }
1441 return true;
1442 }
1443
1444 static enum odp_key_fitness
1445 parse_l3_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
1446 uint64_t present_attrs, int out_of_range_attr,
1447 uint64_t expected_attrs, struct flow *flow,
1448 const struct nlattr *key, size_t key_len)
1449 {
1450 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1451
1452 if (flow->dl_type == htons(ETH_TYPE_IP)) {
1453 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV4;
1454 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV4)) {
1455 const struct ovs_key_ipv4 *ipv4_key;
1456
1457 ipv4_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV4]);
1458 flow->nw_src = ipv4_key->ipv4_src;
1459 flow->nw_dst = ipv4_key->ipv4_dst;
1460 flow->nw_proto = ipv4_key->ipv4_proto;
1461 flow->nw_tos = ipv4_key->ipv4_tos;
1462 flow->nw_ttl = ipv4_key->ipv4_ttl;
1463 if (!odp_to_ovs_frag(ipv4_key->ipv4_frag, flow)) {
1464 return ODP_FIT_ERROR;
1465 }
1466 }
1467 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1468 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV6;
1469 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV6)) {
1470 const struct ovs_key_ipv6 *ipv6_key;
1471
1472 ipv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV6]);
1473 memcpy(&flow->ipv6_src, ipv6_key->ipv6_src, sizeof flow->ipv6_src);
1474 memcpy(&flow->ipv6_dst, ipv6_key->ipv6_dst, sizeof flow->ipv6_dst);
1475 flow->ipv6_label = ipv6_key->ipv6_label;
1476 flow->nw_proto = ipv6_key->ipv6_proto;
1477 flow->nw_tos = ipv6_key->ipv6_tclass;
1478 flow->nw_ttl = ipv6_key->ipv6_hlimit;
1479 if (!odp_to_ovs_frag(ipv6_key->ipv6_frag, flow)) {
1480 return ODP_FIT_ERROR;
1481 }
1482 }
1483 } else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
1484 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ARP;
1485 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ARP)) {
1486 const struct ovs_key_arp *arp_key;
1487
1488 arp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ARP]);
1489 flow->nw_src = arp_key->arp_sip;
1490 flow->nw_dst = arp_key->arp_tip;
1491 if (arp_key->arp_op & htons(0xff00)) {
1492 VLOG_ERR_RL(&rl, "unsupported ARP opcode %"PRIu16" in flow "
1493 "key", ntohs(arp_key->arp_op));
1494 return ODP_FIT_ERROR;
1495 }
1496 flow->nw_proto = ntohs(arp_key->arp_op);
1497 memcpy(flow->arp_sha, arp_key->arp_sha, ETH_ADDR_LEN);
1498 memcpy(flow->arp_tha, arp_key->arp_tha, ETH_ADDR_LEN);
1499 }
1500 }
1501
1502 if (flow->nw_proto == IPPROTO_TCP
1503 && (flow->dl_type == htons(ETH_TYPE_IP) ||
1504 flow->dl_type == htons(ETH_TYPE_IPV6))
1505 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1506 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP;
1507 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP)) {
1508 const struct ovs_key_tcp *tcp_key;
1509
1510 tcp_key = nl_attr_get(attrs[OVS_KEY_ATTR_TCP]);
1511 flow->tp_src = tcp_key->tcp_src;
1512 flow->tp_dst = tcp_key->tcp_dst;
1513 }
1514 } else if (flow->nw_proto == IPPROTO_UDP
1515 && (flow->dl_type == htons(ETH_TYPE_IP) ||
1516 flow->dl_type == htons(ETH_TYPE_IPV6))
1517 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1518 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_UDP;
1519 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_UDP)) {
1520 const struct ovs_key_udp *udp_key;
1521
1522 udp_key = nl_attr_get(attrs[OVS_KEY_ATTR_UDP]);
1523 flow->tp_src = udp_key->udp_src;
1524 flow->tp_dst = udp_key->udp_dst;
1525 }
1526 } else if (flow->nw_proto == IPPROTO_ICMP
1527 && flow->dl_type == htons(ETH_TYPE_IP)
1528 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1529 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMP;
1530 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMP)) {
1531 const struct ovs_key_icmp *icmp_key;
1532
1533 icmp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMP]);
