]> git.proxmox.com Git - ovs.git/blob - lib/odp-util.c
odp-util: Fix UFID string parsing.
[ovs.git] / lib / odp-util.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include <arpa/inet.h>
19 #include "odp-util.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <math.h>
23 #include <netinet/in.h>
24 #include <netinet/icmp6.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include "byte-order.h"
29 #include "coverage.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "flow.h"
33 #include "netlink.h"
34 #include "ofpbuf.h"
35 #include "packets.h"
36 #include "simap.h"
37 #include "timeval.h"
38 #include "unaligned.h"
39 #include "util.h"
40 #include "openvswitch/vlog.h"
41
42 VLOG_DEFINE_THIS_MODULE(odp_util);
43
44 /* The interface between userspace and kernel uses an "OVS_*" prefix.
45 * Since this is fairly non-specific for the OVS userspace components,
46 * "ODP_*" (Open vSwitch Datapath) is used as the prefix for
47 * interactions with the datapath.
48 */
49
50 /* The set of characters that may separate one action or one key attribute
51 * from another. */
52 static const char *delimiters = ", \t\r\n";
53
54 static int parse_odp_key_mask_attr(const char *, const struct simap *port_names,
55 struct ofpbuf *, struct ofpbuf *);
56 static void format_odp_key_attr(const struct nlattr *a,
57 const struct nlattr *ma,
58 const struct hmap *portno_names, struct ds *ds,
59 bool verbose);
60
61 /* Returns one the following for the action with the given OVS_ACTION_ATTR_*
62 * 'type':
63 *
64 * - For an action whose argument has a fixed length, returned that
65 * nonnegative length in bytes.
66 *
67 * - For an action with a variable-length argument, returns -2.
68 *
69 * - For an invalid 'type', returns -1. */
70 static int
71 odp_action_len(uint16_t type)
72 {
73 if (type > OVS_ACTION_ATTR_MAX) {
74 return -1;
75 }
76
77 switch ((enum ovs_action_attr) type) {
78 case OVS_ACTION_ATTR_OUTPUT: return sizeof(uint32_t);
79 case OVS_ACTION_ATTR_TUNNEL_PUSH: return -2;
80 case OVS_ACTION_ATTR_TUNNEL_POP: return sizeof(uint32_t);
81 case OVS_ACTION_ATTR_USERSPACE: return -2;
82 case OVS_ACTION_ATTR_PUSH_VLAN: return sizeof(struct ovs_action_push_vlan);
83 case OVS_ACTION_ATTR_POP_VLAN: return 0;
84 case OVS_ACTION_ATTR_PUSH_MPLS: return sizeof(struct ovs_action_push_mpls);
85 case OVS_ACTION_ATTR_POP_MPLS: return sizeof(ovs_be16);
86 case OVS_ACTION_ATTR_RECIRC: return sizeof(uint32_t);
87 case OVS_ACTION_ATTR_HASH: return sizeof(struct ovs_action_hash);
88 case OVS_ACTION_ATTR_SET: return -2;
89 case OVS_ACTION_ATTR_SET_MASKED: return -2;
90 case OVS_ACTION_ATTR_SAMPLE: return -2;
91
92 case OVS_ACTION_ATTR_UNSPEC:
93 case __OVS_ACTION_ATTR_MAX:
94 return -1;
95 }
96
97 return -1;
98 }
99
100 /* Returns a string form of 'attr'. The return value is either a statically
101 * allocated constant string or the 'bufsize'-byte buffer 'namebuf'. 'bufsize'
102 * should be at least OVS_KEY_ATTR_BUFSIZE. */
103 enum { OVS_KEY_ATTR_BUFSIZE = 3 + INT_STRLEN(unsigned int) + 1 };
104 static const char *
105 ovs_key_attr_to_string(enum ovs_key_attr attr, char *namebuf, size_t bufsize)
106 {
107 switch (attr) {
108 case OVS_KEY_ATTR_UNSPEC: return "unspec";
109 case OVS_KEY_ATTR_ENCAP: return "encap";
110 case OVS_KEY_ATTR_PRIORITY: return "skb_priority";
111 case OVS_KEY_ATTR_SKB_MARK: return "skb_mark";
112 case OVS_KEY_ATTR_TUNNEL: return "tunnel";
113 case OVS_KEY_ATTR_IN_PORT: return "in_port";
114 case OVS_KEY_ATTR_ETHERNET: return "eth";
115 case OVS_KEY_ATTR_VLAN: return "vlan";
116 case OVS_KEY_ATTR_ETHERTYPE: return "eth_type";
117 case OVS_KEY_ATTR_IPV4: return "ipv4";
118 case OVS_KEY_ATTR_IPV6: return "ipv6";
119 case OVS_KEY_ATTR_TCP: return "tcp";
120 case OVS_KEY_ATTR_TCP_FLAGS: return "tcp_flags";
121 case OVS_KEY_ATTR_UDP: return "udp";
122 case OVS_KEY_ATTR_SCTP: return "sctp";
123 case OVS_KEY_ATTR_ICMP: return "icmp";
124 case OVS_KEY_ATTR_ICMPV6: return "icmpv6";
125 case OVS_KEY_ATTR_ARP: return "arp";
126 case OVS_KEY_ATTR_ND: return "nd";
127 case OVS_KEY_ATTR_MPLS: return "mpls";
128 case OVS_KEY_ATTR_DP_HASH: return "dp_hash";
129 case OVS_KEY_ATTR_RECIRC_ID: return "recirc_id";
130
131 case __OVS_KEY_ATTR_MAX:
132 default:
133 snprintf(namebuf, bufsize, "key%u", (unsigned int) attr);
134 return namebuf;
135 }
136 }
137
138 static void
139 format_generic_odp_action(struct ds *ds, const struct nlattr *a)
140 {
141 size_t len = nl_attr_get_size(a);
142
143 ds_put_format(ds, "action%"PRId16, nl_attr_type(a));
144 if (len) {
145 const uint8_t *unspec;
146 unsigned int i;
147
148 unspec = nl_attr_get(a);
149 for (i = 0; i < len; i++) {
150 ds_put_char(ds, i ? ' ': '(');
151 ds_put_format(ds, "%02x", unspec[i]);
152 }
153 ds_put_char(ds, ')');
154 }
155 }
156
157 static void
158 format_odp_sample_action(struct ds *ds, const struct nlattr *attr)
159 {
160 static const struct nl_policy ovs_sample_policy[] = {
161 [OVS_SAMPLE_ATTR_PROBABILITY] = { .type = NL_A_U32 },
162 [OVS_SAMPLE_ATTR_ACTIONS] = { .type = NL_A_NESTED }
163 };
164 struct nlattr *a[ARRAY_SIZE(ovs_sample_policy)];
165 double percentage;
166 const struct nlattr *nla_acts;
167 int len;
168
169 ds_put_cstr(ds, "sample");
170
171 if (!nl_parse_nested(attr, ovs_sample_policy, a, ARRAY_SIZE(a))) {
172 ds_put_cstr(ds, "(error)");
173 return;
174 }
175
176 percentage = (100.0 * nl_attr_get_u32(a[OVS_SAMPLE_ATTR_PROBABILITY])) /
177 UINT32_MAX;
178
179 ds_put_format(ds, "(sample=%.1f%%,", percentage);
180
181 ds_put_cstr(ds, "actions(");
182 nla_acts = nl_attr_get(a[OVS_SAMPLE_ATTR_ACTIONS]);
183 len = nl_attr_get_size(a[OVS_SAMPLE_ATTR_ACTIONS]);
184 format_odp_actions(ds, nla_acts, len);
185 ds_put_format(ds, "))");
186 }
187
188 static const char *
189 slow_path_reason_to_string(uint32_t reason)
190 {
191 switch ((enum slow_path_reason) reason) {
192 #define SPR(ENUM, STRING, EXPLANATION) case ENUM: return STRING;
193 SLOW_PATH_REASONS
194 #undef SPR
195 }
196
197 return NULL;
198 }
199
200 const char *
201 slow_path_reason_to_explanation(enum slow_path_reason reason)
202 {
203 switch (reason) {
204 #define SPR(ENUM, STRING, EXPLANATION) case ENUM: return EXPLANATION;
205 SLOW_PATH_REASONS
206 #undef SPR
207 }
208
209 return "<unknown>";
210 }
211
212 static int
213 parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
214 uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
215 {
216 uint32_t result = 0;
217 int n;
218
219 /* Parse masked flags in numeric format? */
220 if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
221 res_flags, res_mask, &n) && n > 0) {
222 if (*res_flags & ~allowed || *res_mask & ~allowed) {
223 return -EINVAL;
224 }
225 return n;
226 }
227
228 n = 0;
229
230 if (res_mask && (*s == '+' || *s == '-')) {
231 uint32_t flags = 0, mask = 0;
232
233 /* Parse masked flags. */
234 while (s[n] != ')') {
235 bool set;
236 uint32_t bit;
237 int name_len;
238
239 if (s[n] == '+') {
240 set = true;
241 } else if (s[n] == '-') {
242 set = false;
243 } else {
244 return -EINVAL;
245 }
246 n++;
247
248 name_len = strcspn(s + n, "+-)");
249
250 for (bit = 1; bit; bit <<= 1) {
251 const char *fname = bit_to_string(bit);
252 size_t len;
253
254 if (!fname) {
255 continue;
256 }
257
258 len = strlen(fname);
259 if (len != name_len) {
260 continue;
261 }
262 if (!strncmp(s + n, fname, len)) {
263 if (mask & bit) {
264 /* bit already set. */
265 return -EINVAL;
266 }
267 if (!(bit & allowed)) {
268 return -EINVAL;
269 }
270 if (set) {
271 flags |= bit;
272 }
273 mask |= bit;
274 break;
275 }
276 }
277
278 if (!bit) {
279 return -EINVAL; /* Unknown flag name */
280 }
281 s += name_len;
282 }
283
284 *res_flags = flags;
285 *res_mask = mask;
286 return n;
287 }
288
289 /* Parse unmasked flags. If a flag is present, it is set, otherwise
290 * it is not set. */
291 while (s[n] != ')') {
292 unsigned long long int flags;
293 uint32_t bit;
294 int n0;
295
296 if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
297 if (flags & ~allowed) {
298 return -EINVAL;
299 }
300 n += n0 + (s[n + n0] == ',');
301 result |= flags;
302 continue;
303 }
304
305 for (bit = 1; bit; bit <<= 1) {
306 const char *name = bit_to_string(bit);
307 size_t len;
308
309 if (!name) {
310 continue;
311 }
312
313 len = strlen(name);
314 if (!strncmp(s + n, name, len) &&
315 (s[n + len] == ',' || s[n + len] == ')')) {
316 if (!(bit & allowed)) {
317 return -EINVAL;
318 }
319 result |= bit;
320 n += len + (s[n + len] == ',');
321 break;
322 }
323 }
324
325 if (!bit) {
326 return -EINVAL;
327 }
328 }
329
330 *res_flags = result;
331 if (res_mask) {
332 *res_mask = UINT32_MAX;
333 }
334 return n;
335 }
336
337 static void
338 format_odp_userspace_action(struct ds *ds, const struct nlattr *attr)
339 {
340 static const struct nl_policy ovs_userspace_policy[] = {
341 [OVS_USERSPACE_ATTR_PID] = { .type = NL_A_U32 },
342 [OVS_USERSPACE_ATTR_USERDATA] = { .type = NL_A_UNSPEC,
343 .optional = true },
344 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = { .type = NL_A_U32,
345 .optional = true },
346 };
347 struct nlattr *a[ARRAY_SIZE(ovs_userspace_policy)];
348 const struct nlattr *userdata_attr;
349 const struct nlattr *tunnel_out_port_attr;
350
351 if (!nl_parse_nested(attr, ovs_userspace_policy, a, ARRAY_SIZE(a))) {
352 ds_put_cstr(ds, "userspace(error)");
353 return;
354 }
355
356 ds_put_format(ds, "userspace(pid=%"PRIu32,
357 nl_attr_get_u32(a[OVS_USERSPACE_ATTR_PID]));
358
359 userdata_attr = a[OVS_USERSPACE_ATTR_USERDATA];
360
361 if (userdata_attr) {
362 const uint8_t *userdata = nl_attr_get(userdata_attr);
363 size_t userdata_len = nl_attr_get_size(userdata_attr);
364 bool userdata_unspec = true;
365 union user_action_cookie cookie;
366
367 if (userdata_len >= sizeof cookie.type
368 && userdata_len <= sizeof cookie) {
369
370 memset(&cookie, 0, sizeof cookie);
371 memcpy(&cookie, userdata, userdata_len);
372
373 userdata_unspec = false;
374
375 if (userdata_len == sizeof cookie.sflow
376 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
377 ds_put_format(ds, ",sFlow("
378 "vid=%"PRIu16",pcp=%"PRIu8",output=%"PRIu32")",
379 vlan_tci_to_vid(cookie.sflow.vlan_tci),
380 vlan_tci_to_pcp(cookie.sflow.vlan_tci),
381 cookie.sflow.output);
382 } else if (userdata_len == sizeof cookie.slow_path
383 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
384 ds_put_cstr(ds, ",slow_path(");
385 format_flags(ds, slow_path_reason_to_string,
386 cookie.slow_path.reason, ',');
387 ds_put_format(ds, ")");
388 } else if (userdata_len == sizeof cookie.flow_sample
389 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
390 ds_put_format(ds, ",flow_sample(probability=%"PRIu16
391 ",collector_set_id=%"PRIu32
392 ",obs_domain_id=%"PRIu32
393 ",obs_point_id=%"PRIu32")",
394 cookie.flow_sample.probability,
395 cookie.flow_sample.collector_set_id,
396 cookie.flow_sample.obs_domain_id,
397 cookie.flow_sample.obs_point_id);
398 } else if (userdata_len >= sizeof cookie.ipfix
399 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
400 ds_put_format(ds, ",ipfix(output_port=%"PRIu32")",
401 cookie.ipfix.output_odp_port);
402 } else {
403 userdata_unspec = true;
404 }
405 }
406
407 if (userdata_unspec) {
408 size_t i;
409 ds_put_format(ds, ",userdata(");
410 for (i = 0; i < userdata_len; i++) {
411 ds_put_format(ds, "%02x", userdata[i]);
412 }
413 ds_put_char(ds, ')');
414 }
415 }
416
417 tunnel_out_port_attr = a[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT];
418 if (tunnel_out_port_attr) {
419 ds_put_format(ds, ",tunnel_out_port=%"PRIu32,
420 nl_attr_get_u32(tunnel_out_port_attr));
421 }
422
423 ds_put_char(ds, ')');
424 }
425
426 static void
427 format_vlan_tci(struct ds *ds, ovs_be16 tci, ovs_be16 mask, bool verbose)
428 {
429 if (verbose || vlan_tci_to_vid(tci) || vlan_tci_to_vid(mask)) {
430 ds_put_format(ds, "vid=%"PRIu16, vlan_tci_to_vid(tci));
431 if (vlan_tci_to_vid(mask) != VLAN_VID_MASK) { /* Partially masked. */
432 ds_put_format(ds, "/0x%"PRIx16, vlan_tci_to_vid(mask));
433 };
434 ds_put_char(ds, ',');
435 }
436 if (verbose || vlan_tci_to_pcp(tci) || vlan_tci_to_pcp(mask)) {
437 ds_put_format(ds, "pcp=%d", vlan_tci_to_pcp(tci));
438 if (vlan_tci_to_pcp(mask) != (VLAN_PCP_MASK >> VLAN_PCP_SHIFT)) {
439 ds_put_format(ds, "/0x%x", vlan_tci_to_pcp(mask));
440 }
441 ds_put_char(ds, ',');
442 }
443 if (!(tci & htons(VLAN_CFI))) {
444 ds_put_cstr(ds, "cfi=0");
445 ds_put_char(ds, ',');
446 }
447 ds_chomp(ds, ',');
448 }
449
450 static void
451 format_mpls_lse(struct ds *ds, ovs_be32 mpls_lse)
452 {
453 ds_put_format(ds, "label=%"PRIu32",tc=%d,ttl=%d,bos=%d",
454 mpls_lse_to_label(mpls_lse),
455 mpls_lse_to_tc(mpls_lse),
456 mpls_lse_to_ttl(mpls_lse),
457 mpls_lse_to_bos(mpls_lse));
458 }
459
460 static void
461 format_mpls(struct ds *ds, const struct ovs_key_mpls *mpls_key,
462 const struct ovs_key_mpls *mpls_mask, int n)
463 {
464 if (n == 1) {
465 ovs_be32 key = mpls_key->mpls_lse;
466
467 if (mpls_mask == NULL) {
468 format_mpls_lse(ds, key);
469 } else {
470 ovs_be32 mask = mpls_mask->mpls_lse;
471
472 ds_put_format(ds, "label=%"PRIu32"/0x%x,tc=%d/%x,ttl=%d/0x%x,bos=%d/%x",
473 mpls_lse_to_label(key), mpls_lse_to_label(mask),
474 mpls_lse_to_tc(key), mpls_lse_to_tc(mask),
475 mpls_lse_to_ttl(key), mpls_lse_to_ttl(mask),
476 mpls_lse_to_bos(key), mpls_lse_to_bos(mask));
477 }
478 } else {
479 int i;
480
481 for (i = 0; i < n; i++) {
482 ds_put_format(ds, "lse%d=%#"PRIx32,
483 i, ntohl(mpls_key[i].mpls_lse));
484 if (mpls_mask) {
485 ds_put_format(ds, "/%#"PRIx32, ntohl(mpls_mask[i].mpls_lse));
486 }
487 ds_put_char(ds, ',');
488 }
489 ds_chomp(ds, ',');
490 }
491 }
492
493 static void
494 format_odp_recirc_action(struct ds *ds, uint32_t recirc_id)
495 {
496 ds_put_format(ds, "recirc(%"PRIu32")", recirc_id);
497 }
498
499 static void
500 format_odp_hash_action(struct ds *ds, const struct ovs_action_hash *hash_act)
501 {
502 ds_put_format(ds, "hash(");
503
504 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
505 ds_put_format(ds, "hash_l4(%"PRIu32")", hash_act->hash_basis);
506 } else {
507 ds_put_format(ds, "Unknown hash algorithm(%"PRIu32")",
508 hash_act->hash_alg);
509 }
510 ds_put_format(ds, ")");
511 }
512
513 static void
514 format_odp_tnl_push_header(struct ds *ds, struct ovs_action_push_tnl *data)
515 {
516 const struct eth_header *eth;
517 const struct ip_header *ip;
518 const void *l3;
519
520 eth = (const struct eth_header *)data->header;
521
522 l3 = eth + 1;
523 ip = (const struct ip_header *)l3;
524
525 /* Ethernet */
526 ds_put_format(ds, "header(size=%"PRIu8",type=%"PRIu8",eth(dst=",
527 data->header_len, data->tnl_type);
528 ds_put_format(ds, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth->eth_dst));
529 ds_put_format(ds, ",src=");
530 ds_put_format(ds, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth->eth_src));
531 ds_put_format(ds, ",dl_type=0x%04"PRIx16"),", ntohs(eth->eth_type));
532
533 /* IPv4 */
534 ds_put_format(ds, "ipv4(src="IP_FMT",dst="IP_FMT",proto=%"PRIu8
535 ",tos=%#"PRIx8",ttl=%"PRIu8",frag=0x%"PRIx16"),",
536 IP_ARGS(get_16aligned_be32(&ip->ip_src)),
537 IP_ARGS(get_16aligned_be32(&ip->ip_dst)),
538 ip->ip_proto, ip->ip_tos,
539 ip->ip_ttl,
540 ip->ip_frag_off);
541
542 if (data->tnl_type == OVS_VPORT_TYPE_VXLAN) {
543 const struct vxlanhdr *vxh;
544 const struct udp_header *udp;
545
546 /* UDP */
547 udp = (const struct udp_header *) (ip + 1);
548 ds_put_format(ds, "udp(src=%"PRIu16",dst=%"PRIu16"),",
549 ntohs(udp->udp_src), ntohs(udp->udp_dst));
550
551 /* VxLan */
552 vxh = (const struct vxlanhdr *) (udp + 1);
553 ds_put_format(ds, "vxlan(flags=0x%"PRIx32",vni=0x%"PRIx32")",
554 ntohl(get_16aligned_be32(&vxh->vx_flags)),
555 ntohl(get_16aligned_be32(&vxh->vx_vni)));
556 } else if (data->tnl_type == OVS_VPORT_TYPE_GRE) {
557 const struct gre_base_hdr *greh;
558 ovs_16aligned_be32 *options;
