]> git.proxmox.com Git - mirror_frr.git/blob - lib/openbsd-queue.h
Merge pull request #12795 from pguibert6WIND/vpnv6_nexthop_encoding
[mirror_frr.git] / lib / openbsd-queue.h
1 // SPDX-License-Identifier: BSD-3-Clause
2 /* $OpenBSD: queue.h,v 1.43 2015/12/28 19:38:40 millert Exp $ */
3 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
4
5 /*
6 * Copyright (c) 1991, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * @(#)queue.h 8.5 (Berkeley) 8/20/94
10 */
11
12 #ifndef _SYS_QUEUE_H_
13 #define _SYS_QUEUE_H_
14
15 #ifdef __cplusplus
16 extern "C" {
17 #endif
18
19 /*
20 * This file defines five types of data structures: singly-linked lists,
21 * lists, simple queues, tail queues and XOR simple queues.
22 *
23 *
24 * A singly-linked list is headed by a single forward pointer. The elements
25 * are singly linked for minimum space and pointer manipulation overhead at
26 * the expense of O(n) removal for arbitrary elements. New elements can be
27 * added to the list after an existing element or at the head of the list.
28 * Elements being removed from the head of the list should use the explicit
29 * macro for this purpose for optimum efficiency. A singly-linked list may
30 * only be traversed in the forward direction. Singly-linked lists are ideal
31 * for applications with large datasets and few or no removals or for
32 * implementing a LIFO queue.
33 *
34 * A list is headed by a single forward pointer (or an array of forward
35 * pointers for a hash table header). The elements are doubly linked
36 * so that an arbitrary element can be removed without a need to
37 * traverse the list. New elements can be added to the list before
38 * or after an existing element or at the head of the list. A list
39 * may only be traversed in the forward direction.
40 *
41 * A simple queue is headed by a pair of pointers, one to the head of the
42 * list and the other to the tail of the list. The elements are singly
43 * linked to save space, so elements can only be removed from the
44 * head of the list. New elements can be added to the list before or after
45 * an existing element, at the head of the list, or at the end of the
46 * list. A simple queue may only be traversed in the forward direction.
47 *
48 * A tail queue is headed by a pair of pointers, one to the head of the
49 * list and the other to the tail of the list. The elements are doubly
50 * linked so that an arbitrary element can be removed without a need to
51 * traverse the list. New elements can be added to the list before or
52 * after an existing element, at the head of the list, or at the end of
53 * the list. A tail queue may be traversed in either direction.
54 *
55 * An XOR simple queue is used in the same way as a regular simple queue.
56 * The difference is that the head structure also includes a "cookie" that
57 * is XOR'd with the queue pointer (first, last or next) to generate the
58 * real pointer value.
59 *
60 * For details on the use of these macros, see the queue(3) manual page.
61 */
62
63 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
64 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
65 #else
66 #define _Q_INVALIDATE(a)
67 #endif
68
69 /*
70 * Singly-linked List definitions.
71 */
72 #define SLIST_HEAD(name, type) \
73 struct name { \
74 struct type *slh_first; /* first element */ \
75 }
76
77 #define SLIST_HEAD_INITIALIZER(head) \
78 { \
79 NULL \
80 }
81
82 #define SLIST_ENTRY(type) \
83 struct { \
84 struct type *sle_next; /* next element */ \
85 }
86
87 /*
88 * Singly-linked List access methods.
89 */
90 #define SLIST_FIRST(head) ((head)->slh_first)
91 #define SLIST_END(head) NULL
92 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
93 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
94
95 #define SLIST_FOREACH(var, head, field) \
96 for ((var) = SLIST_FIRST(head); (var) != SLIST_END(head); \
97 (var) = SLIST_NEXT(var, field))
98
99 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
100 for ((var) = SLIST_FIRST(head); \
101 (var) && ((tvar) = SLIST_NEXT(var, field), 1); (var) = (tvar))
102
103 /*
104 * Singly-linked List functions.