1534 flow->tp_src = htons(icmp_key->icmp_type);
1535 flow->tp_dst = htons(icmp_key->icmp_code);
1536 }
1537 } else if (flow->nw_proto == IPPROTO_ICMPV6
1538 && flow->dl_type == htons(ETH_TYPE_IPV6)
1539 && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
1540 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMPV6;
1541 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMPV6)) {
1542 const struct ovs_key_icmpv6 *icmpv6_key;
1543
1544 icmpv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMPV6]);
1545 flow->tp_src = htons(icmpv6_key->icmpv6_type);
1546 flow->tp_dst = htons(icmpv6_key->icmpv6_code);
1547
1548 if (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
1549 flow->tp_src == htons(ND_NEIGHBOR_ADVERT)) {
1550 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
1551 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ND)) {
1552 const struct ovs_key_nd *nd_key;
1553
1554 nd_key = nl_attr_get(attrs[OVS_KEY_ATTR_ND]);
1555 memcpy(&flow->nd_target, nd_key->nd_target,
1556 sizeof flow->nd_target);
1557 memcpy(flow->arp_sha, nd_key->nd_sll, ETH_ADDR_LEN);
1558 memcpy(flow->arp_tha, nd_key->nd_tll, ETH_ADDR_LEN);
1559 }
1560 }
1561 }
1562 }
1563
1564 return check_expectations(present_attrs, out_of_range_attr, expected_attrs,
1565 key, key_len);
1566 }
1567
1568 /* Parse 802.1Q header then encapsulated L3 attributes. */
1569 static enum odp_key_fitness
1570 parse_8021q_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
1571 uint64_t present_attrs, int out_of_range_attr,
1572 uint64_t expected_attrs, struct flow *flow,
1573 const struct nlattr *key, size_t key_len)
1574 {
1575 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1576
1577 const struct nlattr *encap
1578 = (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)
1579 ? attrs[OVS_KEY_ATTR_ENCAP] : NULL);
1580 enum odp_key_fitness encap_fitness;
1581 enum odp_key_fitness fitness;
1582 ovs_be16 tci;
1583
1584 /* Calulate fitness of outer attributes. */
1585 expected_attrs |= ((UINT64_C(1) << OVS_KEY_ATTR_VLAN) |
1586 (UINT64_C(1) << OVS_KEY_ATTR_ENCAP));
1587 fitness = check_expectations(present_attrs, out_of_range_attr,
1588 expected_attrs, key, key_len);
1589
1590 /* Get the VLAN TCI value. */
1591 if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN))) {
1592 return ODP_FIT_TOO_LITTLE;
1593 }
1594 tci = nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN]);
1595 if (tci == htons(0)) {
1596 /* Corner case for a truncated 802.1Q header. */
1597 if (fitness == ODP_FIT_PERFECT && nl_attr_get_size(encap)) {
1598 return ODP_FIT_TOO_MUCH;
1599 }
1600 return fitness;
1601 } else if (!(tci & htons(VLAN_CFI))) {
1602 VLOG_ERR_RL(&rl, "OVS_KEY_ATTR_VLAN 0x%04"PRIx16" is nonzero "
1603 "but CFI bit is not set", ntohs(tci));
1604 return ODP_FIT_ERROR;
1605 }
1606
1607 /* Set vlan_tci.
1608 * Remove the TPID from dl_type since it's not the real Ethertype. */
1609 flow->vlan_tci = tci;
1610 flow->dl_type = htons(0);
1611
1612 /* Now parse the encapsulated attributes. */
1613 if (!parse_flow_nlattrs(nl_attr_get(encap), nl_attr_get_size(encap),
1614 attrs, &present_attrs, &out_of_range_attr)) {
1615 return ODP_FIT_ERROR;
1616 }
1617 expected_attrs = 0;
1618
1619 if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) {
1620 return ODP_FIT_ERROR;
1621 }
1622 encap_fitness = parse_l3_onward(attrs, present_attrs, out_of_range_attr,
1623 expected_attrs, flow, key, key_len);
1624
1625 /* The overall fitness is the worse of the outer and inner attributes. */
1626 return MAX(fitness, encap_fitness);
1627 }
1628
1629 /* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a flow
1630 * structure in 'flow'. Returns an ODP_FIT_* value that indicates how well
1631 * 'key' fits our expectations for what a flow key should contain.