559 void *l4;
560
561 l4 = ((uint8_t *)l3 + sizeof(struct ip_header));
562 greh = (const struct gre_base_hdr *) l4;
563
564 ds_put_format(ds, "gre((flags=0x%"PRIx16",proto=0x%"PRIx16")",
565 greh->flags, ntohs(greh->protocol));
566 options = (ovs_16aligned_be32 *)(greh + 1);
567 if (greh->flags & htons(GRE_CSUM)) {
568 ds_put_format(ds, ",csum=0x%"PRIx32, ntohl(get_16aligned_be32(options)));
569 options++;
570 }
571 if (greh->flags & htons(GRE_KEY)) {
572 ds_put_format(ds, ",key=0x%"PRIx32, ntohl(get_16aligned_be32(options)));
573 options++;
574 }
575 if (greh->flags & htons(GRE_SEQ)) {
576 ds_put_format(ds, ",seq=0x%"PRIx32, ntohl(get_16aligned_be32(options)));
577 options++;
578 }
579 ds_put_format(ds, ")");
580 }
581 ds_put_format(ds, ")");
582 }
583
584 static void
585 format_odp_tnl_push_action(struct ds *ds, const struct nlattr *attr)
586 {
587 struct ovs_action_push_tnl *data;
588
589 data = (struct ovs_action_push_tnl *) nl_attr_get(attr);
590
591 ds_put_format(ds, "tnl_push(tnl_port(%"PRIu32"),", data->tnl_port);
592 format_odp_tnl_push_header(ds, data);
593 ds_put_format(ds, ",out_port(%"PRIu32"))", data->out_port);
594 }
595
596 static void
597 format_odp_action(struct ds *ds, const struct nlattr *a)
598 {
599 int expected_len;
600 enum ovs_action_attr type = nl_attr_type(a);
601 const struct ovs_action_push_vlan *vlan;
602 size_t size;
603
604 expected_len = odp_action_len(nl_attr_type(a));
605 if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
606 ds_put_format(ds, "bad length %"PRIuSIZE", expected %d for: ",
607 nl_attr_get_size(a), expected_len);
608 format_generic_odp_action(ds, a);
609 return;
610 }
611
612 switch (type) {
613 case OVS_ACTION_ATTR_OUTPUT:
614 ds_put_format(ds, "%"PRIu32, nl_attr_get_u32(a));
615 break;
616 case OVS_ACTION_ATTR_TUNNEL_POP:
617 ds_put_format(ds, "tnl_pop(%"PRIu32")", nl_attr_get_u32(a));
618 break;
619 case OVS_ACTION_ATTR_TUNNEL_PUSH:
620 format_odp_tnl_push_action(ds, a);
621 break;
622 case OVS_ACTION_ATTR_USERSPACE:
623 format_odp_userspace_action(ds, a);
624 break;
625 case OVS_ACTION_ATTR_RECIRC:
626 format_odp_recirc_action(ds, nl_attr_get_u32(a));
627 break;
628 case OVS_ACTION_ATTR_HASH:
629 format_odp_hash_action(ds, nl_attr_get(a));
630 break;
631 case OVS_ACTION_ATTR_SET_MASKED:
632 a = nl_attr_get(a);
633 size = nl_attr_get_size(a) / 2;
634 ds_put_cstr(ds, "set(");
635
636 /* Masked set action not supported for tunnel key, which is bigger. */
637 if (size <= sizeof(struct ovs_key_ipv6)) {
638 struct nlattr attr[1 + DIV_ROUND_UP(sizeof(struct ovs_key_ipv6),
639 sizeof(struct nlattr))];
640 struct nlattr mask[1 + DIV_ROUND_UP(sizeof(struct ovs_key_ipv6),
641 sizeof(struct nlattr))];
642
643 mask->nla_type = attr->nla_type = nl_attr_type(a);
644 mask->nla_len = attr->nla_len = NLA_HDRLEN + size;
645 memcpy(attr + 1, (char *)(a + 1), size);
646 memcpy(mask + 1, (char *)(a + 1) + size, size);
647 format_odp_key_attr(attr, mask, NULL, ds, false);
648 } else {
649 format_odp_key_attr(a, NULL, NULL, ds, false);
650 }
651 ds_put_cstr(ds, ")");
652 break;
653 case OVS_ACTION_ATTR_SET:
654 ds_put_cstr(ds, "set(");
655 format_odp_key_attr(nl_attr_get(a), NULL, NULL, ds, true);
656 ds_put_cstr(ds, ")");
657 break;
658 case OVS_ACTION_ATTR_PUSH_VLAN:
659 vlan = nl_attr_get(a);
660 ds_put_cstr(ds, "push_vlan(");
661 if (vlan->vlan_tpid != htons(ETH_TYPE_VLAN)) {
662 ds_put_format(ds, "tpid=0x%04"PRIx16",", ntohs(vlan->vlan_tpid));
663 }
664 format_vlan_tci(ds, vlan->vlan_tci, OVS_BE16_MAX, false);
665 ds_put_char(ds, ')');
666 break;
667 case OVS_ACTION_ATTR_POP_VLAN:
668 ds_put_cstr(ds, "pop_vlan");
669 break;
670 case OVS_ACTION_ATTR_PUSH_MPLS: {
671 const struct ovs_action_push_mpls *mpls = nl_attr_get(a);
672 ds_put_cstr(ds, "push_mpls(");
673 format_mpls_lse(ds, mpls->mpls_lse);
674 ds_put_format(ds, ",eth_type=0x%"PRIx16")", ntohs(mpls->mpls_ethertype));
675 break;
676 }
677 case OVS_ACTION_ATTR_POP_MPLS: {
678 ovs_be16 ethertype = nl_attr_get_be16(a);
679 ds_put_format(ds, "pop_mpls(eth_type=0x%"PRIx16")", ntohs(ethertype));
680 break;
681 }
682 case OVS_ACTION_ATTR_SAMPLE:
683 format_odp_sample_action(ds, a);
684 break;
685 case OVS_ACTION_ATTR_UNSPEC:
686 case __OVS_ACTION_ATTR_MAX:
687 default:
688 format_generic_odp_action(ds, a);
689 break;
690 }
691 }
692
693 void
694 format_odp_actions(struct ds *ds, const struct nlattr *actions,
695 size_t actions_len)
696 {
697 if (actions_len) {
698 const struct nlattr *a;
699 unsigned int left;
700
701 NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
702 if (a != actions) {
703 ds_put_char(ds, ',');
704 }
705 format_odp_action(ds, a);
706 }
707 if (left) {
708 int i;
709
710 if (left == actions_len) {
711 ds_put_cstr(ds, "<empty>");
712 }
713 ds_put_format(ds, ",***%u leftover bytes*** (", left);
714 for (i = 0; i < left; i++) {
715 ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
716 }
717 ds_put_char(ds, ')');
718 }
719 } else {
720 ds_put_cstr(ds, "drop");
721 }
722 }
723
724 /* Separate out parse_odp_userspace_action() function. */
725 static int
726 parse_odp_userspace_action(const char *s, struct ofpbuf *actions)
727 {
728 uint32_t pid;
729 union user_action_cookie cookie;
730 struct ofpbuf buf;
731 odp_port_t tunnel_out_port;
732 int n = -1;
733 void *user_data = NULL;
734 size_t user_data_size = 0;
735
736 if (!ovs_scan(s, "userspace(pid=%"SCNi32"%n", &pid, &n)) {
737 return -EINVAL;
738 }
739
740 {
741 uint32_t output;
742 uint32_t probability;
743 uint32_t collector_set_id;
744 uint32_t obs_domain_id;
745 uint32_t obs_point_id;
746 int vid, pcp;
747 int n1 = -1;
748 if (ovs_scan(&s[n], ",sFlow(vid=%i,"
749 "pcp=%i,output=%"SCNi32")%n",
750 &vid, &pcp, &output, &n1)) {
751 uint16_t tci;
752
753 n += n1;
754 tci = vid | (pcp << VLAN_PCP_SHIFT);
755 if (tci) {
756 tci |= VLAN_CFI;
757 }
758
759 cookie.type = USER_ACTION_COOKIE_SFLOW;
760 cookie.sflow.vlan_tci = htons(tci);
761 cookie.sflow.output = output;
762 user_data = &cookie;
763 user_data_size = sizeof cookie.sflow;
764 } else if (ovs_scan(&s[n], ",slow_path(%n",
765 &n1)) {
766 int res;
767
768 n += n1;
769 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
770 cookie.slow_path.unused = 0;
771 cookie.slow_path.reason = 0;
772
773 res = parse_flags(&s[n], slow_path_reason_to_string,
774 &cookie.slow_path.reason,
775 SLOW_PATH_REASON_MASK, NULL);
776 if (res < 0 || s[n + res] != ')') {
777 return res;
778 }
779 n += res + 1;
780
781 user_data = &cookie;
782 user_data_size = sizeof cookie.slow_path;
783 } else if (ovs_scan(&s[n], ",flow_sample(probability=%"SCNi32","
784 "collector_set_id=%"SCNi32","
785 "obs_domain_id=%"SCNi32","
786 "obs_point_id=%"SCNi32")%n",
787 &probability, &collector_set_id,
788 &obs_domain_id, &obs_point_id, &n1)) {
789 n += n1;
790
791 cookie.type = USER_ACTION_COOKIE_FLOW_SAMPLE;
792 cookie.flow_sample.probability = probability;
793 cookie.flow_sample.collector_set_id = collector_set_id;
794 cookie.flow_sample.obs_domain_id = obs_domain_id;
795 cookie.flow_sample.obs_point_id = obs_point_id;
796 user_data = &cookie;
797 user_data_size = sizeof cookie.flow_sample;
798 } else if (ovs_scan(&s[n], ",ipfix(output_port=%"SCNi32")%n",
799 &output, &n1) ) {
800 n += n1;
801 cookie.type = USER_ACTION_COOKIE_IPFIX;
802 cookie.ipfix.output_odp_port = u32_to_odp(output);
803 user_data = &cookie;
804 user_data_size = sizeof cookie.ipfix;
805 } else if (ovs_scan(&s[n], ",userdata(%n",
806 &n1)) {
807 char *end;
808
809 n += n1;
810 ofpbuf_init(&buf, 16);
811 end = ofpbuf_put_hex(&buf, &s[n], NULL);
812 if (end[0] != ')') {
813 return -EINVAL;
814 }
815 user_data = ofpbuf_data(&buf);
816 user_data_size = ofpbuf_size(&buf);
817 n = (end + 1) - s;
818 }
819 }
820
821 {
822 int n1 = -1;
823 if (ovs_scan(&s[n], ",tunnel_out_port=%"SCNi32")%n",
824 &tunnel_out_port, &n1)) {
825 odp_put_userspace_action(pid, user_data, user_data_size, tunnel_out_port, actions);
826 return n + n1;
827 } else if (s[n] == ')') {
828 odp_put_userspace_action(pid, user_data, user_data_size, ODPP_NONE, actions);
829 return n + 1;
830 }
831 }
832
833 return -EINVAL;
834 }
835
836 static int
837 ovs_parse_tnl_push(const char *s, struct ovs_action_push_tnl *data)
838 {
839 struct eth_header *eth;
840 struct ip_header *ip;
841 struct udp_header *udp;
842 struct gre_base_hdr *greh;
843 uint16_t gre_proto, dl_type, udp_src, udp_dst;
844 ovs_be32 sip, dip;
845 uint32_t tnl_type = 0, header_len = 0;
846 void *l3, *l4;
847 int n = 0;
848
849 if (!ovs_scan_len(s, &n, "tnl_push(tnl_port(%"SCNi32"),", &data->tnl_port)) {
850 return -EINVAL;
851 }
852 eth = (struct eth_header *) data->header;
853 l3 = (data->header + sizeof *eth);
854 l4 = ((uint8_t *) l3 + sizeof (struct ip_header));
855 ip = (struct ip_header *) l3;
856 if (!ovs_scan_len(s, &n, "header(size=%"SCNi32",type=%"SCNi32","
857 "eth(dst="ETH_ADDR_SCAN_FMT",",
858 &data->header_len,
859 &data->tnl_type,
860 ETH_ADDR_SCAN_ARGS(eth->eth_dst))) {
861 return -EINVAL;
862 }
863
864 if (!ovs_scan_len(s, &n, "src="ETH_ADDR_SCAN_FMT",",
865 ETH_ADDR_SCAN_ARGS(eth->eth_src))) {
866 return -EINVAL;
867 }
868 if (!ovs_scan_len(s, &n, "dl_type=0x%"SCNx16"),", &dl_type)) {
869 return -EINVAL;
870 }
871 eth->eth_type = htons(dl_type);
872
873 /* IPv4 */
874 if (!ovs_scan_len(s, &n, "ipv4(src="IP_SCAN_FMT",dst="IP_SCAN_FMT",proto=%"SCNi8
875 ",tos=%"SCNi8",ttl=%"SCNi8",frag=0x%"SCNx16"),",
876 IP_SCAN_ARGS(&sip),
877 IP_SCAN_ARGS(&dip),
878 &ip->ip_proto, &ip->ip_tos,
879 &ip->ip_ttl, &ip->ip_frag_off)) {
880 return -EINVAL;
881 }
882 put_16aligned_be32(&ip->ip_src, sip);
883 put_16aligned_be32(&ip->ip_dst, dip);
884
885 /* Tunnel header */
886 udp = (struct udp_header *) l4;
887 greh = (struct gre_base_hdr *) l4;
888 if (ovs_scan_len(s, &n, "udp(src=%"SCNi16",dst=%"SCNi16"),",
889 &udp_src, &udp_dst)) {
890 struct vxlanhdr *vxh;
891 uint32_t vx_flags, vx_vni;
892
893 udp->udp_src = htons(udp_src);
894 udp->udp_dst = htons(udp_dst);
895 udp->udp_len = 0;
896 udp->udp_csum = 0;
897
898 vxh = (struct vxlanhdr *) (udp + 1);
899 if (!ovs_scan_len(s, &n, "vxlan(flags=0x%"SCNx32",vni=0x%"SCNx32"))",
900 &vx_flags, &vx_vni)) {
901 return -EINVAL;
902 }
903 put_16aligned_be32(&vxh->vx_flags, htonl(vx_flags));
904 put_16aligned_be32(&vxh->vx_vni, htonl(vx_vni));
905 tnl_type = OVS_VPORT_TYPE_VXLAN;
906 header_len = sizeof *eth + sizeof *ip +
907 sizeof *udp + sizeof *vxh;
908 } else if (ovs_scan_len(s, &n, "gre((flags=0x%"SCNx16",proto=0x%"SCNx16")",
909 &greh->flags, &gre_proto)){
910
911 tnl_type = OVS_VPORT_TYPE_GRE;
912 greh->protocol = htons(gre_proto);
913 ovs_16aligned_be32 *options = (ovs_16aligned_be32 *) (greh + 1);
914
915 if (greh->flags & htons(GRE_CSUM)) {
916 uint32_t csum;
917
918 if (!ovs_scan_len(s, &n, ",csum=0x%"SCNx32, &csum)) {
919 return -EINVAL;
920 }
921 put_16aligned_be32(options, htonl(csum));
922 options++;
923 }
924 if (greh->flags & htons(GRE_KEY)) {
925 uint32_t key;
926
927 if (!ovs_scan_len(s, &n, ",key=0x%"SCNx32, &key)) {
928 return -EINVAL;
929 }
930
931 put_16aligned_be32(options, htonl(key));
932 options++;
933 }
934 if (greh->flags & htons(GRE_SEQ)) {
935 uint32_t seq;
936
937 if (!ovs_scan_len(s, &n, ",seq=0x%"SCNx32, &seq)) {
938 return -EINVAL;
939 }
940 put_16aligned_be32(options, htonl(seq));
941 options++;
942 }
943
944 if (!ovs_scan_len(s, &n, "))")) {
945 return -EINVAL;
946 }
947
948 header_len = sizeof *eth + sizeof *ip +
949 ((uint8_t *) options - (uint8_t *) greh);
950 } else {
951 return -EINVAL;
952 }
953
954 /* check tunnel meta data. */
955 if (data->tnl_type != tnl_type) {
956 return -EINVAL;
957 }
958 if (data->header_len != header_len) {
959 return -EINVAL;
960 }
961
962 /* Out port */
963 if (!ovs_scan_len(s, &n, ",out_port(%"SCNi32"))", &data->out_port)) {
964 return -EINVAL;
965 }
966
967 return n;
968 }
969
970 static int
971 parse_odp_action(const char *s, const struct simap *port_names,
972 struct ofpbuf *actions)
973 {
974 {
975 uint32_t port;
976 int n;
977
978 if (ovs_scan(s, "%"SCNi32"%n", &port, &n)) {
979 nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, port);
980 return n;
981 }
982 }
983
984 if (port_names) {
985 int len = strcspn(s, delimiters);
986 struct simap_node *node;
987
988 node = simap_find_len(port_names, s, len);
989 if (node) {
990 nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, node->data);
991 return len;
992 }
993 }
994
995 {
996 uint32_t recirc_id;
997 int n = -1;
998
999 if (ovs_scan(s, "recirc(%"PRIu32")%n", &recirc_id, &n)) {
1000 nl_msg_put_u32(actions, OVS_ACTION_ATTR_RECIRC, recirc_id);
1001 return n;
1002 }
1003 }
1004
1005 if (!strncmp(s, "userspace(", 10)) {
1006 return parse_odp_userspace_action(s, actions);
1007 }
1008
1009 if (!strncmp(s, "set(", 4)) {
1010 size_t start_ofs;
1011 int retval;
1012 struct nlattr mask[128 / sizeof(struct nlattr)];
1013 struct ofpbuf maskbuf;
1014 struct nlattr *nested, *key;
1015 size_t size;
1016
1017 /* 'mask' is big enough to hold any key. */
1018 ofpbuf_use_stack(&maskbuf, mask, sizeof mask);
1019
1020 start_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SET);
1021 retval = parse_odp_key_mask_attr(s + 4, port_names, actions, &maskbuf);
1022 if (retval < 0) {
1023 return retval;
1024 }
1025 if (s[retval + 4] != ')') {
1026 return -EINVAL;
1027 }
1028
1029 nested = ofpbuf_at_assert(actions, start_ofs, sizeof *nested);
1030 key = nested + 1;
1031
1032 size = nl_attr_get_size(mask);
1033 if (size == nl_attr_get_size(key)) {
1034 /* Change to masked set action if not fully masked. */
1035 if (!is_all_ones(mask + 1, size)) {
1036 key->nla_len += size;
1037 ofpbuf_put(actions, mask + 1, size);
1038 /* 'actions' may have been reallocated by ofpbuf_put(). */
1039 nested = ofpbuf_at_assert(actions, start_ofs, sizeof *nested);
1040 nested->nla_type = OVS_ACTION_ATTR_SET_MASKED;
1041 }
1042 }
1043
1044 nl_msg_end_nested(actions, start_ofs);
1045 return retval + 5;
1046 }
1047
1048 {
1049 struct ovs_action_push_vlan push;
1050 int tpid = ETH_TYPE_VLAN;
1051 int vid, pcp;
1052 int cfi = 1;
1053 int n = -1;
1054
1055 if (ovs_scan(s, "push_vlan(vid=%i,pcp=%i)%n", &vid, &pcp, &n)
1056 || ovs_scan(s, "push_vlan(vid=%i,pcp=%i,cfi=%i)%n",
1057 &vid, &pcp, &cfi, &n)
1058 || ovs_scan(s, "push_vlan(tpid=%i,vid=%i,pcp=%i)%n",
1059 &tpid, &vid, &pcp, &n)
1060 || ovs_scan(s, "push_vlan(tpid=%i,vid=%i,pcp=%i,cfi=%i)%n",
1061 &tpid, &vid, &pcp, &cfi, &n)) {
1062 push.vlan_tpid = htons(tpid);
1063 push.vlan_tci = htons((vid << VLAN_VID_SHIFT)
1064 | (pcp << VLAN_PCP_SHIFT)
1065 | (cfi ? VLAN_CFI : 0));
1066 nl_msg_put_unspec(actions, OVS_ACTION_ATTR_PUSH_VLAN,
1067 &push, sizeof push);
1068
1069 return n;
1070 }
1071 }
1072
1073 if (!strncmp(s, "pop_vlan", 8)) {
1074 nl_msg_put_flag(actions, OVS_ACTION_ATTR_POP_VLAN);
1075 return 8;
1076 }
1077
1078 {
1079 double percentage;
1080 int n = -1;
1081
1082 if (ovs_scan(s, "sample(sample=%lf%%,actions(%n", &percentage, &n)
1083 && percentage >= 0. && percentage <= 100.0) {
1084 size_t sample_ofs, actions_ofs;
1085 double probability;
1086
1087 probability = floor(UINT32_MAX * (percentage / 100.0) + .5);
1088 sample_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE);
1089 nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY,
1090 (probability <= 0 ? 0
1091 : probability >= UINT32_MAX ? UINT32_MAX
1092 : probability));
1093
1094 actions_ofs = nl_msg_start_nested(actions,
1095 OVS_SAMPLE_ATTR_ACTIONS);
1096 for (;;) {
1097 int retval;
1098
1099 n += strspn(s + n, delimiters);
1100 if (s[n] == ')') {
1101 break;
1102 }
1103
1104 retval = parse_odp_action(s + n, port_names, actions);
1105 if (retval < 0) {
1106 return retval;
1107 }
1108 n += retval;
1109 }
1110 nl_msg_end_nested(actions, actions_ofs);
1111 nl_msg_end_nested(actions, sample_ofs);
1112
1113 return s[n + 1] == ')' ? n + 2 : -EINVAL;
1114 }
1115 }
1116
1117 {