105 */
106 #define SLIST_INIT(head) \
107 { \
108 SLIST_FIRST(head) = SLIST_END(head); \
109 }
110
111 #define SLIST_INSERT_AFTER(slistelm, elm, field) \
112 do { \
113 (elm)->field.sle_next = (slistelm)->field.sle_next; \
114 (slistelm)->field.sle_next = (elm); \
115 } while (0)
116
117 #define SLIST_INSERT_HEAD(head, elm, field) \
118 do { \
119 (elm)->field.sle_next = (head)->slh_first; \
120 (head)->slh_first = (elm); \
121 } while (0)
122
123 #define SLIST_REMOVE_AFTER(elm, field) \
124 do { \
125 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
126 } while (0)
127
128 #define SLIST_REMOVE_HEAD(head, field) \
129 do { \
130 (head)->slh_first = (head)->slh_first->field.sle_next; \
131 } while (0)
132
133 #define SLIST_REMOVE(head, elm, type, field) \
134 do { \
135 if ((head)->slh_first == (elm)) { \
136 SLIST_REMOVE_HEAD((head), field); \
137 } else { \
138 struct type *curelm = (head)->slh_first; \
139 \
140 while (curelm->field.sle_next != (elm)) \
141 curelm = curelm->field.sle_next; \
142 curelm->field.sle_next = \
143 curelm->field.sle_next->field.sle_next; \
144 } \
145 _Q_INVALIDATE((elm)->field.sle_next); \
146 } while (0)
147
148 /*
149 * List definitions.
150 */
151 #define LIST_HEAD(name, type) \
152 struct name { \
153 struct type *lh_first; /* first element */ \
154 }
155
156 #define LIST_HEAD_INITIALIZER(head) \
157 { \
158 NULL \
159 }
160
161 #define LIST_ENTRY(type) \
162 struct { \
163 struct type *le_next; /* next element */ \
164 struct type **le_prev; /* address of previous next element */ \
165 }
166
167 /*
168 * List access methods.
169 */
170 #define LIST_FIRST(head) ((head)->lh_first)
171 #define LIST_END(head) NULL
172 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
173 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
174
175 #define LIST_FOREACH(var, head, field) \
176 for ((var) = LIST_FIRST(head); (var) != LIST_END(head); \
177 (var) = LIST_NEXT(var, field))
178
179 #define LIST_FOREACH_SAFE(var, head, field, tvar) \
180 for ((var) = LIST_FIRST(head); \
181 (var) && ((tvar) = LIST_NEXT(var, field), 1); (var) = (tvar))
182
183 /*
184 * List functions.
185 */
186 #define LIST_INIT(head) \
187 do { \
188 LIST_FIRST(head) = LIST_END(head); \
189 } while (0)
190
191 #define LIST_INSERT_AFTER(listelm, elm, field) \
192 do { \
193 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
194 (listelm)->field.le_next->field.le_prev = \
195 &(elm)->field.le_next; \
196 (listelm)->field.le_next = (elm); \
197 (elm)->field.le_prev = &(listelm)->field.le_next; \
198 } while (0)
199
200 #define LIST_INSERT_BEFORE(listelm, elm, field) \
201 do { \
202 (elm)->field.le_prev = (listelm)->field.le_prev; \
203 (elm)->field.le_next = (listelm); \
204 *(listelm)->field.le_prev = (elm); \
205 (listelm)->field.le_prev = &(elm)->field.le_next; \
206 } while (0)
207
208 #define LIST_INSERT_HEAD(head, elm, field) \
209 do { \
210 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
211 (head)->lh_first->field.le_prev = \
212 &(elm)->field.le_next; \
213 (head)->lh_first = (elm); \
214 (elm)->field.le_prev = &(head)->lh_first; \
215 } while (0)
216
217 #define LIST_REMOVE(elm, field) \
218 do { \
219 if ((elm)->field.le_next != NULL) \
220 (elm)->field.le_next->field.le_prev = \
221 (elm)->field.le_prev; \
222 *(elm)->field.le_prev = (elm)->field.le_next; \
223 _Q_INVALIDATE((elm)->field.le_prev); \
224 _Q_INVALIDATE((elm)->field.le_next); \
225 } while (0)
226
227 #define LIST_REPLACE(elm, elm2, field) \
228 do { \
229 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
230 (elm2)->field.le_next->field.le_prev = \
231 &(elm2)->field.le_next; \
232 (elm2)->field.le_prev = (elm)->field.le_prev; \
233 *(elm2)->field.le_prev = (elm2); \
234 _Q_INVALIDATE((elm)->field.le_prev); \
235 _Q_INVALIDATE((elm)->field.le_next); \
236 } while (0)
237
238 /*
239 * Simple queue definitions.