1632 *
1633 * This function doesn't take the packet itself as an argument because none of
1634 * the currently understood OVS_KEY_ATTR_* attributes require it. Currently,
1635 * it is always possible to infer which additional attribute(s) should appear
1636 * by looking at the attributes for lower-level protocols, e.g. if the network
1637 * protocol in OVS_KEY_ATTR_IPV4 or OVS_KEY_ATTR_IPV6 is IPPROTO_TCP then we
1638 * know that a OVS_KEY_ATTR_TCP attribute must appear and that otherwise it
1639 * must be absent. */
1640 enum odp_key_fitness
1641 odp_flow_key_to_flow(const struct nlattr *key, size_t key_len,
1642 struct flow *flow)
1643 {
1644 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1645 const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1];
1646 uint64_t expected_attrs;
1647 uint64_t present_attrs;
1648 int out_of_range_attr;
1649
1650 memset(flow, 0, sizeof *flow);
1651
1652 /* Parse attributes. */
1653 if (!parse_flow_nlattrs(key, key_len, attrs, &present_attrs,
1654 &out_of_range_attr)) {
1655 return ODP_FIT_ERROR;
1656 }
1657 expected_attrs = 0;
1658
1659 /* Metadata. */
1660 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_PRIORITY)) {
1661 flow->skb_priority = nl_attr_get_u32(attrs[OVS_KEY_ATTR_PRIORITY]);
1662 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_PRIORITY;
1663 }
1664
1665 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TUN_ID)) {
1666 flow->tun_id = nl_attr_get_be64(attrs[OVS_KEY_ATTR_TUN_ID]);
1667 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TUN_ID;
1668 }
1669
1670 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IN_PORT)) {
1671 uint32_t in_port = nl_attr_get_u32(attrs[OVS_KEY_ATTR_IN_PORT]);
1672 if (in_port >= UINT16_MAX || in_port >= OFPP_MAX) {
1673 VLOG_ERR_RL(&rl, "in_port %"PRIu32" out of supported range",
1674 in_port);
1675 return ODP_FIT_ERROR;
1676 }
1677 flow->in_port = odp_port_to_ofp_port(in_port);
1678 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IN_PORT;
1679 } else {
1680 flow->in_port = OFPP_NONE;
1681 }
1682
1683 /* Ethernet header. */
1684 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERNET)) {
1685 const struct ovs_key_ethernet *eth_key;
1686
1687 eth_key = nl_attr_get(attrs[OVS_KEY_ATTR_ETHERNET]);
1688 memcpy(flow->dl_src, eth_key->eth_src, ETH_ADDR_LEN);
1689 memcpy(flow->dl_dst, eth_key->eth_dst, ETH_ADDR_LEN);
1690 }
1691 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
1692
1693 /* Get Ethertype or 802.1Q TPID or FLOW_DL_TYPE_NONE. */
1694 if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) {
1695 return ODP_FIT_ERROR;
1696 }
1697
1698 if (flow->dl_type == htons(ETH_TYPE_VLAN)) {
1699 return parse_8021q_onward(attrs, present_attrs, out_of_range_attr,
1700 expected_attrs, flow, key, key_len);
1701 }
1702 return parse_l3_onward(attrs, present_attrs, out_of_range_attr,
1703 expected_attrs, flow, key, key_len);
1704 }
1705
1706 /* Returns 'fitness' as a string, for use in debug messages. */
1707 const char *
1708 odp_key_fitness_to_string(enum odp_key_fitness fitness)
1709 {
1710 switch (fitness) {
1711 case ODP_FIT_PERFECT:
1712 return "OK";
1713 case ODP_FIT_TOO_MUCH:
1714 return "too_much";
1715 case ODP_FIT_TOO_LITTLE:
1716 return "too_little";
1717 case ODP_FIT_ERROR:
1718 return "error";
1719 default:
1720 return "<unknown>";
1721 }
1722 }
1723
1724 /* Appends an OVS_ACTION_ATTR_USERSPACE action to 'odp_actions' that specifies
1725 * Netlink PID 'pid'. If 'cookie' is nonnull, adds a userdata attribute whose