1118 uint32_t port;
1119 int n;
1120
1121 if (ovs_scan(s, "tnl_pop(%"SCNi32")%n", &port, &n)) {
1122 nl_msg_put_u32(actions, OVS_ACTION_ATTR_TUNNEL_POP, port);
1123 return n;
1124 }
1125 }
1126
1127 {
1128 struct ovs_action_push_tnl data;
1129 int n;
1130
1131 n = ovs_parse_tnl_push(s, &data);
1132 if (n > 0) {
1133 odp_put_tnl_push_action(actions, &data);
1134 return n;
1135 } else if (n < 0) {
1136 return n;
1137 }
1138 }
1139 return -EINVAL;
1140 }
1141
1142 /* Parses the string representation of datapath actions, in the format output
1143 * by format_odp_action(). Returns 0 if successful, otherwise a positive errno
1144 * value. On success, the ODP actions are appended to 'actions' as a series of
1145 * Netlink attributes. On failure, no data is appended to 'actions'. Either
1146 * way, 'actions''s data might be reallocated. */
1147 int
1148 odp_actions_from_string(const char *s, const struct simap *port_names,
1149 struct ofpbuf *actions)
1150 {
1151 size_t old_size;
1152
1153 if (!strcasecmp(s, "drop")) {
1154 return 0;
1155 }
1156
1157 old_size = ofpbuf_size(actions);
1158 for (;;) {
1159 int retval;
1160
1161 s += strspn(s, delimiters);
1162 if (!*s) {
1163 return 0;
1164 }
1165
1166 retval = parse_odp_action(s, port_names, actions);
1167 if (retval < 0 || !strchr(delimiters, s[retval])) {
1168 ofpbuf_set_size(actions, old_size);
1169 return -retval;
1170 }
1171 s += retval;
1172 }
1173
1174 return 0;
1175 }
1176 \f
1177 /* Returns the correct length of the payload for a flow key attribute of the
1178 * specified 'type', -1 if 'type' is unknown, or -2 if the attribute's payload
1179 * is variable length. */
1180 static int
1181 odp_flow_key_attr_len(uint16_t type)
1182 {
1183 if (type > OVS_KEY_ATTR_MAX) {
1184 return -1;
1185 }
1186
1187 switch ((enum ovs_key_attr) type) {
1188 case OVS_KEY_ATTR_ENCAP: return -2;
1189 case OVS_KEY_ATTR_PRIORITY: return 4;
1190 case OVS_KEY_ATTR_SKB_MARK: return 4;
1191 case OVS_KEY_ATTR_DP_HASH: return 4;
1192 case OVS_KEY_ATTR_RECIRC_ID: return 4;
1193 case OVS_KEY_ATTR_TUNNEL: return -2;
1194 case OVS_KEY_ATTR_IN_PORT: return 4;
1195 case OVS_KEY_ATTR_ETHERNET: return sizeof(struct ovs_key_ethernet);
1196 case OVS_KEY_ATTR_VLAN: return sizeof(ovs_be16);
1197 case OVS_KEY_ATTR_ETHERTYPE: return 2;
1198 case OVS_KEY_ATTR_MPLS: return -2;
1199 case OVS_KEY_ATTR_IPV4: return sizeof(struct ovs_key_ipv4);
1200 case OVS_KEY_ATTR_IPV6: return sizeof(struct ovs_key_ipv6);
1201 case OVS_KEY_ATTR_TCP: return sizeof(struct ovs_key_tcp);
1202 case OVS_KEY_ATTR_TCP_FLAGS: return 2;
1203 case OVS_KEY_ATTR_UDP: return sizeof(struct ovs_key_udp);
1204 case OVS_KEY_ATTR_SCTP: return sizeof(struct ovs_key_sctp);
1205 case OVS_KEY_ATTR_ICMP: return sizeof(struct ovs_key_icmp);
1206 case OVS_KEY_ATTR_ICMPV6: return sizeof(struct ovs_key_icmpv6);
1207 case OVS_KEY_ATTR_ARP: return sizeof(struct ovs_key_arp);
1208 case OVS_KEY_ATTR_ND: return sizeof(struct ovs_key_nd);
1209
1210 case OVS_KEY_ATTR_UNSPEC:
1211 case __OVS_KEY_ATTR_MAX:
1212 return -1;
1213 }
1214
1215 return -1;
1216 }
1217
1218 static void
1219 format_generic_odp_key(const struct nlattr *a, struct ds *ds)
1220 {
1221 size_t len = nl_attr_get_size(a);
1222 if (len) {
1223 const uint8_t *unspec;
1224 unsigned int i;
1225
1226 unspec = nl_attr_get(a);
1227 for (i = 0; i < len; i++) {
1228 if (i) {
1229 ds_put_char(ds, ' ');
1230 }
1231 ds_put_format(ds, "%02x", unspec[i]);
1232 }
1233 }
1234 }
1235
1236 static const char *
1237 ovs_frag_type_to_string(enum ovs_frag_type type)
1238 {
1239 switch (type) {
1240 case OVS_FRAG_TYPE_NONE:
1241 return "no";
1242 case OVS_FRAG_TYPE_FIRST:
1243 return "first";
1244 case OVS_FRAG_TYPE_LATER:
1245 return "later";
1246 case __OVS_FRAG_TYPE_MAX:
1247 default:
1248 return "<error>";
1249 }
1250 }
1251
1252 static int
1253 tunnel_key_attr_len(int type)
1254 {
1255 switch (type) {
1256 case OVS_TUNNEL_KEY_ATTR_ID: return 8;
1257 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: return 4;
1258 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: return 4;
1259 case OVS_TUNNEL_KEY_ATTR_TOS: return 1;
1260 case OVS_TUNNEL_KEY_ATTR_TTL: return 1;
1261 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: return 0;
1262 case OVS_TUNNEL_KEY_ATTR_CSUM: return 0;
1263 case OVS_TUNNEL_KEY_ATTR_TP_SRC: return 2;
1264 case OVS_TUNNEL_KEY_ATTR_TP_DST: return 2;
1265 case OVS_TUNNEL_KEY_ATTR_OAM: return 0;
1266 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: return -2;
1267 case __OVS_TUNNEL_KEY_ATTR_MAX:
1268 return -1;
1269 }
1270 return -1;
1271 }
1272
1273 #define GENEVE_OPT(class, type) ((OVS_FORCE uint32_t)(class) << 8 | (type))
1274 static int
1275 parse_geneve_opts(const struct nlattr *attr)
1276 {
1277 int opts_len = nl_attr_get_size(attr);
1278 const struct geneve_opt *opt = nl_attr_get(attr);
1279
1280 while (opts_len > 0) {
1281 int len;
1282
1283 if (opts_len < sizeof(*opt)) {
1284 return -EINVAL;
1285 }
1286
1287 len = sizeof(*opt) + opt->length * 4;
1288 if (len > opts_len) {
1289 return -EINVAL;
1290 }
1291
1292 switch (GENEVE_OPT(opt->opt_class, opt->type)) {
1293 default:
1294 if (opt->type & GENEVE_CRIT_OPT_TYPE) {
1295 return -EINVAL;
1296 }
1297 };
1298
1299 opt = opt + len / sizeof(*opt);
1300 opts_len -= len;
1301 };
1302
1303 return 0;
1304 }
1305
1306 enum odp_key_fitness
1307 odp_tun_key_from_attr(const struct nlattr *attr, struct flow_tnl *tun)
1308 {
1309 unsigned int left;
1310 const struct nlattr *a;
1311 bool ttl = false;
1312 bool unknown = false;
1313
1314 NL_NESTED_FOR_EACH(a, left, attr) {
1315 uint16_t type = nl_attr_type(a);
1316 size_t len = nl_attr_get_size(a);
1317 int expected_len = tunnel_key_attr_len(type);
1318
1319 if (len != expected_len && expected_len >= 0) {
1320 return ODP_FIT_ERROR;
1321 }
1322
1323 switch (type) {
1324 case OVS_TUNNEL_KEY_ATTR_ID:
1325 tun->tun_id = nl_attr_get_be64(a);
1326 tun->flags |= FLOW_TNL_F_KEY;
1327 break;
1328 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
1329 tun->ip_src = nl_attr_get_be32(a);
1330 break;
1331 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
1332 tun->ip_dst = nl_attr_get_be32(a);
1333 break;
1334 case OVS_TUNNEL_KEY_ATTR_TOS:
1335 tun->ip_tos = nl_attr_get_u8(a);
1336 break;
1337 case OVS_TUNNEL_KEY_ATTR_TTL:
1338 tun->ip_ttl = nl_attr_get_u8(a);
1339 ttl = true;
1340 break;
1341 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
1342 tun->flags |= FLOW_TNL_F_DONT_FRAGMENT;
1343 break;
1344 case OVS_TUNNEL_KEY_ATTR_CSUM:
1345 tun->flags |= FLOW_TNL_F_CSUM;
1346 break;
1347 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
1348 tun->tp_src = nl_attr_get_be16(a);
1349 break;
1350 case OVS_TUNNEL_KEY_ATTR_TP_DST:
1351 tun->tp_dst = nl_attr_get_be16(a);
1352 break;
1353 case OVS_TUNNEL_KEY_ATTR_OAM:
1354 tun->flags |= FLOW_TNL_F_OAM;
1355 break;
1356 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: {
1357 if (parse_geneve_opts(a)) {
1358 return ODP_FIT_ERROR;
1359 }
1360 /* It is necessary to reproduce options exactly (including order)
1361 * so it's easiest to just echo them back. */
1362 unknown = true;
1363 break;
1364 }
1365 default:
1366 /* Allow this to show up as unexpected, if there are unknown
1367 * tunnel attribute, eventually resulting in ODP_FIT_TOO_MUCH. */
1368 unknown = true;
1369 break;
1370 }
1371 }
1372
1373 if (!ttl) {
1374 return ODP_FIT_ERROR;
1375 }
1376 if (unknown) {
1377 return ODP_FIT_TOO_MUCH;
1378 }
1379 return ODP_FIT_PERFECT;
1380 }
1381
1382 static void
1383 tun_key_to_attr(struct ofpbuf *a, const struct flow_tnl *tun_key)
1384 {
1385 size_t tun_key_ofs;
1386
1387 tun_key_ofs = nl_msg_start_nested(a, OVS_KEY_ATTR_TUNNEL);
1388
1389 /* tun_id != 0 without FLOW_TNL_F_KEY is valid if tun_key is a mask. */
1390 if (tun_key->tun_id || tun_key->flags & FLOW_TNL_F_KEY) {
1391 nl_msg_put_be64(a, OVS_TUNNEL_KEY_ATTR_ID, tun_key->tun_id);
1392 }
1393 if (tun_key->ip_src) {
1394 nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, tun_key->ip_src);
1395 }
1396 if (tun_key->ip_dst) {
1397 nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_DST, tun_key->ip_dst);
1398 }
1399 if (tun_key->ip_tos) {
1400 nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TOS, tun_key->ip_tos);
1401 }
1402 nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TTL, tun_key->ip_ttl);
1403 if (tun_key->flags & FLOW_TNL_F_DONT_FRAGMENT) {
1404 nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT);
1405 }
1406 if (tun_key->flags & FLOW_TNL_F_CSUM) {
1407 nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_CSUM);
1408 }
1409 if (tun_key->tp_src) {
1410 nl_msg_put_be16(a, OVS_TUNNEL_KEY_ATTR_TP_SRC, tun_key->tp_src);
1411 }
1412 if (tun_key->tp_dst) {
1413 nl_msg_put_be16(a, OVS_TUNNEL_KEY_ATTR_TP_DST, tun_key->tp_dst);
1414 }
1415 if (tun_key->flags & FLOW_TNL_F_OAM) {
1416 nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_OAM);
1417 }
1418
1419 nl_msg_end_nested(a, tun_key_ofs);
1420 }
1421
1422 static bool
1423 odp_mask_attr_is_wildcard(const struct nlattr *ma)
1424 {
1425 return is_all_zeros(nl_attr_get(ma), nl_attr_get_size(ma));
1426 }
1427
1428 static bool
1429 odp_mask_is_exact(enum ovs_key_attr attr, const void *mask, size_t size)
1430 {
1431 if (attr == OVS_KEY_ATTR_TCP_FLAGS) {
1432 return TCP_FLAGS(*(ovs_be16 *)mask) == TCP_FLAGS(OVS_BE16_MAX);
1433 }
1434 if (attr == OVS_KEY_ATTR_IPV6) {
1435 const struct ovs_key_ipv6 *ipv6_mask = mask;
1436
1437 return
1438 ((ipv6_mask->ipv6_label & htonl(IPV6_LABEL_MASK))
1439 == htonl(IPV6_LABEL_MASK))
1440 && ipv6_mask->ipv6_proto == UINT8_MAX
1441 && ipv6_mask->ipv6_tclass == UINT8_MAX
1442 && ipv6_mask->ipv6_hlimit == UINT8_MAX
1443 && ipv6_mask->ipv6_frag == UINT8_MAX
1444 && ipv6_mask_is_exact((const struct in6_addr *)ipv6_mask->ipv6_src)
1445 && ipv6_mask_is_exact((const struct in6_addr *)ipv6_mask->ipv6_dst);
1446 }
1447 if (attr == OVS_KEY_ATTR_TUNNEL) {
1448 const struct flow_tnl *tun_mask = mask;
1449
1450 return tun_mask->flags == FLOW_TNL_F_MASK
1451 && tun_mask->tun_id == OVS_BE64_MAX
1452 && tun_mask->ip_src == OVS_BE32_MAX
1453 && tun_mask->ip_dst == OVS_BE32_MAX
1454 && tun_mask->ip_tos == UINT8_MAX
1455 && tun_mask->ip_ttl == UINT8_MAX
1456 && tun_mask->tp_src == OVS_BE16_MAX
1457 && tun_mask->tp_dst == OVS_BE16_MAX;
1458 }
1459
1460 if (attr == OVS_KEY_ATTR_ARP) {
1461 /* ARP key has padding, ignore it. */
1462 BUILD_ASSERT_DECL(sizeof(struct ovs_key_arp) == 24);
1463 BUILD_ASSERT_DECL(offsetof(struct ovs_key_arp, arp_tha) == 10 + 6);
1464 size = offsetof(struct ovs_key_arp, arp_tha) + ETH_ADDR_LEN;
1465 ovs_assert(((uint16_t *)mask)[size/2] == 0);
1466 }
1467
1468 return is_all_ones(mask, size);
1469 }
1470
1471 static bool
1472 odp_mask_attr_is_exact(const struct nlattr *ma)
1473 {
1474 struct flow_tnl tun_mask;
1475 enum ovs_key_attr attr = nl_attr_type(ma);
1476 const void *mask;
1477 size_t size;
1478
1479 if (attr == OVS_KEY_ATTR_TUNNEL) {
1480 memset(&tun_mask, 0, sizeof tun_mask);
1481 odp_tun_key_from_attr(ma, &tun_mask);
1482 mask = &tun_mask;
1483 size = sizeof tun_mask;
1484 } else {
1485 mask = nl_attr_get(ma);
1486 size = nl_attr_get_size(ma);
1487 }
1488
1489 return odp_mask_is_exact(attr, mask, size);
1490 }
1491
1492 void
1493 odp_portno_names_set(struct hmap *portno_names, odp_port_t port_no,
1494 char *port_name)
1495 {
1496 struct odp_portno_names *odp_portno_names;
1497
1498 odp_portno_names = xmalloc(sizeof *odp_portno_names);
1499 odp_portno_names->port_no = port_no;
1500 odp_portno_names->name = xstrdup(port_name);
1501 hmap_insert(portno_names, &odp_portno_names->hmap_node,
1502 hash_odp_port(port_no));
1503 }
1504
1505 static char *
1506 odp_portno_names_get(const struct hmap *portno_names, odp_port_t port_no)
1507 {
1508 struct odp_portno_names *odp_portno_names;
1509
1510 HMAP_FOR_EACH_IN_BUCKET (odp_portno_names, hmap_node,
1511 hash_odp_port(port_no), portno_names) {
1512 if (odp_portno_names->port_no == port_no) {
1513 return odp_portno_names->name;
1514 }
1515 }
1516 return NULL;
1517 }
1518
1519 void
1520 odp_portno_names_destroy(struct hmap *portno_names)
1521 {
1522 struct odp_portno_names *odp_portno_names, *odp_portno_names_next;
1523 HMAP_FOR_EACH_SAFE (odp_portno_names, odp_portno_names_next,
1524 hmap_node, portno_names) {
1525 hmap_remove(portno_names, &odp_portno_names->hmap_node);
1526 free(odp_portno_names->name);
1527 free(odp_portno_names);
1528 }
1529 }
1530
1531 /* Format helpers. */
1532
1533 static void
1534 format_eth(struct ds *ds, const char *name, const uint8_t key[ETH_ADDR_LEN],
1535 const uint8_t (*mask)[ETH_ADDR_LEN], bool verbose)
1536 {
1537 bool mask_empty = mask && eth_addr_is_zero(*mask);
1538
1539 if (verbose || !mask_empty) {
1540 bool mask_full = !mask || eth_mask_is_exact(*mask);
1541
1542 if (mask_full) {
1543 ds_put_format(ds, "%s="ETH_ADDR_FMT",", name, ETH_ADDR_ARGS(key));
1544 } else {
1545 ds_put_format(ds, "%s=", name);
1546 eth_format_masked(key, *mask, ds);
1547 ds_put_char(ds, ',');
1548 }
1549 }
1550 }
1551
1552 static void
1553 format_be64(struct ds *ds, const char *name, ovs_be64 key,
1554 const ovs_be64 *mask, bool verbose)
1555 {
1556 bool mask_empty = mask && !*mask;
1557
1558 if (verbose || !mask_empty) {
1559 bool mask_full = !mask || *mask == OVS_BE64_MAX;
1560
1561 ds_put_format(ds, "%s=0x%"PRIx64, name, ntohll(key));
1562 if (!mask_full) { /* Partially masked. */
1563 ds_put_format(ds, "/%#"PRIx64, ntohll(*mask));
1564 }
1565 ds_put_char(ds, ',');
1566 }
1567 }
1568
1569 static void
1570 format_ipv4(struct ds *ds, const char *name, ovs_be32 key,
1571 const ovs_be32 *mask, bool verbose)
1572 {
1573 bool mask_empty = mask && !*mask;
1574
1575 if (verbose || !mask_empty) {
1576 bool mask_full = !mask || *mask == OVS_BE32_MAX;
1577
1578 ds_put_format(ds, "%s="IP_FMT, name, IP_ARGS(key));
1579 if (!mask_full) { /* Partially masked. */
1580 ds_put_format(ds, "/"IP_FMT, IP_ARGS(*mask));
1581 }
1582 ds_put_char(ds, ',');
1583 }
1584 }
1585
1586 static void
1587 format_ipv6(struct ds *ds, const char *name, const ovs_be32 key_[4],
1588 const ovs_be32 (*mask_)[4], bool verbose)
1589 {
1590 char buf[INET6_ADDRSTRLEN];
1591 const struct in6_addr *key = (const struct in6_addr *)key_;
1592 const struct in6_addr *mask = mask_ ? (const struct in6_addr *)*mask_
1593 : NULL;
1594 bool mask_empty = mask && ipv6_mask_is_any(mask);
1595
1596 if (verbose || !mask_empty) {
1597 bool mask_full = !mask || ipv6_mask_is_exact(mask);
1598
1599 inet_ntop(AF_INET6, key, buf, sizeof buf);
1600 ds_put_format(ds, "%s=%s", name, buf);
1601 if (!mask_full) { /* Partially masked. */
1602 inet_ntop(AF_INET6, mask, buf, sizeof buf);
1603 ds_put_format(ds, "/%s", buf);
1604 }
1605 ds_put_char(ds, ',');
1606 }
1607 }
1608
1609 static void
1610 format_ipv6_label(struct ds *ds, const char *name, ovs_be32 key,
1611 const ovs_be32 *mask, bool verbose)
1612 {
1613 bool mask_empty = mask && !*mask;
1614
1615 if (verbose || !mask_empty) {
1616 bool mask_full = !mask
1617 || (*mask & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK);
1618
1619 ds_put_format(ds, "%s=%#"PRIx32, name, ntohl(key));
1620 if (!mask_full) { /* Partially masked. */
1621 ds_put_format(ds, "/%#"PRIx32, ntohl(*mask));
1622 }
1623 ds_put_char(ds, ',');
1624 }
1625 }
1626
1627 static void
1628 format_u8x(struct ds *ds, const char *name, uint8_t key,
1629 const uint8_t *mask, bool verbose)
1630 {
1631 bool mask_empty = mask && !*mask;
1632
1633 if (verbose || !mask_empty) {
1634 bool mask_full = !mask || *mask == UINT8_MAX;
1635
1636 ds_put_format(ds, "%s=%#"PRIx8, name, key);
1637 if (!mask_full) { /* Partially masked. */
1638 ds_put_format(ds, "/%#"PRIx8, *mask);
1639 }
1640 ds_put_char(ds, ',');
1641 }
1642 }
1643
1644 static void
1645 format_u8u(struct ds *ds, const char *name, uint8_t key,
1646 const uint8_t *mask, bool verbose)
1647 {