240 */
241 #define SIMPLEQ_HEAD(name, type) \
242 struct name { \
243 struct type *sqh_first; /* first element */ \
244 struct type **sqh_last; /* addr of last next element */ \
245 }
246
247 #define SIMPLEQ_HEAD_INITIALIZER(head) \
248 { \
249 NULL, &(head).sqh_first \
250 }
251
252 #define SIMPLEQ_ENTRY(type) \
253 struct { \
254 struct type *sqe_next; /* next element */ \
255 }
256
257 /*
258 * Simple queue access methods.
259 */
260 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
261 #define SIMPLEQ_END(head) NULL
262 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
263 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
264
265 #define SIMPLEQ_FOREACH(var, head, field) \
266 for ((var) = SIMPLEQ_FIRST(head); (var) != SIMPLEQ_END(head); \
267 (var) = SIMPLEQ_NEXT(var, field))
268
269 #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
270 for ((var) = SIMPLEQ_FIRST(head); \
271 (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); (var) = (tvar))
272
273 /*
274 * Simple queue functions.
275 */
276 #define SIMPLEQ_INIT(head) \
277 do { \
278 (head)->sqh_first = NULL; \
279 (head)->sqh_last = &(head)->sqh_first; \
280 } while (0)
281
282 #define SIMPLEQ_INSERT_HEAD(head, elm, field) \
283 do { \
284 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
285 (head)->sqh_last = &(elm)->field.sqe_next; \
286 (head)->sqh_first = (elm); \
287 } while (0)
288
289 #define SIMPLEQ_INSERT_TAIL(head, elm, field) \
290 do { \
291 (elm)->field.sqe_next = NULL; \
292 *(head)->sqh_last = (elm); \
293 (head)->sqh_last = &(elm)->field.sqe_next; \
294 } while (0)
295
296 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) \
297 do { \
298 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) \
299 == NULL) \
300 (head)->sqh_last = &(elm)->field.sqe_next; \
301 (listelm)->field.sqe_next = (elm); \
302 } while (0)
303
304 #define SIMPLEQ_REMOVE_HEAD(head, field) \
305 do { \
306 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) \
307 == NULL) \
308 (head)->sqh_last = &(head)->sqh_first; \
309 } while (0)
310
311 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) \
312 do { \
313 if (((elm)->field.sqe_next = \
314 (elm)->field.sqe_next->field.sqe_next) \
315 == NULL) \
316 (head)->sqh_last = &(elm)->field.sqe_next; \
317 } while (0)
318
319 #define SIMPLEQ_CONCAT(head1, head2) \
320 do { \
321 if (!SIMPLEQ_EMPTY((head2))) { \
322 *(head1)->sqh_last = (head2)->sqh_first; \
323 (head1)->sqh_last = (head2)->sqh_last; \
324 SIMPLEQ_INIT((head2)); \
325 } \
326 } while (0)
327
328 /*
329 * XOR Simple queue definitions.