1726 * contents contains 'cookie' and returns the offset within 'odp_actions' of
1727 * the start of the cookie. (If 'cookie' is null, then the return value is not
1728 * meaningful.) */
1729 size_t
1730 odp_put_userspace_action(uint32_t pid, const struct user_action_cookie *cookie,
1731 struct ofpbuf *odp_actions)
1732 {
1733 size_t offset;
1734
1735 offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_USERSPACE);
1736 nl_msg_put_u32(odp_actions, OVS_USERSPACE_ATTR_PID, pid);
1737 if (cookie) {
1738 nl_msg_put_unspec(odp_actions, OVS_USERSPACE_ATTR_USERDATA,
1739 cookie, sizeof *cookie);
1740 }
1741 nl_msg_end_nested(odp_actions, offset);
1742
1743 return cookie ? odp_actions->size - NLA_ALIGN(sizeof *cookie) : 0;
1744 }
1745 \f
1746 /* The commit_odp_actions() function and its helpers. */
1747
1748 static void
1749 commit_set_action(struct ofpbuf *odp_actions, enum ovs_key_attr key_type,
1750 const void *key, size_t key_size)
1751 {
1752 size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
1753 nl_msg_put_unspec(odp_actions, key_type, key, key_size);
1754 nl_msg_end_nested(odp_actions, offset);
1755 }
1756
1757 static void
1758 commit_set_tun_id_action(const struct flow *flow, struct flow *base,
1759 struct ofpbuf *odp_actions)
1760 {
1761 if (base->tun_id == flow->tun_id) {
1762 return;
1763 }
1764 base->tun_id = flow->tun_id;
1765
1766 commit_set_action(odp_actions, OVS_KEY_ATTR_TUN_ID,
1767 &base->tun_id, sizeof(base->tun_id));
1768 }
1769
1770 static void
1771 commit_set_ether_addr_action(const struct flow *flow, struct flow *base,
1772 struct ofpbuf *odp_actions)
1773 {
1774 struct ovs_key_ethernet eth_key;
1775
1776 if (eth_addr_equals(base->dl_src, flow->dl_src) &&
1777 eth_addr_equals(base->dl_dst, flow->dl_dst)) {
1778 return;
1779 }
1780
1781 memcpy(base->dl_src, flow->dl_src, ETH_ADDR_LEN);
1782 memcpy(base->dl_dst, flow->dl_dst, ETH_ADDR_LEN);
1783
1784 memcpy(eth_key.eth_src, base->dl_src, ETH_ADDR_LEN);
1785 memcpy(eth_key.eth_dst, base->dl_dst, ETH_ADDR_LEN);
1786
1787 commit_set_action(odp_actions, OVS_KEY_ATTR_ETHERNET,
1788 &eth_key, sizeof(eth_key));
1789 }
1790
1791 static void
1792 commit_vlan_action(const struct flow *flow, struct flow *base,
1793 struct ofpbuf *odp_actions)
1794 {
1795 if (base->vlan_tci == flow->vlan_tci) {
1796 return;
1797 }
1798
1799 if (base->vlan_tci & htons(VLAN_CFI)) {
1800 nl_msg_put_flag(odp_actions, OVS_ACTION_ATTR_POP_VLAN);
1801 }
1802
1803 if (flow->vlan_tci & htons(VLAN_CFI)) {
1804 struct ovs_action_push_vlan vlan;
1805
1806 vlan.vlan_tpid = htons(ETH_TYPE_VLAN);
1807 vlan.vlan_tci = flow->vlan_tci;
1808 nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_PUSH_VLAN,
1809 &vlan, sizeof vlan);
1810 }
1811 base->vlan_tci = flow->vlan_tci;
1812 }
1813
1814 static void
1815 commit_set_ipv4_action(const struct flow *flow, struct flow *base,
1816 struct ofpbuf *odp_actions)
1817 {
1818 struct ovs_key_ipv4 ipv4_key;
1819
1820 if (base->nw_src == flow->nw_src &&
1821 base->nw_dst == flow->nw_dst &&
1822 base->nw_tos == flow->nw_tos &&
1823 base->nw_ttl == flow->nw_ttl &&
1824 base->nw_frag == flow->nw_frag) {
1825 return;
1826 }
1827
1828 ipv4_key.ipv4_src = base->nw_src = flow->nw_src;
1829 ipv4_key.ipv4_dst = base->nw_dst = flow->nw_dst;
1830 ipv4_key.ipv4_tos = base->nw_tos = flow->nw_tos;
1831 ipv4_key.ipv4_ttl = base->nw_ttl = flow->nw_ttl;
1832 ipv4_key.ipv4_proto = base->nw_proto;
1833 ipv4_key.ipv4_frag = ovs_to_odp_frag(base->nw_frag);
1834
1835 commit_set_action(odp_actions, OVS_KEY_ATTR_IPV4,
1836 &ipv4_key, sizeof(ipv4_key));
1837 }