1648 bool mask_empty = mask && !*mask;
1649
1650 if (verbose || !mask_empty) {
1651 bool mask_full = !mask || *mask == UINT8_MAX;
1652
1653 ds_put_format(ds, "%s=%"PRIu8, name, key);
1654 if (!mask_full) { /* Partially masked. */
1655 ds_put_format(ds, "/%#"PRIx8, *mask);
1656 }
1657 ds_put_char(ds, ',');
1658 }
1659 }
1660
1661 static void
1662 format_be16(struct ds *ds, const char *name, ovs_be16 key,
1663 const ovs_be16 *mask, bool verbose)
1664 {
1665 bool mask_empty = mask && !*mask;
1666
1667 if (verbose || !mask_empty) {
1668 bool mask_full = !mask || *mask == OVS_BE16_MAX;
1669
1670 ds_put_format(ds, "%s=%"PRIu16, name, ntohs(key));
1671 if (!mask_full) { /* Partially masked. */
1672 ds_put_format(ds, "/%#"PRIx16, ntohs(*mask));
1673 }
1674 ds_put_char(ds, ',');
1675 }
1676 }
1677
1678 static void
1679 format_tun_flags(struct ds *ds, const char *name, uint16_t key,
1680 const uint16_t *mask, bool verbose)
1681 {
1682 bool mask_empty = mask && !*mask;
1683
1684 if (verbose || !mask_empty) {
1685 bool mask_full = !mask || (*mask & FLOW_TNL_F_MASK) == FLOW_TNL_F_MASK;
1686
1687 ds_put_cstr(ds, name);
1688 ds_put_char(ds, '(');
1689 if (!mask_full) { /* Partially masked. */
1690 format_flags_masked(ds, NULL, flow_tun_flag_to_string, key, *mask);
1691 } else { /* Fully masked. */
1692 format_flags(ds, flow_tun_flag_to_string, key, ',');
1693 }
1694 ds_put_cstr(ds, "),");
1695 }
1696 }
1697
1698 static void
1699 format_frag(struct ds *ds, const char *name, uint8_t key,
1700 const uint8_t *mask, bool verbose)
1701 {
1702 bool mask_empty = mask && !*mask;
1703
1704 /* ODP frag is an enumeration field; partial masks are not meaningful. */
1705 if (verbose || !mask_empty) {
1706 bool mask_full = !mask || *mask == UINT8_MAX;
1707
1708 if (!mask_full) { /* Partially masked. */
1709 ds_put_format(ds, "error: partial mask not supported for frag (%#"
1710 PRIx8"),", *mask);
1711 } else {
1712 ds_put_format(ds, "%s=%s,", name, ovs_frag_type_to_string(key));
1713 }
1714 }
1715 }
1716
1717 #define MASK(PTR, FIELD) PTR ? &PTR->FIELD : NULL
1718
1719 static void
1720 format_odp_key_attr(const struct nlattr *a, const struct nlattr *ma,
1721 const struct hmap *portno_names, struct ds *ds,
1722 bool verbose)
1723 {
1724 enum ovs_key_attr attr = nl_attr_type(a);
1725 char namebuf[OVS_KEY_ATTR_BUFSIZE];
1726 int expected_len;
1727 bool is_exact;
1728
1729 is_exact = ma ? odp_mask_attr_is_exact(ma) : true;
1730
1731 ds_put_cstr(ds, ovs_key_attr_to_string(attr, namebuf, sizeof namebuf));
1732
1733 {
1734 expected_len = odp_flow_key_attr_len(nl_attr_type(a));
1735 if (expected_len != -2) {
1736 bool bad_key_len = nl_attr_get_size(a) != expected_len;
1737 bool bad_mask_len = ma && nl_attr_get_size(ma) != expected_len;
1738
1739 if (bad_key_len || bad_mask_len) {
1740 if (bad_key_len) {
1741 ds_put_format(ds, "(bad key length %"PRIuSIZE", expected %d)(",
1742 nl_attr_get_size(a), expected_len);
1743 }
1744 format_generic_odp_key(a, ds);
1745 if (ma) {
1746 ds_put_char(ds, '/');
1747 if (bad_mask_len) {
1748 ds_put_format(ds, "(bad mask length %"PRIuSIZE", expected %d)(",
1749 nl_attr_get_size(ma), expected_len);
1750 }
1751 format_generic_odp_key(ma, ds);
1752 }
1753 ds_put_char(ds, ')');
1754 return;
1755 }
1756 }
1757 }
1758
1759 ds_put_char(ds, '(');
1760 switch (attr) {
1761 case OVS_KEY_ATTR_ENCAP:
1762 if (ma && nl_attr_get_size(ma) && nl_attr_get_size(a)) {
1763 odp_flow_format(nl_attr_get(a), nl_attr_get_size(a),
1764 nl_attr_get(ma), nl_attr_get_size(ma), NULL, ds,
1765 verbose);
1766 } else if (nl_attr_get_size(a)) {
1767 odp_flow_format(nl_attr_get(a), nl_attr_get_size(a), NULL, 0, NULL,
1768 ds, verbose);
1769 }
1770 break;
1771
1772 case OVS_KEY_ATTR_PRIORITY:
1773 case OVS_KEY_ATTR_SKB_MARK:
1774 case OVS_KEY_ATTR_DP_HASH:
1775 case OVS_KEY_ATTR_RECIRC_ID:
1776 ds_put_format(ds, "%#"PRIx32, nl_attr_get_u32(a));
1777 if (!is_exact) {
1778 ds_put_format(ds, "/%#"PRIx32, nl_attr_get_u32(ma));
1779 }
1780 break;
1781
1782 case OVS_KEY_ATTR_TUNNEL: {
1783 struct flow_tnl key, mask_;
1784 struct flow_tnl *mask = ma ? &mask_ : NULL;
1785
1786 if (mask) {
1787 memset(mask, 0, sizeof *mask);
1788 odp_tun_key_from_attr(ma, mask);
1789 }
1790 memset(&key, 0, sizeof key);
1791 if (odp_tun_key_from_attr(a, &key) == ODP_FIT_ERROR) {
1792 ds_put_format(ds, "error");
1793 return;
1794 }
1795 format_be64(ds, "tun_id", key.tun_id, MASK(mask, tun_id), verbose);
1796 format_ipv4(ds, "src", key.ip_src, MASK(mask, ip_src), verbose);
1797 format_ipv4(ds, "dst", key.ip_dst, MASK(mask, ip_dst), verbose);
1798 format_u8x(ds, "tos", key.ip_tos, MASK(mask, ip_tos), verbose);
1799 format_u8u(ds, "ttl", key.ip_ttl, MASK(mask, ip_ttl), verbose);
1800 format_be16(ds, "tp_src", key.tp_src, MASK(mask, tp_src), verbose);
1801 format_be16(ds, "tp_dst", key.tp_dst, MASK(mask, tp_dst), verbose);
1802 format_tun_flags(ds, "flags", key.flags, MASK(mask, flags), verbose);
1803 ds_chomp(ds, ',');
1804 break;
1805 }
1806 case OVS_KEY_ATTR_IN_PORT:
1807 if (portno_names && verbose && is_exact) {
1808 char *name = odp_portno_names_get(portno_names,
1809 u32_to_odp(nl_attr_get_u32(a)));
1810 if (name) {
1811 ds_put_format(ds, "%s", name);
1812 } else {
1813 ds_put_format(ds, "%"PRIu32, nl_attr_get_u32(a));
1814 }
1815 } else {
1816 ds_put_format(ds, "%"PRIu32, nl_attr_get_u32(a));
1817 if (!is_exact) {
1818 ds_put_format(ds, "/%#"PRIx32, nl_attr_get_u32(ma));
1819 }
1820 }
1821 break;
1822
1823 case OVS_KEY_ATTR_ETHERNET: {
1824 const struct ovs_key_ethernet *mask = ma ? nl_attr_get(ma) : NULL;
1825 const struct ovs_key_ethernet *key = nl_attr_get(a);
1826
1827 format_eth(ds, "src", key->eth_src, MASK(mask, eth_src), verbose);
1828 format_eth(ds, "dst", key->eth_dst, MASK(mask, eth_dst), verbose);
1829 ds_chomp(ds, ',');
1830 break;
1831 }
1832 case OVS_KEY_ATTR_VLAN:
1833 format_vlan_tci(ds, nl_attr_get_be16(a),
1834 ma ? nl_attr_get_be16(ma) : OVS_BE16_MAX, verbose);
1835 break;
1836
1837 case OVS_KEY_ATTR_MPLS: {
1838 const struct ovs_key_mpls *mpls_key = nl_attr_get(a);
1839 const struct ovs_key_mpls *mpls_mask = NULL;
1840 size_t size = nl_attr_get_size(a);
1841
1842 if (!size || size % sizeof *mpls_key) {
1843 ds_put_format(ds, "(bad key length %"PRIuSIZE")", size);
1844 return;
1845 }
1846 if (!is_exact) {
1847 mpls_mask = nl_attr_get(ma);
1848 if (size != nl_attr_get_size(ma)) {
1849 ds_put_format(ds, "(key length %"PRIuSIZE" != "
1850 "mask length %"PRIuSIZE")",
1851 size, nl_attr_get_size(ma));
1852 return;
1853 }
1854 }
1855 format_mpls(ds, mpls_key, mpls_mask, size / sizeof *mpls_key);
1856 break;
1857 }
1858 case OVS_KEY_ATTR_ETHERTYPE:
1859 ds_put_format(ds, "0x%04"PRIx16, ntohs(nl_attr_get_be16(a)));
1860 if (!is_exact) {
1861 ds_put_format(ds, "/0x%04"PRIx16, ntohs(nl_attr_get_be16(ma)));
1862 }
1863 break;
1864
1865 case OVS_KEY_ATTR_IPV4: {
1866 const struct ovs_key_ipv4 *key = nl_attr_get(a);
1867 const struct ovs_key_ipv4 *mask = ma ? nl_attr_get(ma) : NULL;
1868
1869 format_ipv4(ds, "src", key->ipv4_src, MASK(mask, ipv4_src), verbose);
1870 format_ipv4(ds, "dst", key->ipv4_dst, MASK(mask, ipv4_dst), verbose);
1871 format_u8u(ds, "proto", key->ipv4_proto, MASK(mask, ipv4_proto),
1872 verbose);
1873 format_u8x(ds, "tos", key->ipv4_tos, MASK(mask, ipv4_tos), verbose);
1874 format_u8u(ds, "ttl", key->ipv4_ttl, MASK(mask, ipv4_ttl), verbose);
1875 format_frag(ds, "frag", key->ipv4_frag, MASK(mask, ipv4_frag),
1876 verbose);
1877 ds_chomp(ds, ',');
1878 break;
1879 }
1880 case OVS_KEY_ATTR_IPV6: {
1881 const struct ovs_key_ipv6 *key = nl_attr_get(a);
1882 const struct ovs_key_ipv6 *mask = ma ? nl_attr_get(ma) : NULL;
1883
1884 format_ipv6(ds, "src", key->ipv6_src, MASK(mask, ipv6_src), verbose);
1885 format_ipv6(ds, "dst", key->ipv6_dst, MASK(mask, ipv6_dst), verbose);
1886 format_ipv6_label(ds, "label", key->ipv6_label, MASK(mask, ipv6_label),
1887 verbose);
1888 format_u8u(ds, "proto", key->ipv6_proto, MASK(mask, ipv6_proto),
1889 verbose);
1890 format_u8x(ds, "tclass", key->ipv6_tclass, MASK(mask, ipv6_tclass),
1891 verbose);
1892 format_u8u(ds, "hlimit", key->ipv6_hlimit, MASK(mask, ipv6_hlimit),
1893 verbose);
1894 format_frag(ds, "frag", key->ipv6_frag, MASK(mask, ipv6_frag),
1895 verbose);
1896 ds_chomp(ds, ',');
1897 break;
1898 }
1899 /* These have the same structure and format. */
1900 case OVS_KEY_ATTR_TCP:
1901 case OVS_KEY_ATTR_UDP:
1902 case OVS_KEY_ATTR_SCTP: {
1903 const struct ovs_key_tcp *key = nl_attr_get(a);
1904 const struct ovs_key_tcp *mask = ma ? nl_attr_get(ma) : NULL;
1905
1906 format_be16(ds, "src", key->tcp_src, MASK(mask, tcp_src), verbose);
1907 format_be16(ds, "dst", key->tcp_dst, MASK(mask, tcp_dst), verbose);
1908 ds_chomp(ds, ',');
1909 break;
1910 }
1911 case OVS_KEY_ATTR_TCP_FLAGS:
1912 if (!is_exact) {
1913 format_flags_masked(ds, NULL, packet_tcp_flag_to_string,
1914 ntohs(nl_attr_get_be16(a)),
1915 ntohs(nl_attr_get_be16(ma)));
1916 } else {
1917 format_flags(ds, packet_tcp_flag_to_string,
1918 ntohs(nl_attr_get_be16(a)), ',');
1919 }
1920 break;
1921
1922 case OVS_KEY_ATTR_ICMP: {
1923 const struct ovs_key_icmp *key = nl_attr_get(a);
1924 const struct ovs_key_icmp *mask = ma ? nl_attr_get(ma) : NULL;
1925
1926 format_u8u(ds, "type", key->icmp_type, MASK(mask, icmp_type), verbose);
1927 format_u8u(ds, "code", key->icmp_code, MASK(mask, icmp_code), verbose);
1928 ds_chomp(ds, ',');
1929 break;
1930 }
1931 case OVS_KEY_ATTR_ICMPV6: {
1932 const struct ovs_key_icmpv6 *key = nl_attr_get(a);
1933 const struct ovs_key_icmpv6 *mask = ma ? nl_attr_get(ma) : NULL;
1934
1935 format_u8u(ds, "type", key->icmpv6_type, MASK(mask, icmpv6_type),
1936 verbose);
1937 format_u8u(ds, "code", key->icmpv6_code, MASK(mask, icmpv6_code),
1938 verbose);
1939 ds_chomp(ds, ',');
1940 break;
1941 }
1942 case OVS_KEY_ATTR_ARP: {
1943 const struct ovs_key_arp *mask = ma ? nl_attr_get(ma) : NULL;
1944 const struct ovs_key_arp *key = nl_attr_get(a);
1945
1946 format_ipv4(ds, "sip", key->arp_sip, MASK(mask, arp_sip), verbose);
1947 format_ipv4(ds, "tip", key->arp_tip, MASK(mask, arp_tip), verbose);
1948 format_be16(ds, "op", key->arp_op, MASK(mask, arp_op), verbose);
1949 format_eth(ds, "sha", key->arp_sha, MASK(mask, arp_sha), verbose);
1950 format_eth(ds, "tha", key->arp_tha, MASK(mask, arp_tha), verbose);
1951 ds_chomp(ds, ',');
1952 break;
1953 }
1954 case OVS_KEY_ATTR_ND: {
1955 const struct ovs_key_nd *mask = ma ? nl_attr_get(ma) : NULL;
1956 const struct ovs_key_nd *key = nl_attr_get(a);
1957
1958 format_ipv6(ds, "target", key->nd_target, MASK(mask, nd_target),
1959 verbose);
1960 format_eth(ds, "sll", key->nd_sll, MASK(mask, nd_sll), verbose);
1961 format_eth(ds, "tll", key->nd_tll, MASK(mask, nd_tll), verbose);
1962
1963 ds_chomp(ds, ',');
1964 break;
1965 }
1966 case OVS_KEY_ATTR_UNSPEC:
1967 case __OVS_KEY_ATTR_MAX:
1968 default:
1969 format_generic_odp_key(a, ds);
1970 if (!is_exact) {
1971 ds_put_char(ds, '/');
1972 format_generic_odp_key(ma, ds);
1973 }
1974 break;
1975 }
1976 ds_put_char(ds, ')');
1977 }
1978
1979 static struct nlattr *
1980 generate_all_wildcard_mask(struct ofpbuf *ofp, const struct nlattr *key)
1981 {
1982 const struct nlattr *a;
1983 unsigned int left;
1984 int type = nl_attr_type(key);
1985 int size = nl_attr_get_size(key);
1986
1987 if (odp_flow_key_attr_len(type) >=0) {
1988 nl_msg_put_unspec_zero(ofp, type, size);
1989 } else {
1990 size_t nested_mask;
1991
1992 nested_mask = nl_msg_start_nested(ofp, type);
1993 NL_ATTR_FOR_EACH(a, left, key, nl_attr_get_size(key)) {
1994 generate_all_wildcard_mask(ofp, nl_attr_get(a));
1995 }
1996 nl_msg_end_nested(ofp, nested_mask);
1997 }
1998
1999 return ofpbuf_base(ofp);
2000 }
2001
2002 int
2003 odp_ufid_from_string(const char *s_, ovs_u128 *ufid)
2004 {
2005 const char *s = s_;
2006
2007 if (ovs_scan(s, "ufid:")) {
2008 size_t n;
2009
2010 s += 5;
2011 if (ovs_scan(s, "0x")) {
2012 s += 2;
2013 }
2014
2015 n = strspn(s, "0123456789abcdefABCDEF");
2016 if (n != 32) {
2017 return -EINVAL;
2018 }
2019
2020 if (!ovs_scan(s, "%16"SCNx64"%16"SCNx64, &ufid->u64.hi,
2021 &ufid->u64.lo)) {
2022 return -EINVAL;
2023 }
2024 s += n;
2025 s += strspn(s, delimiters);
2026
2027 return s - s_;
2028 }
2029
2030 return 0;
2031 }
2032
2033 void
2034 odp_format_ufid(const ovs_u128 *ufid, struct ds *ds)
2035 {
2036 ds_put_format(ds, "ufid:%016"PRIx64"%016"PRIx64, ufid->u64.hi,
2037 ufid->u64.lo);
2038 }
2039
2040 /* Appends to 'ds' a string representation of the 'key_len' bytes of
2041 * OVS_KEY_ATTR_* attributes in 'key'. If non-null, additionally formats the
2042 * 'mask_len' bytes of 'mask' which apply to 'key'. If 'portno_names' is
2043 * non-null and 'verbose' is true, translates odp port number to its name. */
2044 void
2045 odp_flow_format(const struct nlattr *key, size_t key_len,
2046 const struct nlattr *mask, size_t mask_len,
2047 const struct hmap *portno_names, struct ds *ds, bool verbose)
2048 {
2049 if (key_len) {
2050 const struct nlattr *a;
2051 unsigned int left;
2052 bool has_ethtype_key = false;
2053 const struct nlattr *ma = NULL;
2054 struct ofpbuf ofp;
2055 bool first_field = true;
2056
2057 ofpbuf_init(&ofp, 100);
2058 NL_ATTR_FOR_EACH (a, left, key, key_len) {
2059 bool is_nested_attr;
2060 bool is_wildcard = false;
2061 int attr_type = nl_attr_type(a);
2062
2063 if (attr_type == OVS_KEY_ATTR_ETHERTYPE) {
2064 has_ethtype_key = true;
2065 }
2066
2067 is_nested_attr = (odp_flow_key_attr_len(attr_type) == -2);
2068
2069 if (mask && mask_len) {
2070 ma = nl_attr_find__(mask, mask_len, nl_attr_type(a));
2071 is_wildcard = ma ? odp_mask_attr_is_wildcard(ma) : true;
2072 }
2073
2074 if (verbose || !is_wildcard || is_nested_attr) {
2075 if (is_wildcard && !ma) {
2076 ma = generate_all_wildcard_mask(&ofp, a);
2077 }
2078 if (!first_field) {
2079 ds_put_char(ds, ',');
2080 }
2081 format_odp_key_attr(a, ma, portno_names, ds, verbose);
2082 first_field = false;
2083 }
2084 ofpbuf_clear(&ofp);
2085 }
2086 ofpbuf_uninit(&ofp);
2087
2088 if (left) {
2089 int i;
2090
2091 if (left == key_len) {
2092 ds_put_cstr(ds, "<empty>");
2093 }
2094 ds_put_format(ds, ",***%u leftover bytes*** (", left);
2095 for (i = 0; i < left; i++) {
2096 ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
2097 }
2098 ds_put_char(ds, ')');
2099 }
2100 if (!has_ethtype_key) {
2101 ma = nl_attr_find__(mask, mask_len, OVS_KEY_ATTR_ETHERTYPE);
2102 if (ma) {
2103 ds_put_format(ds, ",eth_type(0/0x%04"PRIx16")",
2104 ntohs(nl_attr_get_be16(ma)));
2105 }
2106 }
2107 } else {
2108 ds_put_cstr(ds, "<empty>");
2109 }
2110 }
2111
2112 /* Appends to 'ds' a string representation of the 'key_len' bytes of
2113 * OVS_KEY_ATTR_* attributes in 'key'. */
2114 void
2115 odp_flow_key_format(const struct nlattr *key,
2116 size_t key_len, struct ds *ds)
2117 {
2118 odp_flow_format(key, key_len, NULL, 0, NULL, ds, true);
2119 }
2120
2121 static bool
2122 ovs_frag_type_from_string(const char *s, enum ovs_frag_type *type)
2123 {
2124 if (!strcasecmp(s, "no")) {
2125 *type = OVS_FRAG_TYPE_NONE;
2126 } else if (!strcasecmp(s, "first")) {
2127 *type = OVS_FRAG_TYPE_FIRST;
2128 } else if (!strcasecmp(s, "later")) {
2129 *type = OVS_FRAG_TYPE_LATER;
2130 } else {
2131 return false;
2132 }
2133 return true;
2134 }
2135
2136 /* Parsing. */
2137
2138 static int
2139 scan_eth(const char *s, uint8_t (*key)[ETH_ADDR_LEN],
2140 uint8_t (*mask)[ETH_ADDR_LEN])
2141 {
2142 int n;
2143
2144 if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*key), &n)) {
2145 int len = n;
2146
2147 if (mask) {
2148 if (ovs_scan(s + len, "/"ETH_ADDR_SCAN_FMT"%n",
2149 ETH_ADDR_SCAN_ARGS(*mask), &n)) {
2150 len += n;
2151 } else {
2152 memset(mask, 0xff, sizeof *mask);
2153 }
2154 }
2155 return len;
2156 }
2157 return 0;
2158 }
2159
2160 static int
2161 scan_ipv4(const char *s, ovs_be32 *key, ovs_be32 *mask)
2162 {
2163 int n;