330 */
331 #define XSIMPLEQ_HEAD(name, type) \
332 struct name { \
333 struct type *sqx_first; /* first element */ \
334 struct type **sqx_last; /* addr of last next element */ \
335 unsigned long sqx_cookie; \
336 }
337
338 #define XSIMPLEQ_ENTRY(type) \
339 struct { \
340 struct type *sqx_next; /* next element */ \
341 }
342
343 /*
344 * XOR Simple queue access methods.
345 */
346 #define XSIMPLEQ_XOR(head, ptr) \
347 ((__typeof(ptr))((head)->sqx_cookie ^ (unsigned long)(ptr)))
348 #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
349 #define XSIMPLEQ_END(head) NULL
350 #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
351 #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
352
353 #define XSIMPLEQ_FOREACH(var, head, field) \
354 for ((var) = XSIMPLEQ_FIRST(head); (var) != XSIMPLEQ_END(head); \
355 (var) = XSIMPLEQ_NEXT(head, var, field))
356
357 #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
358 for ((var) = XSIMPLEQ_FIRST(head); \
359 (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
360 (var) = (tvar))
361
362 /*
363 * XOR Simple queue functions.
364 */
365 #define XSIMPLEQ_INIT(head) \
366 do { \
367 arc4random_buf(&(head)->sqx_cookie, \
368 sizeof((head)->sqx_cookie)); \
369 (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
370 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
371 } while (0)
372
373 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) \
374 do { \
375 if (((elm)->field.sqx_next = (head)->sqx_first) \
376 == XSIMPLEQ_XOR(head, NULL)) \
377 (head)->sqx_last = \
378 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
379 (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
380 } while (0)
381
382 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) \
383 do { \
384 (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
385 *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = \
386 XSIMPLEQ_XOR(head, (elm)); \
387 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
388 } while (0)
389
390 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) \
391 do { \
392 if (((elm)->field.sqx_next = (listelm)->field.sqx_next) \
393 == XSIMPLEQ_XOR(head, NULL)) \
394 (head)->sqx_last = \
395 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
396 (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
397 } while (0)
398
399 #define XSIMPLEQ_REMOVE_HEAD(head, field) \
400 do { \
401 if (((head)->sqx_first = XSIMPLEQ_XOR(head, (head)->sqx_first) \
402 ->field.sqx_next) \
403 == XSIMPLEQ_XOR(head, NULL)) \
404 (head)->sqx_last = \
405 XSIMPLEQ_XOR(head, &(head)->sqx_first); \
406 } while (0)
407
408 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) \
409 do { \
410 if (((elm)->field.sqx_next = \
411 XSIMPLEQ_XOR(head, (elm)->field.sqx_next) \
412 ->field.sqx_next) \
413 == XSIMPLEQ_XOR(head, NULL)) \
414 (head)->sqx_last = \
415 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
416 } while (0)
417
418
419 /*
420 * Tail queue definitions.
421 */
422 #define TAILQ_HEAD(name, type) \
423 struct name { \
424 struct type *tqh_first; /* first element */ \
425 struct type **tqh_last; /* addr of last next element */ \
426 }
427
428 #define TAILQ_HEAD_INITIALIZER(head) \
429 { \
430 NULL, &(head).tqh_first \
431 }
432
433 #define TAILQ_ENTRY(type) \
434 struct { \
435 struct type *tqe_next; /* next element */ \
436 struct type **tqe_prev; /* address of previous next element */ \
437 }
438
439 /*
440 * Tail queue access methods.