1838
1839 static void
1840 commit_set_ipv6_action(const struct flow *flow, struct flow *base,
1841 struct ofpbuf *odp_actions)
1842 {
1843 struct ovs_key_ipv6 ipv6_key;
1844
1845 if (ipv6_addr_equals(&base->ipv6_src, &flow->ipv6_src) &&
1846 ipv6_addr_equals(&base->ipv6_dst, &flow->ipv6_dst) &&
1847 base->ipv6_label == flow->ipv6_label &&
1848 base->nw_tos == flow->nw_tos &&
1849 base->nw_ttl == flow->nw_ttl &&
1850 base->nw_frag == flow->nw_frag) {
1851 return;
1852 }
1853
1854 base->ipv6_src = flow->ipv6_src;
1855 memcpy(&ipv6_key.ipv6_src, &base->ipv6_src, sizeof(ipv6_key.ipv6_src));
1856 base->ipv6_dst = flow->ipv6_dst;
1857 memcpy(&ipv6_key.ipv6_dst, &base->ipv6_dst, sizeof(ipv6_key.ipv6_dst));
1858
1859 ipv6_key.ipv6_label = base->ipv6_label = flow->ipv6_label;
1860 ipv6_key.ipv6_tclass = base->nw_tos = flow->nw_tos;
1861 ipv6_key.ipv6_hlimit = base->nw_ttl = flow->nw_ttl;
1862 ipv6_key.ipv6_proto = base->nw_proto;
1863 ipv6_key.ipv6_frag = ovs_to_odp_frag(base->nw_frag);
1864
1865 commit_set_action(odp_actions, OVS_KEY_ATTR_IPV6,
1866 &ipv6_key, sizeof(ipv6_key));
1867 }
1868
1869 static void
1870 commit_set_nw_action(const struct flow *flow, struct flow *base,
1871 struct ofpbuf *odp_actions)
1872 {
1873 /* Check if flow really have an IP header. */
1874 if (!flow->nw_proto) {
1875 return;
1876 }
1877
1878 if (base->dl_type == htons(ETH_TYPE_IP)) {
1879 commit_set_ipv4_action(flow, base, odp_actions);
1880 } else if (base->dl_type == htons(ETH_TYPE_IPV6)) {
1881 commit_set_ipv6_action(flow, base, odp_actions);
1882 }
1883 }
1884
1885 static void
1886 commit_set_port_action(const struct flow *flow, struct flow *base,
1887 struct ofpbuf *odp_actions)
1888 {
1889 if (!base->tp_src || !base->tp_dst) {
1890 return;
1891 }
1892
1893 if (base->tp_src == flow->tp_src &&
1894 base->tp_dst == flow->tp_dst) {
1895 return;
1896 }
1897
1898 if (flow->nw_proto == IPPROTO_TCP) {
1899 struct ovs_key_tcp port_key;
1900
1901 port_key.tcp_src = base->tp_src = flow->tp_src;
1902 port_key.tcp_dst = base->tp_dst = flow->tp_dst;
1903
1904 commit_set_action(odp_actions, OVS_KEY_ATTR_TCP,
1905 &port_key, sizeof(port_key));
1906
1907 } else if (flow->nw_proto == IPPROTO_UDP) {
1908 struct ovs_key_udp port_key;
1909
1910 port_key.udp_src = base->tp_src = flow->tp_src;
1911 port_key.udp_dst = base->tp_dst = flow->tp_dst;
1912
1913 commit_set_action(odp_actions, OVS_KEY_ATTR_UDP,
1914 &port_key, sizeof(port_key));
1915 }
1916 }
1917
1918 static void
1919 commit_set_priority_action(const struct flow *flow, struct flow *base,
1920 struct ofpbuf *odp_actions)
1921 {
1922 if (base->skb_priority == flow->skb_priority) {
1923 return;
1924 }
1925 base->skb_priority = flow->skb_priority;
1926
1927 commit_set_action(odp_actions, OVS_KEY_ATTR_PRIORITY,
1928 &base->skb_priority, sizeof(base->skb_priority));
1929 }
1930
1931 /* If any of the flow key data that ODP actions can modify are different in
1932 * 'base' and 'flow', appends ODP actions to 'odp_actions' that change the flow
1933 * key from 'base' into 'flow', and then changes 'base' the same way. */
1934 void
1935 commit_odp_actions(const struct flow *flow, struct flow *base,
1936 struct ofpbuf *odp_actions)
1937 {
1938 commit_set_tun_id_action(flow, base, odp_actions);
1939 commit_set_ether_addr_action(flow, base, odp_actions);
1940 commit_vlan_action(flow, base, odp_actions);
1941 commit_set_nw_action(flow, base, odp_actions);
1942 commit_set_port_action(flow, base, odp_actions);
1943 commit_set_priority_action(flow, base, odp_actions);
1944 }