2164
2165 if (ovs_scan(s, IP_SCAN_FMT"%n", IP_SCAN_ARGS(key), &n)) {
2166 int len = n;
2167
2168 if (mask) {
2169 if (ovs_scan(s + len, "/"IP_SCAN_FMT"%n",
2170 IP_SCAN_ARGS(mask), &n)) {
2171 len += n;
2172 } else {
2173 *mask = OVS_BE32_MAX;
2174 }
2175 }
2176 return len;
2177 }
2178 return 0;
2179 }
2180
2181 static int
2182 scan_ipv6(const char *s, ovs_be32 (*key)[4], ovs_be32 (*mask)[4])
2183 {
2184 int n;
2185 char ipv6_s[IPV6_SCAN_LEN + 1];
2186
2187 if (ovs_scan(s, IPV6_SCAN_FMT"%n", ipv6_s, &n)
2188 && inet_pton(AF_INET6, ipv6_s, key) == 1) {
2189 int len = n;
2190
2191 if (mask) {
2192 if (ovs_scan(s + len, "/"IPV6_SCAN_FMT"%n", ipv6_s, &n)
2193 && inet_pton(AF_INET6, ipv6_s, mask) == 1) {
2194 len += n;
2195 } else {
2196 memset(mask, 0xff, sizeof *mask);
2197 }
2198 }
2199 return len;
2200 }
2201 return 0;
2202 }
2203
2204 static int
2205 scan_ipv6_label(const char *s, ovs_be32 *key, ovs_be32 *mask)
2206 {
2207 int key_, mask_;
2208 int n;
2209
2210 if (ovs_scan(s, "%i%n", &key_, &n)
2211 && (key_ & ~IPV6_LABEL_MASK) == 0) {
2212 int len = n;
2213
2214 *key = htonl(key_);
2215 if (mask) {
2216 if (ovs_scan(s + len, "/%i%n", &mask_, &n)
2217 && (mask_ & ~IPV6_LABEL_MASK) == 0) {
2218 len += n;
2219 *mask = htonl(mask_);
2220 } else {
2221 *mask = htonl(IPV6_LABEL_MASK);
2222 }
2223 }
2224 return len;
2225 }
2226 return 0;
2227 }
2228
2229 static int
2230 scan_u8(const char *s, uint8_t *key, uint8_t *mask)
2231 {
2232 int n;
2233
2234 if (ovs_scan(s, "%"SCNi8"%n", key, &n)) {
2235 int len = n;
2236
2237 if (mask) {
2238 if (ovs_scan(s + len, "/%"SCNi8"%n", mask, &n)) {
2239 len += n;
2240 } else {
2241 *mask = UINT8_MAX;
2242 }
2243 }
2244 return len;
2245 }
2246 return 0;
2247 }
2248
2249 static int
2250 scan_u32(const char *s, uint32_t *key, uint32_t *mask)
2251 {
2252 int n;
2253
2254 if (ovs_scan(s, "%"SCNi32"%n", key, &n)) {
2255 int len = n;
2256
2257 if (mask) {
2258 if (ovs_scan(s + len, "/%"SCNi32"%n", mask, &n)) {
2259 len += n;
2260 } else {
2261 *mask = UINT32_MAX;
2262 }
2263 }
2264 return len;
2265 }
2266 return 0;
2267 }
2268
2269 static int
2270 scan_be16(const char *s, ovs_be16 *key, ovs_be16 *mask)
2271 {
2272 uint16_t key_, mask_;
2273 int n;
2274
2275 if (ovs_scan(s, "%"SCNi16"%n", &key_, &n)) {
2276 int len = n;
2277
2278 *key = htons(key_);
2279 if (mask) {
2280 if (ovs_scan(s + len, "/%"SCNi16"%n", &mask_, &n)) {
2281 len += n;
2282 *mask = htons(mask_);
2283 } else {
2284 *mask = OVS_BE16_MAX;
2285 }
2286 }
2287 return len;
2288 }
2289 return 0;
2290 }
2291
2292 static int
2293 scan_be64(const char *s, ovs_be64 *key, ovs_be64 *mask)
2294 {
2295 uint64_t key_, mask_;
2296 int n;
2297
2298 if (ovs_scan(s, "%"SCNi64"%n", &key_, &n)) {
2299 int len = n;
2300
2301 *key = htonll(key_);
2302 if (mask) {
2303 if (ovs_scan(s + len, "/%"SCNi64"%n", &mask_, &n)) {
2304 len += n;
2305 *mask = htonll(mask_);
2306 } else {
2307 *mask = OVS_BE64_MAX;
2308 }
2309 }
2310 return len;
2311 }
2312 return 0;
2313 }
2314
2315 static int
2316 scan_tun_flags(const char *s, uint16_t *key, uint16_t *mask)
2317 {
2318 uint32_t flags, fmask;
2319 int n;
2320
2321 n = parse_flags(s, flow_tun_flag_to_string, &flags,
2322 FLOW_TNL_F_MASK, mask ? &fmask : NULL);
2323 if (n >= 0 && s[n] == ')') {
2324 *key = flags;
2325 if (mask) {
2326 *mask = fmask;
2327 }
2328 return n + 1;
2329 }
2330 return 0;
2331 }
2332
2333 static int
2334 scan_tcp_flags(const char *s, ovs_be16 *key, ovs_be16 *mask)
2335 {
2336 uint32_t flags, fmask;
2337 int n;
2338
2339 n = parse_flags(s, packet_tcp_flag_to_string, &flags,
2340 TCP_FLAGS(OVS_BE16_MAX), mask ? &fmask : NULL);
2341 if (n >= 0) {
2342 *key = htons(flags);
2343 if (mask) {
2344 *mask = htons(fmask);
2345 }
2346 return n;
2347 }
2348 return 0;
2349 }
2350
2351 static int
2352 scan_frag(const char *s, uint8_t *key, uint8_t *mask)
2353 {
2354 int n;
2355 char frag[8];
2356 enum ovs_frag_type frag_type;
2357
2358 if (ovs_scan(s, "%7[a-z]%n", frag, &n)
2359 && ovs_frag_type_from_string(frag, &frag_type)) {
2360 int len = n;
2361
2362 *key = frag_type;
2363 if (mask) {
2364 *mask = UINT8_MAX;
2365 }
2366 return len;
2367 }
2368 return 0;
2369 }
2370
2371 static int
2372 scan_port(const char *s, uint32_t *key, uint32_t *mask,
2373 const struct simap *port_names)
2374 {
2375 int n;
2376
2377 if (ovs_scan(s, "%"SCNi32"%n", key, &n)) {
2378 int len = n;
2379
2380 if (mask) {
2381 if (ovs_scan(s + len, "/%"SCNi32"%n", mask, &n)) {
2382 len += n;
2383 } else {
2384 *mask = UINT32_MAX;
2385 }
2386 }
2387 return len;
2388 } else if (port_names) {
2389 const struct simap_node *node;
2390 int len;
2391
2392 len = strcspn(s, ")");
2393 node = simap_find_len(port_names, s, len);
2394 if (node) {
2395 *key = node->data;
2396
2397 if (mask) {
2398 *mask = UINT32_MAX;
2399 }
2400 return len;
2401 }
2402 }
2403 return 0;
2404 }
2405
2406 /* Helper for vlan parsing. */
2407 struct ovs_key_vlan__ {
2408 ovs_be16 tci;
2409 };
2410
2411 static bool
2412 set_be16_bf(ovs_be16 *bf, uint8_t bits, uint8_t offset, uint16_t value)
2413 {
2414 const uint16_t mask = ((1U << bits) - 1) << offset;
2415
2416 if (value >> bits) {
2417 return false;
2418 }
2419
2420 *bf = htons((ntohs(*bf) & ~mask) | (value << offset));
2421 return true;
2422 }
2423
2424 static int
2425 scan_be16_bf(const char *s, ovs_be16 *key, ovs_be16 *mask, uint8_t bits,
2426 uint8_t offset)
2427 {
2428 uint16_t key_, mask_;
2429 int n;
2430
2431 if (ovs_scan(s, "%"SCNi16"%n", &key_, &n)) {
2432 int len = n;
2433
2434 if (set_be16_bf(key, bits, offset, key_)) {
2435 if (mask) {
2436 if (ovs_scan(s + len, "/%"SCNi16"%n", &mask_, &n)) {
2437 len += n;
2438
2439 if (!set_be16_bf(mask, bits, offset, mask_)) {
2440 return 0;
2441 }
2442 } else {
2443 *mask |= htons(((1U << bits) - 1) << offset);
2444 }
2445 }
2446 return len;
2447 }
2448 }
2449 return 0;
2450 }
2451
2452 static int
2453 scan_vid(const char *s, ovs_be16 *key, ovs_be16 *mask)
2454 {
2455 return scan_be16_bf(s, key, mask, 12, VLAN_VID_SHIFT);
2456 }
2457
2458 static int
2459 scan_pcp(const char *s, ovs_be16 *key, ovs_be16 *mask)
2460 {
2461 return scan_be16_bf(s, key, mask, 3, VLAN_PCP_SHIFT);
2462 }
2463
2464 static int
2465 scan_cfi(const char *s, ovs_be16 *key, ovs_be16 *mask)
2466 {
2467 return scan_be16_bf(s, key, mask, 1, VLAN_CFI_SHIFT);
2468 }
2469
2470 /* For MPLS. */
2471 static bool
2472 set_be32_bf(ovs_be32 *bf, uint8_t bits, uint8_t offset, uint32_t value)
2473 {
2474 const uint32_t mask = ((1U << bits) - 1) << offset;
2475
2476 if (value >> bits) {
2477 return false;
2478 }
2479
2480 *bf = htonl((ntohl(*bf) & ~mask) | (value << offset));
2481 return true;
2482 }
2483
2484 static int
2485 scan_be32_bf(const char *s, ovs_be32 *key, ovs_be32 *mask, uint8_t bits,
2486 uint8_t offset)
2487 {
2488 uint32_t key_, mask_;
2489 int n;
2490
2491 if (ovs_scan(s, "%"SCNi32"%n", &key_, &n)) {
2492 int len = n;
2493
2494 if (set_be32_bf(key, bits, offset, key_)) {
2495 if (mask) {
2496 if (ovs_scan(s + len, "/%"SCNi32"%n", &mask_, &n)) {
2497 len += n;
2498
2499 if (!set_be32_bf(mask, bits, offset, mask_)) {
2500 return 0;
2501 }
2502 } else {
2503 *mask |= htonl(((1U << bits) - 1) << offset);
2504 }
2505 }
2506 return len;
2507 }
2508 }
2509 return 0;
2510 }
2511
2512 static int
2513 scan_mpls_label(const char *s, ovs_be32 *key, ovs_be32 *mask)
2514 {
2515 return scan_be32_bf(s, key, mask, 20, MPLS_LABEL_SHIFT);
2516 }
2517
2518 static int
2519 scan_mpls_tc(const char *s, ovs_be32 *key, ovs_be32 *mask)
2520 {
2521 return scan_be32_bf(s, key, mask, 3, MPLS_TC_SHIFT);
2522 }
2523
2524 static int
2525 scan_mpls_ttl(const char *s, ovs_be32 *key, ovs_be32 *mask)
2526 {
2527 return scan_be32_bf(s, key, mask, 8, MPLS_TTL_SHIFT);
2528 }
2529
2530 static int
2531 scan_mpls_bos(const char *s, ovs_be32 *key, ovs_be32 *mask)
2532 {
2533 return scan_be32_bf(s, key, mask, 1, MPLS_BOS_SHIFT);
2534 }
2535
2536 /* ATTR is compile-time constant, so only the case with correct data type
2537 * will be used. However, the compiler complains about the data type for
2538 * the other cases, so we must cast to make the compiler silent. */
2539 #define SCAN_PUT_ATTR(BUF, ATTR, DATA) \
2540 if ((ATTR) == OVS_KEY_ATTR_TUNNEL) { \
2541 tun_key_to_attr(BUF, (const struct flow_tnl *)(void *)&(DATA)); \
2542 } else { \
2543 nl_msg_put_unspec(BUF, ATTR, &(DATA), sizeof (DATA)); \
2544 }
2545
2546 #define SCAN_IF(NAME) \
2547 if (strncmp(s, NAME, strlen(NAME)) == 0) { \
2548 const char *start = s; \
2549 int len; \
2550 \
2551 s += strlen(NAME)
2552
2553 /* Usually no special initialization is needed. */
2554 #define SCAN_BEGIN(NAME, TYPE) \
2555 SCAN_IF(NAME); \
2556 TYPE skey, smask; \
2557 memset(&skey, 0, sizeof skey); \
2558 memset(&smask, 0, sizeof smask); \
2559 do { \
2560 len = 0;
2561
2562 /* VLAN needs special initialization. */
2563 #define SCAN_BEGIN_INIT(NAME, TYPE, KEY_INIT, MASK_INIT) \
2564 SCAN_IF(NAME); \
2565 TYPE skey = KEY_INIT; \
2566 TYPE smask = MASK_INIT; \
2567 do { \
2568 len = 0;
2569
2570 /* Scan unnamed entry as 'TYPE' */
2571 #define SCAN_TYPE(TYPE, KEY, MASK) \
2572 len = scan_##TYPE(s, KEY, MASK); \
2573 if (len == 0) { \
2574 return -EINVAL; \
2575 } \
2576 s += len
2577
2578 /* Scan named ('NAME') entry 'FIELD' as 'TYPE'. */
2579 #define SCAN_FIELD(NAME, TYPE, FIELD) \
2580 if (strncmp(s, NAME, strlen(NAME)) == 0) { \
2581 s += strlen(NAME); \
2582 SCAN_TYPE(TYPE, &skey.FIELD, mask ? &smask.FIELD : NULL); \
2583 continue; \
2584 }
2585
2586 #define SCAN_FINISH() \
2587 } while (*s++ == ',' && len != 0); \
2588 if (s[-1] != ')') { \
2589 return -EINVAL; \
2590 }
2591
2592 #define SCAN_FINISH_SINGLE() \
2593 } while (false); \
2594 if (*s++ != ')') { \
2595 return -EINVAL; \
2596 }
2597
2598 #define SCAN_PUT(ATTR) \
2599 if (!mask || !is_all_zeros(&smask, sizeof smask)) { \
2600 SCAN_PUT_ATTR(key, ATTR, skey); \
2601 if (mask) { \
2602 SCAN_PUT_ATTR(mask, ATTR, smask); \
2603 } \
2604 }
2605
2606 #define SCAN_END(ATTR) \
2607 SCAN_FINISH(); \
2608 SCAN_PUT(ATTR); \
2609 return s - start; \
2610 }
2611
2612 #define SCAN_END_SINGLE(ATTR) \
2613 SCAN_FINISH_SINGLE(); \
2614 SCAN_PUT(ATTR); \
2615 return s - start; \
2616 }
2617
2618 #define SCAN_SINGLE(NAME, TYPE, SCAN_AS, ATTR) \
2619 SCAN_BEGIN(NAME, TYPE) { \
2620 SCAN_TYPE(SCAN_AS, &skey, &smask); \
2621 } SCAN_END_SINGLE(ATTR)
2622
2623 #define SCAN_SINGLE_NO_MASK(NAME, TYPE, SCAN_AS, ATTR) \
2624 SCAN_BEGIN(NAME, TYPE) { \
2625 SCAN_TYPE(SCAN_AS, &skey, NULL); \
2626 } SCAN_END_SINGLE(ATTR)
2627
2628 /* scan_port needs one extra argument. */
2629 #define SCAN_SINGLE_PORT(NAME, TYPE, ATTR) \
2630 SCAN_BEGIN(NAME, TYPE) { \
2631 len = scan_port(s, &skey, &smask, port_names); \
2632 if (len == 0) { \
2633 return -EINVAL; \
2634 } \
2635 s += len; \
2636 } SCAN_END_SINGLE(ATTR)
2637
2638 static int
2639 parse_odp_key_mask_attr(const char *s, const struct simap *port_names,
2640 struct ofpbuf *key, struct ofpbuf *mask)
2641 {
2642 SCAN_SINGLE("skb_priority(", uint32_t, u32, OVS_KEY_ATTR_PRIORITY);
2643 SCAN_SINGLE("skb_mark(", uint32_t, u32, OVS_KEY_ATTR_SKB_MARK);
2644 SCAN_SINGLE_NO_MASK("recirc_id(", uint32_t, u32, OVS_KEY_ATTR_RECIRC_ID);
2645 SCAN_SINGLE("dp_hash(", uint32_t, u32, OVS_KEY_ATTR_DP_HASH);
2646
2647 SCAN_BEGIN("tunnel(", struct flow_tnl) {
2648 SCAN_FIELD("tun_id=", be64, tun_id);
2649 SCAN_FIELD("src=", ipv4, ip_src);
2650 SCAN_FIELD("dst=", ipv4, ip_dst);
2651 SCAN_FIELD("tos=", u8, ip_tos);
2652 SCAN_FIELD("ttl=", u8, ip_ttl);
2653 SCAN_FIELD("tp_src=", be16, tp_src);
2654 SCAN_FIELD("tp_dst=", be16, tp_dst);
2655 SCAN_FIELD("flags(", tun_flags, flags);
2656 } SCAN_END(OVS_KEY_ATTR_TUNNEL);
2657
2658 SCAN_SINGLE_PORT("in_port(", uint32_t, OVS_KEY_ATTR_IN_PORT);
2659
2660 SCAN_BEGIN("eth(", struct ovs_key_ethernet) {
2661 SCAN_FIELD("src=", eth, eth_src);
2662 SCAN_FIELD("dst=", eth, eth_dst);
2663 } SCAN_END(OVS_KEY_ATTR_ETHERNET);
2664
2665 SCAN_BEGIN_INIT("vlan(", struct ovs_key_vlan__,
2666 { htons(VLAN_CFI) }, { htons(VLAN_CFI) }) {
2667 SCAN_FIELD("vid=", vid, tci);
2668 SCAN_FIELD("pcp=", pcp, tci);
2669 SCAN_FIELD("cfi=", cfi, tci);
2670 } SCAN_END(OVS_KEY_ATTR_VLAN);
2671
2672 SCAN_SINGLE("eth_type(", ovs_be16, be16, OVS_KEY_ATTR_ETHERTYPE);
2673
2674 SCAN_BEGIN("mpls(", struct ovs_key_mpls) {
2675 SCAN_FIELD("label=", mpls_label, mpls_lse);
2676 SCAN_FIELD("tc=", mpls_tc, mpls_lse);
2677 SCAN_FIELD("ttl=", mpls_ttl, mpls_lse);
2678 SCAN_FIELD("bos=", mpls_bos, mpls_lse);
2679 } SCAN_END(OVS_KEY_ATTR_MPLS);
2680
2681 SCAN_BEGIN("ipv4(", struct ovs_key_ipv4) {
2682 SCAN_FIELD("src=", ipv4, ipv4_src);
2683 SCAN_FIELD("dst=", ipv4, ipv4_dst);
2684 SCAN_FIELD("proto=", u8, ipv4_proto);
2685 SCAN_FIELD("tos=", u8, ipv4_tos);
2686 SCAN_FIELD("ttl=", u8, ipv4_ttl);
2687 SCAN_FIELD("frag=", frag, ipv4_frag);
2688 } SCAN_END(OVS_KEY_ATTR_IPV4);
2689
2690 SCAN_BEGIN("ipv6(", struct ovs_key_ipv6) {
2691 SCAN_FIELD("src=", ipv6, ipv6_src);
2692 SCAN_FIELD("dst=", ipv6, ipv6_dst);
2693 SCAN_FIELD("label=", ipv6_label, ipv6_label);
2694 SCAN_FIELD("proto=", u8, ipv6_proto);
2695 SCAN_FIELD("tclass=", u8, ipv6_tclass);
2696 SCAN_FIELD("hlimit=", u8, ipv6_hlimit);
2697 SCAN_FIELD("frag=", frag, ipv6_frag);
2698 } SCAN_END(OVS_KEY_ATTR_IPV6);
2699
2700 SCAN_BEGIN("tcp(", struct ovs_key_tcp) {
2701 SCAN_FIELD("src=", be16, tcp_src);
2702 SCAN_FIELD("dst=", be16, tcp_dst);
2703 } SCAN_END(OVS_KEY_ATTR_TCP);
2704
2705 SCAN_SINGLE("tcp_flags(", ovs_be16, tcp_flags, OVS_KEY_ATTR_TCP_FLAGS);
2706
2707 SCAN_BEGIN("udp(", struct ovs_key_udp) {
2708 SCAN_FIELD("src=", be16, udp_src);
2709 SCAN_FIELD("dst=", be16, udp_dst);
2710 } SCAN_END(OVS_KEY_ATTR_UDP);
2711
2712 SCAN_BEGIN("sctp(", struct ovs_key_sctp) {
2713 SCAN_FIELD("src=", be16, sctp_src);
2714 SCAN_FIELD("dst=", be16, sctp_dst);
2715 } SCAN_END(OVS_KEY_ATTR_SCTP);
2716
2717 SCAN_BEGIN("icmp(", struct ovs_key_icmp) {
2718 SCAN_FIELD("type=", u8, icmp_type);
2719 SCAN_FIELD("code=", u8, icmp_code);
2720 } SCAN_END(OVS_KEY_ATTR_ICMP);
2721
2722 SCAN_BEGIN("icmpv6(", struct ovs_key_icmpv6) {
2723 SCAN_FIELD("type=", u8, icmpv6_type);
2724 SCAN_FIELD("code=", u8, icmpv6_code);
2725 } SCAN_END(OVS_KEY_ATTR_ICMPV6);
2726
2727 SCAN_BEGIN("arp(", struct ovs_key_arp) {
2728 SCAN_FIELD("sip=", ipv4, arp_sip);
2729 SCAN_FIELD("tip=", ipv4, arp_tip);
2730 SCAN_FIELD("op=", be16, arp_op);
2731 SCAN_FIELD("sha=", eth, arp_sha);
2732 SCAN_FIELD("tha=", eth, arp_tha);
2733 } SCAN_END(OVS_KEY_ATTR_ARP);
2734
2735 SCAN_BEGIN("nd(", struct ovs_key_nd) {
2736 SCAN_FIELD("target=", ipv6, nd_target);
2737 SCAN_FIELD("sll=", eth, nd_sll);
2738 SCAN_FIELD("tll=", eth, nd_tll);
2739 } SCAN_END(OVS_KEY_ATTR_ND);
2740
2741 /* Encap open-coded. */
2742 if (!strncmp(s, "encap(", 6)) {
2743 const char *start = s;
2744 size_t encap, encap_mask = 0;
2745
2746 encap = nl_msg_start_nested(key, OVS_KEY_ATTR_ENCAP);
2747 if (mask) {
2748 encap_mask = nl_msg_start_nested(mask, OVS_KEY_ATTR_ENCAP);
2749 }
2750
2751 s += 6;
2752 for (;;) {
2753 int retval;
2754
2755 s += strspn(s, ", \t\r\n");
2756 if (!*s) {
2757 return -EINVAL;
2758 } else if (*s == ')') {
2759 break;
2760 }
2761
2762 retval = parse_odp_key_mask_attr(s, port_names, key, mask);
2763 if (retval < 0) {
2764 return retval;
2765 }
2766 s += retval;
2767 }
2768 s++;
2769
2770 nl_msg_end_nested(key, encap);
2771 if (mask) {
2772 nl_msg_end_nested(mask, encap_mask);
2773 }
2774
2775 return s - start;
2776 }
2777
2778 return -EINVAL;
2779 }
2780
2781 /* Parses the string representation of a datapath flow key, in the
2782 * format output by odp_flow_key_format(). Returns 0 if successful,
2783 * otherwise a positive errno value. On success, the flow key is
2784 * appended to 'key' as a series of Netlink attributes. On failure, no
2785 * data is appended to 'key'. Either way, 'key''s data might be
2786 * reallocated.