441 */
442 #define TAILQ_FIRST(head) ((head)->tqh_first)
443 #define TAILQ_END(head) NULL
444 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
445 #define TAILQ_LAST(head, headname) \
446 (*(((struct headname *)((head)->tqh_last))->tqh_last))
447 /* XXX */
448 #define TAILQ_PREV(elm, headname, field) \
449 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
450 #define TAILQ_EMPTY(head) (TAILQ_FIRST(head) == TAILQ_END(head))
451
452 #define TAILQ_FOREACH(var, head, field) \
453 for ((var) = TAILQ_FIRST(head); (var) != TAILQ_END(head); \
454 (var) = TAILQ_NEXT(var, field))
455
456 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
457 for ((var) = TAILQ_FIRST(head); \
458 (var) != TAILQ_END(head) && ((tvar) = TAILQ_NEXT(var, field), 1); \
459 (var) = (tvar))
460
461
462 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
463 for ((var) = TAILQ_LAST(head, headname); (var) != TAILQ_END(head); \
464 (var) = TAILQ_PREV(var, headname, field))
465
466 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
467 for ((var) = TAILQ_LAST(head, headname); \
468 (var) != TAILQ_END(head) \
469 && ((tvar) = TAILQ_PREV(var, headname, field), 1); \
470 (var) = (tvar))
471
472 /*
473 * Tail queue functions.
474 */
475 #define TAILQ_INIT(head) \
476 do { \
477 (head)->tqh_first = NULL; \
478 (head)->tqh_last = &(head)->tqh_first; \
479 } while (0)
480
481 #define TAILQ_INSERT_HEAD(head, elm, field) \
482 do { \
483 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
484 (head)->tqh_first->field.tqe_prev = \
485 &(elm)->field.tqe_next; \
486 else \
487 (head)->tqh_last = &(elm)->field.tqe_next; \
488 (head)->tqh_first = (elm); \
489 (elm)->field.tqe_prev = &(head)->tqh_first; \
490 } while (0)
491
492 #define TAILQ_INSERT_TAIL(head, elm, field) \
493 do { \
494 (elm)->field.tqe_next = NULL; \
495 (elm)->field.tqe_prev = (head)->tqh_last; \
496 *(head)->tqh_last = (elm); \
497 (head)->tqh_last = &(elm)->field.tqe_next; \
498 } while (0)
499
500 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) \
501 do { \
502 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) \
503 != NULL) \
504 (elm)->field.tqe_next->field.tqe_prev = \
505 &(elm)->field.tqe_next; \
506 else \
507 (head)->tqh_last = &(elm)->field.tqe_next; \
508 (listelm)->field.tqe_next = (elm); \
509 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
510 } while (0)
511
512 #define TAILQ_INSERT_BEFORE(listelm, elm, field) \
513 do { \
514 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
515 (elm)->field.tqe_next = (listelm); \
516 *(listelm)->field.tqe_prev = (elm); \
517 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
518 } while (0)
519
520 #define TAILQ_REMOVE(head, elm, field) \
521 do { \
522 if (((elm)->field.tqe_next) != NULL) \
523 (elm)->field.tqe_next->field.tqe_prev = \
524 (elm)->field.tqe_prev; \
525 else \
526 (head)->tqh_last = (elm)->field.tqe_prev; \
527 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
528 _Q_INVALIDATE((elm)->field.tqe_prev); \
529 _Q_INVALIDATE((elm)->field.tqe_next); \
530 } while (0)
531
532 #define TAILQ_REPLACE(head, elm, elm2, field) \
533 do { \
534 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
535 (elm2)->field.tqe_next->field.tqe_prev = \
536 &(elm2)->field.tqe_next; \
537 else \
538 (head)->tqh_last = &(elm2)->field.tqe_next; \
539 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
540 *(elm2)->field.tqe_prev = (elm2); \
541 _Q_INVALIDATE((elm)->field.tqe_prev); \
542 _Q_INVALIDATE((elm)->field.tqe_next); \
543 } while (0)
544
545 #define TAILQ_CONCAT(head1, head2, field) \
546 do { \
547 if (!TAILQ_EMPTY(head2)) { \
548 *(head1)->tqh_last = (head2)->tqh_first; \
549 (head2)->tqh_first->field.tqe_prev = \
550 (head1)->tqh_last; \
551 (head1)->tqh_last = (head2)->tqh_last; \
552 TAILQ_INIT((head2)); \
553 } \
554 } while (0)
555
556 #ifdef __cplusplus
557 }
558 #endif
559
560 #endif /* !_SYS_QUEUE_H_ */