2787 *
2788 * If 'port_names' is nonnull, it points to an simap that maps from a port name
2789 * to a port number. (Port names may be used instead of port numbers in
2790 * in_port.)
2791 *
2792 * On success, the attributes appended to 'key' are individually syntactically
2793 * valid, but they may not be valid as a sequence. 'key' might, for example,
2794 * have duplicated keys. odp_flow_key_to_flow() will detect those errors. */
2795 int
2796 odp_flow_from_string(const char *s, const struct simap *port_names,
2797 struct ofpbuf *key, struct ofpbuf *mask)
2798 {
2799 const size_t old_size = ofpbuf_size(key);
2800 for (;;) {
2801 int retval;
2802
2803 s += strspn(s, delimiters);
2804 if (!*s) {
2805 return 0;
2806 }
2807
2808 retval = parse_odp_key_mask_attr(s, port_names, key, mask);
2809 if (retval < 0) {
2810 ofpbuf_set_size(key, old_size);
2811 return -retval;
2812 }
2813 s += retval;
2814 }
2815
2816 return 0;
2817 }
2818
2819 static uint8_t
2820 ovs_to_odp_frag(uint8_t nw_frag, bool is_mask)
2821 {
2822 if (is_mask) {
2823 /* Netlink interface 'enum ovs_frag_type' is an 8-bit enumeration type,
2824 * not a set of flags or bitfields. Hence, if the struct flow nw_frag
2825 * mask, which is a set of bits, has the FLOW_NW_FRAG_ANY as zero, we
2826 * must use a zero mask for the netlink frag field, and all ones mask
2827 * otherwise. */
2828 return (nw_frag & FLOW_NW_FRAG_ANY) ? UINT8_MAX : 0;
2829 }
2830 return !(nw_frag & FLOW_NW_FRAG_ANY) ? OVS_FRAG_TYPE_NONE
2831 : nw_frag & FLOW_NW_FRAG_LATER ? OVS_FRAG_TYPE_LATER
2832 : OVS_FRAG_TYPE_FIRST;
2833 }
2834
2835 static void get_ethernet_key(const struct flow *, struct ovs_key_ethernet *);
2836 static void put_ethernet_key(const struct ovs_key_ethernet *, struct flow *);
2837 static void get_ipv4_key(const struct flow *, struct ovs_key_ipv4 *,
2838 bool is_mask);
2839 static void put_ipv4_key(const struct ovs_key_ipv4 *, struct flow *,
2840 bool is_mask);
2841 static void get_ipv6_key(const struct flow *, struct ovs_key_ipv6 *,
2842 bool is_mask);
2843 static void put_ipv6_key(const struct ovs_key_ipv6 *, struct flow *,
2844 bool is_mask);
2845 static void get_arp_key(const struct flow *, struct ovs_key_arp *);
2846 static void put_arp_key(const struct ovs_key_arp *, struct flow *);
2847
2848 /* These share the same layout. */
2849 union ovs_key_tp {
2850 struct ovs_key_tcp tcp;
2851 struct ovs_key_udp udp;
2852 struct ovs_key_sctp sctp;
2853 };
2854
2855 static void get_tp_key(const struct flow *, union ovs_key_tp *);
2856 static void put_tp_key(const union ovs_key_tp *, struct flow *);
2857
2858 static void
2859 odp_flow_key_from_flow__(struct ofpbuf *buf, const struct flow *flow,
2860 const struct flow *mask, odp_port_t odp_in_port,
2861 size_t max_mpls_depth, bool recirc, bool export_mask)
2862 {
2863 struct ovs_key_ethernet *eth_key;
2864 size_t encap;
2865 const struct flow *data = export_mask ? mask : flow;
2866
2867 nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, data->skb_priority);
2868
2869 if (flow->tunnel.ip_dst || export_mask) {
2870 tun_key_to_attr(buf, &data->tunnel);
2871 }
2872
2873 nl_msg_put_u32(buf, OVS_KEY_ATTR_SKB_MARK, data->pkt_mark);
2874
2875 if (recirc) {
2876 nl_msg_put_u32(buf, OVS_KEY_ATTR_RECIRC_ID, data->recirc_id);
2877 nl_msg_put_u32(buf, OVS_KEY_ATTR_DP_HASH, data->dp_hash);
2878 }
2879
2880 /* Add an ingress port attribute if this is a mask or 'odp_in_port'
2881 * is not the magical value "ODPP_NONE". */
2882 if (export_mask || odp_in_port != ODPP_NONE) {
2883 nl_msg_put_odp_port(buf, OVS_KEY_ATTR_IN_PORT, odp_in_port);
2884 }
2885
2886 eth_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ETHERNET,
2887 sizeof *eth_key);
2888 get_ethernet_key(data, eth_key);
2889
2890 if (flow->vlan_tci != htons(0) || flow->dl_type == htons(ETH_TYPE_VLAN)) {
2891 if (export_mask) {
2892 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, OVS_BE16_MAX);
2893 } else {
2894 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_TYPE_VLAN));
2895 }
2896 nl_msg_put_be16(buf, OVS_KEY_ATTR_VLAN, data->vlan_tci);
2897 encap = nl_msg_start_nested(buf, OVS_KEY_ATTR_ENCAP);
2898 if (flow->vlan_tci == htons(0)) {
2899 goto unencap;
2900 }
2901 } else {
2902 encap = 0;
2903 }
2904
2905 if (ntohs(flow->dl_type) < ETH_TYPE_MIN) {
2906 /* For backwards compatibility with kernels that don't support
2907 * wildcarding, the following convention is used to encode the
2908 * OVS_KEY_ATTR_ETHERTYPE for key and mask:
2909 *
2910 * key mask matches
2911 * -------- -------- -------
2912 * >0x5ff 0xffff Specified Ethernet II Ethertype.
2913 * >0x5ff 0 Any Ethernet II or non-Ethernet II frame.
2914 * <none> 0xffff Any non-Ethernet II frame (except valid
2915 * 802.3 SNAP packet with valid eth_type).
2916 */
2917 if (export_mask) {
2918 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, OVS_BE16_MAX);
2919 }
2920 goto unencap;
2921 }
2922
2923 nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, data->dl_type);
2924
2925 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2926 struct ovs_key_ipv4 *ipv4_key;
2927
2928 ipv4_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV4,
2929 sizeof *ipv4_key);
2930 get_ipv4_key(data, ipv4_key, export_mask);
2931 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2932 struct ovs_key_ipv6 *ipv6_key;
2933
2934 ipv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV6,
2935 sizeof *ipv6_key);
2936 get_ipv6_key(data, ipv6_key, export_mask);
2937 } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
2938 flow->dl_type == htons(ETH_TYPE_RARP)) {
2939 struct ovs_key_arp *arp_key;
2940
2941 arp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ARP,
2942 sizeof *arp_key);
2943 get_arp_key(data, arp_key);
2944 } else if (eth_type_mpls(flow->dl_type)) {
2945 struct ovs_key_mpls *mpls_key;
2946 int i, n;
2947
2948 n = flow_count_mpls_labels(flow, NULL);
2949 n = MIN(n, max_mpls_depth);
2950 mpls_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_MPLS,
2951 n * sizeof *mpls_key);
2952 for (i = 0; i < n; i++) {
2953 mpls_key[i].mpls_lse = data->mpls_lse[i];
2954 }
2955 }
2956
2957 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
2958 if (flow->nw_proto == IPPROTO_TCP) {
2959 union ovs_key_tp *tcp_key;
2960
2961 tcp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_TCP,
2962 sizeof *tcp_key);
2963 get_tp_key(data, tcp_key);
2964 if (data->tcp_flags) {
2965 nl_msg_put_be16(buf, OVS_KEY_ATTR_TCP_FLAGS, data->tcp_flags);
2966 }
2967 } else if (flow->nw_proto == IPPROTO_UDP) {
2968 union ovs_key_tp *udp_key;
2969
2970 udp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_UDP,
2971 sizeof *udp_key);
2972 get_tp_key(data, udp_key);
2973 } else if (flow->nw_proto == IPPROTO_SCTP) {
2974 union ovs_key_tp *sctp_key;
2975
2976 sctp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_SCTP,
2977 sizeof *sctp_key);
2978 get_tp_key(data, sctp_key);
2979 } else if (flow->dl_type == htons(ETH_TYPE_IP)
2980 && flow->nw_proto == IPPROTO_ICMP) {
2981 struct ovs_key_icmp *icmp_key;
2982
2983 icmp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMP,
2984 sizeof *icmp_key);
2985 icmp_key->icmp_type = ntohs(data->tp_src);
2986 icmp_key->icmp_code = ntohs(data->tp_dst);
2987 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)
2988 && flow->nw_proto == IPPROTO_ICMPV6) {
2989 struct ovs_key_icmpv6 *icmpv6_key;
2990
2991 icmpv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMPV6,
2992 sizeof *icmpv6_key);
2993 icmpv6_key->icmpv6_type = ntohs(data->tp_src);
2994 icmpv6_key->icmpv6_code = ntohs(data->tp_dst);
2995
2996 if (flow->tp_dst == htons(0)
2997 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)
2998 || flow->tp_src == htons(ND_NEIGHBOR_ADVERT))
2999 && (!export_mask || (data->tp_src == htons(0xffff)
3000 && data->tp_dst == htons(0xffff)))) {
3001
3002 struct ovs_key_nd *nd_key;
3003
3004 nd_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ND,
3005 sizeof *nd_key);
3006 memcpy(nd_key->nd_target, &data->nd_target,
3007 sizeof nd_key->nd_target);
3008 memcpy(nd_key->nd_sll, data->arp_sha, ETH_ADDR_LEN);
3009 memcpy(nd_key->nd_tll, data->arp_tha, ETH_ADDR_LEN);
3010 }
3011 }
3012 }
3013
3014 unencap:
3015 if (encap) {
3016 nl_msg_end_nested(buf, encap);
3017 }
3018 }
3019
3020 /* Appends a representation of 'flow' as OVS_KEY_ATTR_* attributes to 'buf'.
3021 * 'flow->in_port' is ignored (since it is likely to be an OpenFlow port
3022 * number rather than a datapath port number). Instead, if 'odp_in_port'
3023 * is anything other than ODPP_NONE, it is included in 'buf' as the input
3024 * port.
3025 *
3026 * 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be
3027 * capable of being expanded to allow for that much space.
3028 *
3029 * 'recirc' indicates support for recirculation fields. If this is true, then
3030 * these fields will always be serialised. */
3031 void
3032 odp_flow_key_from_flow(struct ofpbuf *buf, const struct flow *flow,
3033 const struct flow *mask, odp_port_t odp_in_port,
3034 bool recirc)
3035 {
3036 odp_flow_key_from_flow__(buf, flow, mask, odp_in_port, SIZE_MAX, recirc,
3037 false);
3038 }
3039
3040 /* Appends a representation of 'mask' as OVS_KEY_ATTR_* attributes to
3041 * 'buf'. 'flow' is used as a template to determine how to interpret
3042 * 'mask'. For example, the 'dl_type' of 'mask' describes the mask, but
3043 * it doesn't indicate whether the other fields should be interpreted as
3044 * ARP, IPv4, IPv6, etc.
3045 *
3046 * 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be
3047 * capable of being expanded to allow for that much space.
3048 *
3049 * 'recirc' indicates support for recirculation fields. If this is true, then
3050 * these fields will always be serialised. */
3051 void
3052 odp_flow_key_from_mask(struct ofpbuf *buf, const struct flow *mask,
3053 const struct flow *flow, uint32_t odp_in_port_mask,
3054 size_t max_mpls_depth, bool recirc)
3055 {
3056 odp_flow_key_from_flow__(buf, flow, mask, u32_to_odp(odp_in_port_mask),
3057 max_mpls_depth, recirc, true);
3058 }
3059
3060 /* Generate ODP flow key from the given packet metadata */
3061 void
3062 odp_key_from_pkt_metadata(struct ofpbuf *buf, const struct pkt_metadata *md)
3063 {
3064 nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, md->skb_priority);
3065
3066 if (md->tunnel.ip_dst) {
3067 tun_key_to_attr(buf, &md->tunnel);
3068 }
3069
3070 nl_msg_put_u32(buf, OVS_KEY_ATTR_SKB_MARK, md->pkt_mark);
3071
3072 /* Add an ingress port attribute if 'odp_in_port' is not the magical
3073 * value "ODPP_NONE". */
3074 if (md->in_port.odp_port != ODPP_NONE) {
3075 nl_msg_put_odp_port(buf, OVS_KEY_ATTR_IN_PORT, md->in_port.odp_port);
3076 }
3077 }
3078
3079 /* Generate packet metadata from the given ODP flow key. */
3080 void
3081 odp_key_to_pkt_metadata(const struct nlattr *key, size_t key_len,
3082 struct pkt_metadata *md)
3083 {
3084 const struct nlattr *nla;
3085 size_t left;
3086 uint32_t wanted_attrs = 1u << OVS_KEY_ATTR_PRIORITY |
3087 1u << OVS_KEY_ATTR_SKB_MARK | 1u << OVS_KEY_ATTR_TUNNEL |
3088 1u << OVS_KEY_ATTR_IN_PORT;
3089
3090 *md = PKT_METADATA_INITIALIZER(ODPP_NONE);
3091
3092 NL_ATTR_FOR_EACH (nla, left, key, key_len) {
3093 uint16_t type = nl_attr_type(nla);
3094 size_t len = nl_attr_get_size(nla);
3095 int expected_len = odp_flow_key_attr_len(type);
3096
3097 if (len != expected_len && expected_len >= 0) {
3098 continue;
3099 }
3100
3101 switch (type) {
3102 case OVS_KEY_ATTR_RECIRC_ID:
3103 md->recirc_id = nl_attr_get_u32(nla);
3104 wanted_attrs &= ~(1u << OVS_KEY_ATTR_RECIRC_ID);
3105 break;
3106 case OVS_KEY_ATTR_DP_HASH:
3107 md->dp_hash = nl_attr_get_u32(nla);
3108 wanted_attrs &= ~(1u << OVS_KEY_ATTR_DP_HASH);
3109 break;
3110 case OVS_KEY_ATTR_PRIORITY:
3111 md->skb_priority = nl_attr_get_u32(nla);
3112 wanted_attrs &= ~(1u << OVS_KEY_ATTR_PRIORITY);
3113 break;
3114 case OVS_KEY_ATTR_SKB_MARK:
3115 md->pkt_mark = nl_attr_get_u32(nla);
3116 wanted_attrs &= ~(1u << OVS_KEY_ATTR_SKB_MARK);
3117 break;
3118 case OVS_KEY_ATTR_TUNNEL: {
3119 enum odp_key_fitness res;
3120
3121 res = odp_tun_key_from_attr(nla, &md->tunnel);
3122 if (res == ODP_FIT_ERROR) {
3123 memset(&md->tunnel, 0, sizeof md->tunnel);
3124 } else if (res == ODP_FIT_PERFECT) {
3125 wanted_attrs &= ~(1u << OVS_KEY_ATTR_TUNNEL);
3126 }
3127 break;
3128 }
3129 case OVS_KEY_ATTR_IN_PORT:
3130 md->in_port.odp_port = nl_attr_get_odp_port(nla);
3131 wanted_attrs &= ~(1u << OVS_KEY_ATTR_IN_PORT);
3132 break;
3133 default:
3134 break;
3135 }
3136
3137 if (!wanted_attrs) {
3138 return; /* Have everything. */
3139 }
3140 }
3141 }
3142
3143 uint32_t
3144 odp_flow_key_hash(const struct nlattr *key, size_t key_len)
3145 {
3146 BUILD_ASSERT_DECL(!(NLA_ALIGNTO % sizeof(uint32_t)));
3147 return hash_words(ALIGNED_CAST(const uint32_t *, key),
3148 key_len / sizeof(uint32_t), 0);
3149 }
3150
3151 static void
3152 log_odp_key_attributes(struct vlog_rate_limit *rl, const char *title,
3153 uint64_t attrs, int out_of_range_attr,
3154 const struct nlattr *key, size_t key_len)
3155 {
3156 struct ds s;
3157 int i;
3158
3159 if (VLOG_DROP_DBG(rl)) {
3160 return;
3161 }
3162
3163 ds_init(&s);
3164 for (i = 0; i < 64; i++) {
3165 if (attrs & (UINT64_C(1) << i)) {
3166 char namebuf[OVS_KEY_ATTR_BUFSIZE];
3167
3168 ds_put_format(&s, " %s",
3169 ovs_key_attr_to_string(i, namebuf, sizeof namebuf));
3170 }
3171 }
3172 if (out_of_range_attr) {
3173 ds_put_format(&s, " %d (and possibly others)", out_of_range_attr);
3174 }
3175
3176 ds_put_cstr(&s, ": ");
3177 odp_flow_key_format(key, key_len, &s);
3178
3179 VLOG_DBG("%s:%s", title, ds_cstr(&s));
3180 ds_destroy(&s);
3181 }
3182
3183 static uint8_t
3184 odp_to_ovs_frag(uint8_t odp_frag, bool is_mask)
3185 {
3186 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3187
3188 if (is_mask) {
3189 return odp_frag ? FLOW_NW_FRAG_MASK : 0;
3190 }
3191
3192 if (odp_frag > OVS_FRAG_TYPE_LATER) {
3193 VLOG_ERR_RL(&rl, "invalid frag %"PRIu8" in flow key", odp_frag);
3194 return 0xff; /* Error. */
3195 }
3196
3197 return (odp_frag == OVS_FRAG_TYPE_NONE) ? 0
3198 : (odp_frag == OVS_FRAG_TYPE_FIRST) ? FLOW_NW_FRAG_ANY
3199 : FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER;
3200 }
3201
3202 static bool
3203 parse_flow_nlattrs(const struct nlattr *key, size_t key_len,
3204 const struct nlattr *attrs[], uint64_t *present_attrsp,
3205 int *out_of_range_attrp)
3206 {
3207 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
3208 const struct nlattr *nla;
3209 uint64_t present_attrs;
3210 size_t left;
3211
3212 BUILD_ASSERT(OVS_KEY_ATTR_MAX < CHAR_BIT * sizeof present_attrs);
3213 present_attrs = 0;
3214 *out_of_range_attrp = 0;
3215 NL_ATTR_FOR_EACH (nla, left, key, key_len) {
3216 uint16_t type = nl_attr_type(nla);
3217 size_t len = nl_attr_get_size(nla);
3218 int expected_len = odp_flow_key_attr_len(type);
3219
3220 if (len != expected_len && expected_len >= 0) {
3221 char namebuf[OVS_KEY_ATTR_BUFSIZE];
3222
3223 VLOG_ERR_RL(&rl, "attribute %s has length %"PRIuSIZE" but should have "
3224 "length %d", ovs_key_attr_to_string(type, namebuf,
3225 sizeof namebuf),
3226 len, expected_len);
3227 return false;
3228 }
3229
3230 if (type > OVS_KEY_ATTR_MAX) {
3231 *out_of_range_attrp = type;
3232 } else {
3233 if (present_attrs & (UINT64_C(1) << type)) {
3234 char namebuf[OVS_KEY_ATTR_BUFSIZE];
3235
3236 VLOG_ERR_RL(&rl, "duplicate %s attribute in flow key",
3237 ovs_key_attr_to_string(type,
3238 namebuf, sizeof namebuf));
3239 return false;
3240 }
3241
3242 present_attrs |= UINT64_C(1) << type;
3243 attrs[type] = nla;
3244 }
3245 }
3246 if (left) {
3247 VLOG_ERR_RL(&rl, "trailing garbage in flow key");
3248 return false;
3249 }
3250
3251 *present_attrsp = present_attrs;
3252 return true;
3253 }
3254
3255 static enum odp_key_fitness
3256 check_expectations(uint64_t present_attrs, int out_of_range_attr,
3257 uint64_t expected_attrs,
3258 const struct nlattr *key, size_t key_len)
3259 {
3260 uint64_t missing_attrs;
3261 uint64_t extra_attrs;
3262
3263 missing_attrs = expected_attrs & ~present_attrs;
3264 if (missing_attrs) {
3265 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
3266 log_odp_key_attributes(&rl, "expected but not present",
3267 missing_attrs, 0, key, key_len);
3268 return ODP_FIT_TOO_LITTLE;
3269 }
3270
3271 extra_attrs = present_attrs & ~expected_attrs;
3272 if (extra_attrs || out_of_range_attr) {
3273 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
3274 log_odp_key_attributes(&rl, "present but not expected",
3275 extra_attrs, out_of_range_attr, key, key_len);
3276 return ODP_FIT_TOO_MUCH;
3277 }
3278
3279 return ODP_FIT_PERFECT;
3280 }
3281
3282 static bool
3283 parse_ethertype(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
3284 uint64_t present_attrs, uint64_t *expected_attrs,
3285 struct flow *flow, const struct flow *src_flow)
3286 {
3287 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3288 bool is_mask = flow != src_flow;
3289
3290 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE)) {
3291 flow->dl_type = nl_attr_get_be16(attrs[OVS_KEY_ATTR_ETHERTYPE]);
3292 if (!is_mask && ntohs(flow->dl_type) < ETH_TYPE_MIN) {
3293 VLOG_ERR_RL(&rl, "invalid Ethertype %"PRIu16" in flow key",
3294 ntohs(flow->dl_type));
3295 return false;
3296 }
3297 if (is_mask && ntohs(src_flow->dl_type) < ETH_TYPE_MIN &&
3298 flow->dl_type != htons(0xffff)) {
3299 return false;
3300 }
3301 *expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE;
3302 } else {
3303 if (!is_mask) {
3304 flow->dl_type = htons(FLOW_DL_TYPE_NONE);
3305 } else if (ntohs(src_flow->dl_type) < ETH_TYPE_MIN) {
3306 /* See comments in odp_flow_key_from_flow__(). */
3307 VLOG_ERR_RL(&rl, "mask expected for non-Ethernet II frame");
3308 return false;
3309 }
3310 }
3311 return true;
3312 }
3313
3314 static enum odp_key_fitness
3315 parse_l2_5_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
3316 uint64_t present_attrs, int out_of_range_attr,
3317 uint64_t expected_attrs, struct flow *flow,
3318 const struct nlattr *key, size_t key_len,
3319 const struct flow *src_flow)
3320 {
3321 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3322 bool is_mask = src_flow != flow;
3323 const void *check_start = NULL;
3324 size_t check_len = 0;
3325 enum ovs_key_attr expected_bit = 0xff;
3326
3327 if (eth_type_mpls(src_flow->dl_type)) {
3328 if (!is_mask || present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_MPLS)) {
3329 expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_MPLS);
3330 }
3331 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_MPLS)) {
3332 size_t size = nl_attr_get_size(attrs[OVS_KEY_ATTR_MPLS]);
3333 const ovs_be32 *mpls_lse = nl_attr_get(attrs[OVS_KEY_ATTR_MPLS]);
3334 int n = size / sizeof(ovs_be32);
3335 int i;
3336
3337 if (!size || size % sizeof(ovs_be32)) {
3338 return ODP_FIT_ERROR;
3339 }
3340 if (flow->mpls_lse[0] && flow->dl_type != htons(0xffff)) {
3341 return ODP_FIT_ERROR;
3342 }
3343
3344 for (i = 0; i < n && i < FLOW_MAX_MPLS_LABELS; i++) {
3345 flow->mpls_lse[i] = mpls_lse[i];
3346 }
3347 if (n > FLOW_MAX_MPLS_LABELS) {
3348 return ODP_FIT_TOO_MUCH;
3349 }
3350
3351 if (!is_mask) {
3352 /* BOS may be set only in the innermost label. */
3353 for (i = 0; i < n - 1; i++) {
3354 if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
3355 return ODP_FIT_ERROR;
3356 }
3357 }
3358
3359 /* BOS must be set in the innermost label. */
3360 if (n < FLOW_MAX_MPLS_LABELS
3361 && !(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
3362 return ODP_FIT_TOO_LITTLE;
3363 }
3364 }
3365 }
3366
3367 goto done;
3368 } else if (src_flow->dl_type == htons(ETH_TYPE_IP)) {
3369 if (!is_mask) {
3370 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV4;
3371 }
3372 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV4)) {
3373 const struct ovs_key_ipv4 *ipv4_key;
3374
3375 ipv4_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV4]);
3376 put_ipv4_key(ipv4_key, flow, is_mask);
3377 if (flow->nw_frag > FLOW_NW_FRAG_MASK) {
3378 return ODP_FIT_ERROR;
3379 }
3380 if (is_mask) {
3381 check_start = ipv4_key;
3382 check_len = sizeof *ipv4_key;
3383 expected_bit = OVS_KEY_ATTR_IPV4;
3384 }
3385 }
3386 } else if (src_flow->dl_type == htons(ETH_TYPE_IPV6)) {
3387 if (!is_mask) {
3388 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV6;
3389 }
3390 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV6)) {
3391 const struct ovs_key_ipv6 *ipv6_key;
3392
3393 ipv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV6]);
3394 put_ipv6_key(ipv6_key, flow, is_mask);
3395 if (flow->nw_frag > FLOW_NW_FRAG_MASK) {
3396 return ODP_FIT_ERROR;
3397 }
3398 if (is_mask) {
3399 check_start = ipv6_key;
3400 check_len = sizeof *ipv6_key;
3401 expected_bit = OVS_KEY_ATTR_IPV6;
3402 }
3403 }
3404 } else if (src_flow->dl_type == htons(ETH_TYPE_ARP) ||
3405 src_flow->dl_type == htons(ETH_TYPE_RARP)) {
3406 if (!is_mask) {
3407 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ARP;
3408 }
3409 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ARP)) {
3410 const struct ovs_key_arp *arp_key;
3411
3412 arp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ARP]);
3413 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
3414 VLOG_ERR_RL(&rl, "unsupported ARP opcode %"PRIu16" in flow "
3415 "key", ntohs(arp_key->arp_op));
3416 return ODP_FIT_ERROR;
3417 }
3418 put_arp_key(arp_key, flow);
3419 if (is_mask) {
3420 check_start = arp_key;
3421 check_len = sizeof *arp_key;
3422 expected_bit = OVS_KEY_ATTR_ARP;
3423 }
3424 }
3425 } else {
3426 goto done;
3427 }
3428 if (check_len > 0) { /* Happens only when 'is_mask'. */
3429 if (!is_all_zeros(check_start, check_len) &&
3430 flow->dl_type != htons(0xffff)) {
3431 return ODP_FIT_ERROR;
3432 } else {
3433 expected_attrs |= UINT64_C(1) << expected_bit;
3434 }
3435 }
3436
3437 expected_bit = OVS_KEY_ATTR_UNSPEC;
3438 if (src_flow->nw_proto == IPPROTO_TCP
3439 && (src_flow->dl_type == htons(ETH_TYPE_IP) ||
3440 src_flow->dl_type == htons(ETH_TYPE_IPV6))
3441 && !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
3442 if (!is_mask) {
3443 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP;
3444 }
3445 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP)) {
3446 const union ovs_key_tp *tcp_key;
3447
3448 tcp_key = nl_attr_get(attrs[OVS_KEY_ATTR_TCP]);
3449 put_tp_key(tcp_key, flow);
3450 expected_bit = OVS_KEY_ATTR_TCP;
3451 }
3452 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP_FLAGS)) {
3453 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP_FLAGS;
3454 flow->tcp_flags = nl_attr_get_be16(attrs[OVS_KEY_ATTR_TCP_FLAGS]);
3455 }
3456 } else if (src_flow->nw_proto == IPPROTO_UDP
3457 && (src_flow->dl_type == htons(ETH_TYPE_IP) ||
3458 src_flow->dl_type == htons(ETH_TYPE_IPV6))
3459 && !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
3460 if (!is_mask) {
3461 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_UDP;
3462 }
3463 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_UDP)) {
3464 const union ovs_key_tp *udp_key;
3465
3466 udp_key = nl_attr_get(attrs[OVS_KEY_ATTR_UDP]);
3467 put_tp_key(udp_key, flow);
3468 expected_bit = OVS_KEY_ATTR_UDP;
3469 }
3470 } else if (src_flow->nw_proto == IPPROTO_SCTP
3471 && (src_flow->dl_type == htons(ETH_TYPE_IP) ||
3472 src_flow->dl_type == htons(ETH_TYPE_IPV6))
3473 && !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
3474 if (!is_mask) {
3475 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_SCTP;
3476 }
3477 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_SCTP)) {
3478 const union ovs_key_tp *sctp_key;
3479
3480 sctp_key = nl_attr_get(attrs[OVS_KEY_ATTR_SCTP]);
3481 put_tp_key(sctp_key, flow);
3482 expected_bit = OVS_KEY_ATTR_SCTP;
3483 }
3484 } else if (src_flow->nw_proto == IPPROTO_ICMP
3485 && src_flow->dl_type == htons(ETH_TYPE_IP)
3486 && !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
3487 if (!is_mask) {
3488 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMP;
3489 }
3490 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMP)) {
3491 const struct ovs_key_icmp *icmp_key;
3492
3493 icmp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMP]);
3494 flow->tp_src = htons(icmp_key->icmp_type);
3495 flow->tp_dst = htons(icmp_key->icmp_code);
3496 expected_bit = OVS_KEY_ATTR_ICMP;
3497 }
3498 } else if (src_flow->nw_proto == IPPROTO_ICMPV6
3499 && src_flow->dl_type == htons(ETH_TYPE_IPV6)
3500 && !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
3501 if (!is_mask) {
3502 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMPV6;
3503 }
3504 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMPV6)) {
3505 const struct ovs_key_icmpv6 *icmpv6_key;
3506
3507 icmpv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMPV6]);
3508 flow->tp_src = htons(icmpv6_key->icmpv6_type);
3509 flow->tp_dst = htons(icmpv6_key->icmpv6_code);
3510 expected_bit = OVS_KEY_ATTR_ICMPV6;
3511 if (src_flow->tp_dst == htons(0) &&
3512 (src_flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
3513 src_flow->tp_src == htons(ND_NEIGHBOR_ADVERT))) {
3514 if (!is_mask) {
3515 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
3516 }
3517 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ND)) {
3518 const struct ovs_key_nd *nd_key;
3519
3520 nd_key = nl_attr_get(attrs[OVS_KEY_ATTR_ND]);
3521 memcpy(&flow->nd_target, nd_key->nd_target,
3522 sizeof flow->nd_target);
3523 memcpy(flow->arp_sha, nd_key->nd_sll, ETH_ADDR_LEN);
3524 memcpy(flow->arp_tha, nd_key->nd_tll, ETH_ADDR_LEN);
3525 if (is_mask) {
3526 if (!is_all_zeros(nd_key, sizeof *nd_key) &&
3527 (flow->tp_src != htons(0xffff) ||
3528 flow->tp_dst != htons(0xffff))) {
3529 return ODP_FIT_ERROR;
3530 } else {
3531 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
3532 }
3533 }
3534 }
3535 }
3536 }
3537 }
3538 if (is_mask && expected_bit != OVS_KEY_ATTR_UNSPEC) {
3539 if ((flow->tp_src || flow->tp_dst) && flow->nw_proto != 0xff) {
3540 return ODP_FIT_ERROR;
3541 } else {
3542 expected_attrs |= UINT64_C(1) << expected_bit;
3543 }
3544 }
3545
3546 done:
3547 return check_expectations(present_attrs, out_of_range_attr, expected_attrs,
3548 key, key_len);
3549 }
3550
3551 /* Parse 802.1Q header then encapsulated L3 attributes. */
3552 static enum odp_key_fitness
3553 parse_8021q_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
3554 uint64_t present_attrs, int out_of_range_attr,
3555 uint64_t expected_attrs, struct flow *flow,
3556 const struct nlattr *key, size_t key_len,
3557 const struct flow *src_flow)
3558 {
3559 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3560 bool is_mask = src_flow != flow;
3561
3562 const struct nlattr *encap
3563 = (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)
3564 ? attrs[OVS_KEY_ATTR_ENCAP] : NULL);
3565 enum odp_key_fitness encap_fitness;
3566 enum odp_key_fitness fitness;
3567
3568 /* Calculate fitness of outer attributes. */
3569 if (!is_mask) {
3570 expected_attrs |= ((UINT64_C(1) << OVS_KEY_ATTR_VLAN) |
3571 (UINT64_C(1) << OVS_KEY_ATTR_ENCAP));
3572 } else {
3573 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN)) {
3574 expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_VLAN);
3575 }
3576 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)) {
3577 expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_ENCAP);
3578 }
3579 }
3580 fitness = check_expectations(present_attrs, out_of_range_attr,
3581 expected_attrs, key, key_len);
3582
3583 /* Set vlan_tci.
3584 * Remove the TPID from dl_type since it's not the real Ethertype. */
3585 flow->dl_type = htons(0);
3586 flow->vlan_tci = (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN)
3587 ? nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN])
3588 : htons(0));
3589 if (!is_mask) {
3590 if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN))) {
3591 return ODP_FIT_TOO_LITTLE;
3592 } else if (flow->vlan_tci == htons(0)) {
3593 /* Corner case for a truncated 802.1Q header. */
3594 if (fitness == ODP_FIT_PERFECT && nl_attr_get_size(encap)) {
3595 return ODP_FIT_TOO_MUCH;
3596 }
3597 return fitness;
3598 } else if (!(flow->vlan_tci & htons(VLAN_CFI))) {
3599 VLOG_ERR_RL(&rl, "OVS_KEY_ATTR_VLAN 0x%04"PRIx16" is nonzero "
3600 "but CFI bit is not set", ntohs(flow->vlan_tci));
3601 return ODP_FIT_ERROR;
3602 }
3603 } else {
3604 if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP))) {
3605 return fitness;
3606 }
3607 }
3608
3609 /* Now parse the encapsulated attributes. */
3610 if (!parse_flow_nlattrs(nl_attr_get(encap), nl_attr_get_size(encap),
3611 attrs, &present_attrs, &out_of_range_attr)) {
3612 return ODP_FIT_ERROR;
3613 }
3614 expected_attrs = 0;
3615
3616 if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow, src_flow)) {
3617 return ODP_FIT_ERROR;
3618 }
3619 encap_fitness = parse_l2_5_onward(attrs, present_attrs, out_of_range_attr,
3620 expected_attrs, flow, key, key_len,
3621 src_flow);
3622
3623 /* The overall fitness is the worse of the outer and inner attributes. */
3624 return MAX(fitness, encap_fitness);
3625 }
3626
3627 static enum odp_key_fitness
3628 odp_flow_key_to_flow__(const struct nlattr *key, size_t key_len,
3629 struct flow *flow, const struct flow *src_flow)
3630 {
3631 const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1];
3632 uint64_t expected_attrs;
3633 uint64_t present_attrs;
3634 int out_of_range_attr;
3635 bool is_mask = src_flow != flow;
3636
3637 memset(flow, 0, sizeof *flow);
3638
3639 /* Parse attributes. */
3640 if (!parse_flow_nlattrs(key, key_len, attrs, &present_attrs,
3641 &out_of_range_attr)) {
3642 return ODP_FIT_ERROR;
3643 }
3644 expected_attrs = 0;
3645
3646 /* Metadata. */
3647 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_RECIRC_ID)) {
3648 flow->recirc_id = nl_attr_get_u32(attrs[OVS_KEY_ATTR_RECIRC_ID]);
3649 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_RECIRC_ID;
3650 } else if (is_mask) {
3651 /* Always exact match recirc_id if it is not specified. */
3652 flow->recirc_id = UINT32_MAX;
3653 }
3654
3655 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_DP_HASH)) {
3656 flow->dp_hash = nl_attr_get_u32(attrs[OVS_KEY_ATTR_DP_HASH]);
3657 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_DP_HASH;
3658 }
3659 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_PRIORITY)) {
3660 flow->skb_priority = nl_attr_get_u32(attrs[OVS_KEY_ATTR_PRIORITY]);
3661 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_PRIORITY;
3662 }
3663
3664 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK)) {
3665 flow->pkt_mark = nl_attr_get_u32(attrs[OVS_KEY_ATTR_SKB_MARK]);
3666 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK;
3667 }
3668
3669 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TUNNEL)) {
3670 enum odp_key_fitness res;
3671
3672 res = odp_tun_key_from_attr(attrs[OVS_KEY_ATTR_TUNNEL], &flow->tunnel);
3673 if (res == ODP_FIT_ERROR) {
3674 return ODP_FIT_ERROR;
3675 } else if (res == ODP_FIT_PERFECT) {
3676 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TUNNEL;
3677 }
3678 }
3679
3680 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IN_PORT)) {
3681 flow->in_port.odp_port
3682 = nl_attr_get_odp_port(attrs[OVS_KEY_ATTR_IN_PORT]);
3683 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IN_PORT;
3684 } else if (!is_mask) {
3685 flow->in_port.odp_port = ODPP_NONE;
3686 }
3687
3688 /* Ethernet header. */
3689 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERNET)) {
3690 const struct ovs_key_ethernet *eth_key;
3691
3692 eth_key = nl_attr_get(attrs[OVS_KEY_ATTR_ETHERNET]);
3693 put_ethernet_key(eth_key, flow);
3694 if (is_mask) {
3695 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
3696 }
3697 }
3698 if (!is_mask) {
3699 expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
3700 }
3701
3702 /* Get Ethertype or 802.1Q TPID or FLOW_DL_TYPE_NONE. */
3703 if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow,
3704 src_flow)) {
3705 return ODP_FIT_ERROR;
3706 }
3707
3708 if (is_mask
3709 ? (src_flow->vlan_tci & htons(VLAN_CFI)) != 0
3710 : src_flow->dl_type == htons(ETH_TYPE_VLAN)) {
3711 return parse_8021q_onward(attrs, present_attrs, out_of_range_attr,
3712 expected_attrs, flow, key, key_len, src_flow);
3713 }
3714 if (is_mask) {
3715 flow->vlan_tci = htons(0xffff);
3716 if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN)) {
3717 flow->vlan_tci = nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN]);
3718 expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_VLAN);
3719 }
3720 }
3721 return parse_l2_5_onward(attrs, present_attrs, out_of_range_attr,
3722 expected_attrs, flow, key, key_len, src_flow);
3723 }
3724
3725 /* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a flow
3726 * structure in 'flow'. Returns an ODP_FIT_* value that indicates how well
3727 * 'key' fits our expectations for what a flow key should contain.
3728 *
3729 * The 'in_port' will be the datapath's understanding of the port. The
3730 * caller will need to translate with odp_port_to_ofp_port() if the
3731 * OpenFlow port is needed.
3732 *
3733 * This function doesn't take the packet itself as an argument because none of
3734 * the currently understood OVS_KEY_ATTR_* attributes require it. Currently,
3735 * it is always possible to infer which additional attribute(s) should appear
3736 * by looking at the attributes for lower-level protocols, e.g. if the network
3737 * protocol in OVS_KEY_ATTR_IPV4 or OVS_KEY_ATTR_IPV6 is IPPROTO_TCP then we
3738 * know that a OVS_KEY_ATTR_TCP attribute must appear and that otherwise it
3739 * must be absent. */
3740 enum odp_key_fitness
3741 odp_flow_key_to_flow(const struct nlattr *key, size_t key_len,
3742 struct flow *flow)
3743 {
3744 return odp_flow_key_to_flow__(key, key_len, flow, flow);
3745 }
3746
3747 /* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a mask
3748 * structure in 'mask'. 'flow' must be a previously translated flow
3749 * corresponding to 'mask'. Returns an ODP_FIT_* value that indicates how well
3750 * 'key' fits our expectations for what a flow key should contain. */
3751 enum odp_key_fitness
3752 odp_flow_key_to_mask(const struct nlattr *key, size_t key_len,
3753 struct flow *mask, const struct flow *flow)
3754 {
3755 return odp_flow_key_to_flow__(key, key_len, mask, flow);
3756 }
3757
3758 /* Returns 'fitness' as a string, for use in debug messages. */
3759 const char *
3760 odp_key_fitness_to_string(enum odp_key_fitness fitness)
3761 {
3762 switch (fitness) {
3763 case ODP_FIT_PERFECT:
3764 return "OK";
3765 case ODP_FIT_TOO_MUCH:
3766 return "too_much";
3767 case ODP_FIT_TOO_LITTLE:
3768 return "too_little";
3769 case ODP_FIT_ERROR:
3770 return "error";
3771 default:
3772 return "<unknown>";
3773 }
3774 }
3775
3776 /* Appends an OVS_ACTION_ATTR_USERSPACE action to 'odp_actions' that specifies
3777 * Netlink PID 'pid'. If 'userdata' is nonnull, adds a userdata attribute
3778 * whose contents are the 'userdata_size' bytes at 'userdata' and returns the
3779 * offset within 'odp_actions' of the start of the cookie. (If 'userdata' is
3780 * null, then the return value is not meaningful.) */
3781 size_t
3782 odp_put_userspace_action(uint32_t pid,
3783 const void *userdata, size_t userdata_size,
3784 odp_port_t tunnel_out_port,
3785 struct ofpbuf *odp_actions)
3786 {
3787 size_t userdata_ofs;
3788 size_t offset;
3789
3790 offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_USERSPACE);
3791 nl_msg_put_u32(odp_actions, OVS_USERSPACE_ATTR_PID, pid);
3792 if (userdata) {
3793 userdata_ofs = ofpbuf_size(odp_actions) + NLA_HDRLEN;
3794
3795 /* The OVS kernel module before OVS 1.11 and the upstream Linux kernel
3796 * module before Linux 3.10 required the userdata to be exactly 8 bytes
3797 * long:
3798 *
3799 * - The kernel rejected shorter userdata with -ERANGE.
3800 *
3801 * - The kernel silently dropped userdata beyond the first 8 bytes.
3802 *
3803 * Thus, for maximum compatibility, always put at least 8 bytes. (We
3804 * separately disable features that required more than 8 bytes.) */
3805 memcpy(nl_msg_put_unspec_zero(odp_actions, OVS_USERSPACE_ATTR_USERDATA,
3806 MAX(8, userdata_size)),
3807 userdata, userdata_size);
3808 } else {
3809 userdata_ofs = 0;
3810 }
3811 if (tunnel_out_port != ODPP_NONE) {
3812 nl_msg_put_odp_port(odp_actions, OVS_USERSPACE_ATTR_EGRESS_TUN_PORT,
3813 tunnel_out_port);
3814 }
3815 nl_msg_end_nested(odp_actions, offset);
3816
3817 return userdata_ofs;
3818 }
3819
3820 void
3821 odp_put_tunnel_action(const struct flow_tnl *tunnel,
3822 struct ofpbuf *odp_actions)
3823 {
3824 size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
3825 tun_key_to_attr(odp_actions, tunnel);
3826 nl_msg_end_nested(odp_actions, offset);
3827 }
3828
3829 void
3830 odp_put_tnl_push_action(struct ofpbuf *odp_actions,
3831 struct ovs_action_push_tnl *data)
3832 {
3833 int size = offsetof(struct ovs_action_push_tnl, header);
3834
3835 size += data->header_len;
3836 nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_TUNNEL_PUSH, data, size);
3837 }
3838
3839 \f
3840 /* The commit_odp_actions() function and its helpers. */
3841
3842 static void
3843 commit_set_action(struct ofpbuf *odp_actions, enum ovs_key_attr key_type,
3844 const void *key, size_t key_size)
3845 {
3846 size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
3847 nl_msg_put_unspec(odp_actions, key_type, key, key_size);
3848 nl_msg_end_nested(odp_actions, offset);
3849 }
3850
3851 /* Masked set actions have a mask following the data within the netlink
3852 * attribute. The unmasked bits in the data will be cleared as the data
3853 * is copied to the action. */
3854 void
3855 commit_masked_set_action(struct ofpbuf *odp_actions,
3856 enum ovs_key_attr key_type,
3857 const void *key_, const void *mask_, size_t key_size)
3858 {
3859 size_t offset = nl_msg_start_nested(odp_actions,
3860 OVS_ACTION_ATTR_SET_MASKED);
3861 char *data = nl_msg_put_unspec_uninit(odp_actions, key_type, key_size * 2);
3862 const char *key = key_, *mask = mask_;
3863
3864 memcpy(data + key_size, mask, key_size);
3865 /* Clear unmasked bits while copying. */
3866 while (key_size--) {
3867 *data++ = *key++ & *mask++;
3868 }
3869 nl_msg_end_nested(odp_actions, offset);
3870 }
3871
3872 /* If any of the flow key data that ODP actions can modify are different in
3873 * 'base->tunnel' and 'flow->tunnel', appends a set_tunnel ODP action to
3874 * 'odp_actions' that change the flow tunneling information in key from
3875 * 'base->tunnel' into 'flow->tunnel', and then changes 'base->tunnel' in the
3876 * same way. In other words, operates the same as commit_odp_actions(), but
3877 * only on tunneling information. */
3878 void
3879 commit_odp_tunnel_action(const struct flow *flow, struct flow *base,
3880 struct ofpbuf *odp_actions)
3881 {
3882 /* A valid IPV4_TUNNEL must have non-zero ip_dst. */
3883 if (flow->tunnel.ip_dst) {
3884 if (!memcmp(&base->tunnel, &flow->tunnel, sizeof base->tunnel)) {
3885 return;
3886 }
3887 memcpy(&base->tunnel, &flow->tunnel, sizeof base->tunnel);
3888 odp_put_tunnel_action(&base->tunnel, odp_actions);
3889 }
3890 }
3891
3892 static bool
3893 commit(enum ovs_key_attr attr, bool use_masked_set,
3894 const void *key, void *base, void *mask, size_t size,
3895 struct ofpbuf *odp_actions)
3896 {
3897 if (memcmp(key, base, size)) {
3898 bool fully_masked = odp_mask_is_exact(attr, mask, size);
3899
3900 if (use_masked_set && !fully_masked) {
3901 commit_masked_set_action(odp_actions, attr, key, mask, size);
3902 } else {
3903 if (!fully_masked) {
3904 memset(mask, 0xff, size);
3905 }
3906 commit_set_action(odp_actions, attr, key, size);
3907 }
3908 memcpy(base, key, size);
3909 return true;
3910 } else {
3911 /* Mask bits are set when we have either read or set the corresponding
3912 * values. Masked bits will be exact-matched, no need to set them
3913 * if the value did not actually change. */
3914 return false;
3915 }
3916 }
3917
3918 static void
3919 get_ethernet_key(const struct flow *flow, struct ovs_key_ethernet *eth)
3920 {
3921 memcpy(eth->eth_src, flow->dl_src, ETH_ADDR_LEN);
3922 memcpy(eth->eth_dst, flow->dl_dst, ETH_ADDR_LEN);
3923 }
3924
3925 static void
3926 put_ethernet_key(const struct ovs_key_ethernet *eth, struct flow *flow)
3927 {
3928 memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
3929 memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
3930 }
3931
3932 static void
3933 commit_set_ether_addr_action(const struct flow *flow, struct flow *base_flow,
3934 struct ofpbuf *odp_actions,
3935 struct flow_wildcards *wc,
3936 bool use_masked)
3937 {
3938 struct ovs_key_ethernet key, base, mask;
3939
3940 get_ethernet_key(flow, &key);
3941 get_ethernet_key(base_flow, &base);
3942 get_ethernet_key(&wc->masks, &mask);
3943
3944 if (commit(OVS_KEY_ATTR_ETHERNET, use_masked,
3945 &key, &base, &mask, sizeof key, odp_actions)) {
3946 put_ethernet_key(&base, base_flow);
3947 put_ethernet_key(&mask, &wc->masks);
3948 }
3949 }
3950
3951 static void
3952 pop_vlan(struct flow *base,
3953 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
3954 {
3955 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
3956
3957 if (base->vlan_tci & htons(VLAN_CFI)) {
3958 nl_msg_put_flag(odp_actions, OVS_ACTION_ATTR_POP_VLAN);
3959 base->vlan_tci = 0;
3960 }
3961 }
3962
3963 static void
3964 commit_vlan_action(ovs_be16 vlan_tci, struct flow *base,
3965 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
3966 {
3967 if (base->vlan_tci == vlan_tci) {
3968 return;
3969 }
3970
3971 pop_vlan(base, odp_actions, wc);
3972 if (vlan_tci & htons(VLAN_CFI)) {
3973 struct ovs_action_push_vlan vlan;
3974
3975 vlan.vlan_tpid = htons(ETH_TYPE_VLAN);
3976 vlan.vlan_tci = vlan_tci;
3977 nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_PUSH_VLAN,
3978 &vlan, sizeof vlan);
3979 }
3980 base->vlan_tci = vlan_tci;
3981 }
3982
3983 /* Wildcarding already done at action translation time. */
3984 static void
3985 commit_mpls_action(const struct flow *flow, struct flow *base,
3986 struct ofpbuf *odp_actions)
3987 {
3988 int base_n = flow_count_mpls_labels(base, NULL);
3989 int flow_n = flow_count_mpls_labels(flow, NULL);
3990 int common_n = flow_count_common_mpls_labels(flow, flow_n, base, base_n,
3991 NULL);
3992
3993 while (base_n > common_n) {
3994 if (base_n - 1 == common_n && flow_n > common_n) {
3995 /* If there is only one more LSE in base than there are common
3996 * between base and flow; and flow has at least one more LSE than
3997 * is common then the topmost LSE of base may be updated using
3998 * set */
3999 struct ovs_key_mpls mpls_key;
4000
4001 mpls_key.mpls_lse = flow->mpls_lse[flow_n - base_n];
4002 commit_set_action(odp_actions, OVS_KEY_ATTR_MPLS,
4003 &mpls_key, sizeof mpls_key);
4004 flow_set_mpls_lse(base, 0, mpls_key.mpls_lse);
4005 common_n++;
4006 } else {
4007 /* Otherwise, if there more LSEs in base than are common between
4008 * base and flow then pop the topmost one. */
4009 ovs_be16 dl_type;
4010 bool popped;
4011
4012 /* If all the LSEs are to be popped and this is not the outermost
4013 * LSE then use ETH_TYPE_MPLS as the ethertype parameter of the
4014 * POP_MPLS action instead of flow->dl_type.
4015 *
4016 * This is because the POP_MPLS action requires its ethertype
4017 * argument to be an MPLS ethernet type but in this case
4018 * flow->dl_type will be a non-MPLS ethernet type.
4019 *
4020 * When the final POP_MPLS action occurs it use flow->dl_type and
4021 * the and the resulting packet will have the desired dl_type. */
4022 if ((!eth_type_mpls(flow->dl_type)) && base_n > 1) {
4023 dl_type = htons(ETH_TYPE_MPLS);
4024 } else {
4025 dl_type = flow->dl_type;
4026 }
4027 nl_msg_put_be16(odp_actions, OVS_ACTION_ATTR_POP_MPLS, dl_type);
4028 popped = flow_pop_mpls(base, base_n, flow->dl_type, NULL);
4029 ovs_assert(popped);
4030 base_n--;
4031 }
4032 }
4033
4034 /* If, after the above popping and setting, there are more LSEs in flow
4035 * than base then some LSEs need to be pushed. */
4036 while (base_n < flow_n) {
4037 struct ovs_action_push_mpls *mpls;
4038
4039 mpls = nl_msg_put_unspec_zero(odp_actions,
4040 OVS_ACTION_ATTR_PUSH_MPLS,
4041 sizeof *mpls);
4042 mpls->mpls_ethertype = flow->dl_type;
4043 mpls->mpls_lse = flow->mpls_lse[flow_n - base_n - 1];
4044 flow_push_mpls(base, base_n, mpls->mpls_ethertype, NULL);
4045 flow_set_mpls_lse(base, 0, mpls->mpls_lse);
4046 base_n++;
4047 }
4048 }
4049
4050 static void
4051 get_ipv4_key(const struct flow *flow, struct ovs_key_ipv4 *ipv4, bool is_mask)
4052 {
4053 ipv4->ipv4_src = flow->nw_src;
4054 ipv4->ipv4_dst = flow->nw_dst;
4055 ipv4->ipv4_proto = flow->nw_proto;
4056 ipv4->ipv4_tos = flow->nw_tos;
4057 ipv4->ipv4_ttl = flow->nw_ttl;
4058 ipv4->ipv4_frag = ovs_to_odp_frag(flow->nw_frag, is_mask);
4059 }
4060
4061 static void
4062 put_ipv4_key(const struct ovs_key_ipv4 *ipv4, struct flow *flow, bool is_mask)
4063 {
4064 flow->nw_src = ipv4->ipv4_src;
4065 flow->nw_dst = ipv4->ipv4_dst;
4066 flow->nw_proto = ipv4->ipv4_proto;
4067 flow->nw_tos = ipv4->ipv4_tos;
4068 flow->nw_ttl = ipv4->ipv4_ttl;
4069 flow->nw_frag = odp_to_ovs_frag(ipv4->ipv4_frag, is_mask);
4070 }
4071
4072 static void
4073 commit_set_ipv4_action(const struct flow *flow, struct flow *base_flow,
4074 struct ofpbuf *odp_actions, struct flow_wildcards *wc,
4075 bool use_masked)
4076 {
4077 struct ovs_key_ipv4 key, mask, base;
4078
4079 /* Check that nw_proto and nw_frag remain unchanged. */
4080 ovs_assert(flow->nw_proto == base_flow->nw_proto &&
4081 flow->nw_frag == base_flow->nw_frag);
4082
4083 get_ipv4_key(flow, &key, false);
4084 get_ipv4_key(base_flow, &base, false);
4085 get_ipv4_key(&wc->masks, &mask, true);
4086 mask.ipv4_proto = 0; /* Not writeable. */
4087 mask.ipv4_frag = 0; /* Not writable. */
4088
4089 if (commit(OVS_KEY_ATTR_IPV4, use_masked, &key, &base, &mask, sizeof key,
4090 odp_actions)) {
4091 put_ipv4_key(&base, base_flow, false);
4092 if (mask.ipv4_proto != 0) { /* Mask was changed by commit(). */
4093 put_ipv4_key(&mask, &wc->masks, true);
4094 }
4095 }
4096 }
4097
4098 static void
4099 get_ipv6_key(const struct flow *flow, struct ovs_key_ipv6 *ipv6, bool is_mask)
4100 {
4101 memcpy(ipv6->ipv6_src, &flow->ipv6_src, sizeof ipv6->ipv6_src);
4102 memcpy(ipv6->ipv6_dst, &flow->ipv6_dst, sizeof ipv6->ipv6_dst);
4103 ipv6->ipv6_label = flow->ipv6_label;
4104 ipv6->ipv6_proto = flow->nw_proto;
4105 ipv6->ipv6_tclass = flow->nw_tos;
4106 ipv6->ipv6_hlimit = flow->nw_ttl;
4107 ipv6->ipv6_frag = ovs_to_odp_frag(flow->nw_frag, is_mask);
4108 }
4109
4110 static void
4111 put_ipv6_key(const struct ovs_key_ipv6 *ipv6, struct flow *flow, bool is_mask)
4112 {
4113 memcpy(&flow->ipv6_src, ipv6->ipv6_src, sizeof flow->ipv6_src);
4114 memcpy(&flow->ipv6_dst, ipv6->ipv6_dst, sizeof flow->ipv6_dst);
4115 flow->ipv6_label = ipv6->ipv6_label;
4116 flow->nw_proto = ipv6->ipv6_proto;
4117 flow->nw_tos = ipv6->ipv6_tclass;
4118 flow->nw_ttl = ipv6->ipv6_hlimit;
4119 flow->nw_frag = odp_to_ovs_frag(ipv6->ipv6_frag, is_mask);
4120 }
4121
4122 static void
4123 commit_set_ipv6_action(const struct flow *flow, struct flow *base_flow,
4124 struct ofpbuf *odp_actions, struct flow_wildcards *wc,
4125 bool use_masked)
4126 {
4127 struct ovs_key_ipv6 key, mask, base;
4128
4129 /* Check that nw_proto and nw_frag remain unchanged. */
4130 ovs_assert(flow->nw_proto == base_flow->nw_proto &&
4131 flow->nw_frag == base_flow->nw_frag);
4132
4133 get_ipv6_key(flow, &key, false);
4134 get_ipv6_key(base_flow, &base, false);
4135 get_ipv6_key(&wc->masks, &mask, true);
4136 mask.ipv6_proto = 0; /* Not writeable. */
4137 mask.ipv6_frag = 0; /* Not writable. */
4138
4139 if (commit(OVS_KEY_ATTR_IPV6, use_masked, &key, &base, &mask, sizeof key,
4140 odp_actions)) {
4141 put_ipv6_key(&base, base_flow, false);
4142 if (mask.ipv6_proto != 0) { /* Mask was changed by commit(). */
4143 put_ipv6_key(&mask, &wc->masks, true);
4144 }
4145 }
4146 }
4147
4148 static void
4149 get_arp_key(const struct flow *flow, struct ovs_key_arp *arp)
4150 {
4151 /* ARP key has padding, clear it. */
4152 memset(arp, 0, sizeof *arp);
4153
4154 arp->arp_sip = flow->nw_src;
4155 arp->arp_tip = flow->nw_dst;
4156 arp->arp_op = htons(flow->nw_proto);
4157 memcpy(arp->arp_sha, flow->arp_sha, ETH_ADDR_LEN);
4158 memcpy(arp->arp_tha, flow->arp_tha, ETH_ADDR_LEN);
4159 }
4160
4161 static void
4162 put_arp_key(const struct ovs_key_arp *arp, struct flow *flow)
4163 {
4164 flow->nw_src = arp->arp_sip;
4165 flow->nw_dst = arp->arp_tip;
4166 flow->nw_proto = ntohs(arp->arp_op);
4167 memcpy(flow->arp_sha, arp->arp_sha, ETH_ADDR_LEN);
4168 memcpy(flow->arp_tha, arp->arp_tha, ETH_ADDR_LEN);
4169 }
4170
4171 static enum slow_path_reason
4172 commit_set_arp_action(const struct flow *flow, struct flow *base_flow,
4173 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
4174 {
4175 struct ovs_key_arp key, mask, base;
4176
4177 get_arp_key(flow, &key);
4178 get_arp_key(base_flow, &base);
4179 get_arp_key(&wc->masks, &mask);
4180
4181 if (commit(OVS_KEY_ATTR_ARP, true, &key, &base, &mask, sizeof key,
4182 odp_actions)) {
4183 put_arp_key(&base, base_flow);
4184 put_arp_key(&mask, &wc->masks);
4185 return SLOW_ACTION;
4186 }
4187 return 0;
4188 }
4189
4190 static enum slow_path_reason
4191 commit_set_nw_action(const struct flow *flow, struct flow *base,
4192 struct ofpbuf *odp_actions, struct flow_wildcards *wc,
4193 bool use_masked)
4194 {
4195 /* Check if 'flow' really has an L3 header. */
4196 if (!flow->nw_proto) {
4197 return 0;
4198 }
4199
4200 switch (ntohs(base->dl_type)) {
4201 case ETH_TYPE_IP:
4202 commit_set_ipv4_action(flow, base, odp_actions, wc, use_masked);
4203 break;
4204
4205 case ETH_TYPE_IPV6:
4206 commit_set_ipv6_action(flow, base, odp_actions, wc, use_masked);
4207 break;
4208
4209 case ETH_TYPE_ARP:
4210 return commit_set_arp_action(flow, base, odp_actions, wc);
4211 }
4212
4213 return 0;
4214 }
4215
4216 /* TCP, UDP, and SCTP keys have the same layout. */
4217 BUILD_ASSERT_DECL(sizeof(struct ovs_key_tcp) == sizeof(struct ovs_key_udp) &&
4218 sizeof(struct ovs_key_tcp) == sizeof(struct ovs_key_sctp));
4219
4220 static void
4221 get_tp_key(const struct flow *flow, union ovs_key_tp *tp)
4222 {
4223 tp->tcp.tcp_src = flow->tp_src;
4224 tp->tcp.tcp_dst = flow->tp_dst;
4225 }
4226
4227 static void
4228 put_tp_key(const union ovs_key_tp *tp, struct flow *flow)
4229 {
4230 flow->tp_src = tp->tcp.tcp_src;
4231 flow->tp_dst = tp->tcp.tcp_dst;
4232 }
4233
4234 static void
4235 commit_set_port_action(const struct flow *flow, struct flow *base_flow,
4236 struct ofpbuf *odp_actions, struct flow_wildcards *wc,
4237 bool use_masked)
4238 {
4239 enum ovs_key_attr key_type;
4240 union ovs_key_tp key, mask, base;
4241
4242 /* Check if 'flow' really has an L3 header. */
4243 if (!flow->nw_proto) {
4244 return;
4245 }
4246
4247 if (!is_ip_any(base_flow)) {
4248 return;
4249 }
4250
4251 if (flow->nw_proto == IPPROTO_TCP) {
4252 key_type = OVS_KEY_ATTR_TCP;
4253 } else if (flow->nw_proto == IPPROTO_UDP) {
4254 key_type = OVS_KEY_ATTR_UDP;
4255 } else if (flow->nw_proto == IPPROTO_SCTP) {
4256 key_type = OVS_KEY_ATTR_SCTP;
4257 } else {
4258 return;
4259 }
4260
4261 get_tp_key(flow, &key);
4262 get_tp_key(base_flow, &base);
4263 get_tp_key(&wc->masks, &mask);
4264
4265 if (commit(key_type, use_masked, &key, &base, &mask, sizeof key,
4266 odp_actions)) {
4267 put_tp_key(&base, base_flow);
4268 put_tp_key(&mask, &wc->masks);
4269 }
4270 }
4271
4272 static void
4273 commit_set_priority_action(const struct flow *flow, struct flow *base_flow,
4274 struct ofpbuf *odp_actions,
4275 struct flow_wildcards *wc,
4276 bool use_masked)
4277 {
4278 uint32_t key, mask, base;
4279
4280 key = flow->skb_priority;
4281 base = base_flow->skb_priority;
4282 mask = wc->masks.skb_priority;
4283
4284 if (commit(OVS_KEY_ATTR_PRIORITY, use_masked, &key, &base, &mask,
4285 sizeof key, odp_actions)) {
4286 base_flow->skb_priority = base;
4287 wc->masks.skb_priority = mask;
4288 }
4289 }
4290
4291 static void
4292 commit_set_pkt_mark_action(const struct flow *flow, struct flow *base_flow,
4293 struct ofpbuf *odp_actions,
4294 struct flow_wildcards *wc,
4295 bool use_masked)
4296 {
4297 uint32_t key, mask, base;
4298
4299 key = flow->pkt_mark;
4300 base = base_flow->pkt_mark;
4301 mask = wc->masks.pkt_mark;
4302
4303 if (commit(OVS_KEY_ATTR_SKB_MARK, use_masked, &key, &base, &mask,
4304 sizeof key, odp_actions)) {
4305 base_flow->pkt_mark = base;
4306 wc->masks.pkt_mark = mask;
4307 }
4308 }
4309
4310 /* If any of the flow key data that ODP actions can modify are different in
4311 * 'base' and 'flow', appends ODP actions to 'odp_actions' that change the flow
4312 * key from 'base' into 'flow', and then changes 'base' the same way. Does not
4313 * commit set_tunnel actions. Users should call commit_odp_tunnel_action()
4314 * in addition to this function if needed. Sets fields in 'wc' that are
4315 * used as part of the action.
4316 *
4317 * Returns a reason to force processing the flow's packets into the userspace
4318 * slow path, if there is one, otherwise 0. */
4319 enum slow_path_reason
4320 commit_odp_actions(const struct flow *flow, struct flow *base,
4321 struct ofpbuf *odp_actions, struct flow_wildcards *wc,
4322 bool use_masked)
4323 {
4324 enum slow_path_reason slow;
4325
4326 commit_set_ether_addr_action(flow, base, odp_actions, wc, use_masked);
4327 slow = commit_set_nw_action(flow, base, odp_actions, wc, use_masked);
4328 commit_set_port_action(flow, base, odp_actions, wc, use_masked);
4329 commit_mpls_action(flow, base, odp_actions);
4330 commit_vlan_action(flow->vlan_tci, base, odp_actions, wc);
4331 commit_set_priority_action(flow, base, odp_actions, wc, use_masked);
4332 commit_set_pkt_mark_action(flow, base, odp_actions, wc, use_masked);
4333
4334 return slow;
4335 }