]> git.proxmox.com Git - mirror_ovs.git/blob - lib/ovs-thread.c
netdev-offload-tc: Use single 'once' variable for probing tc features
[mirror_ovs.git] / lib / ovs-thread.c
1 /*
2 * Copyright (c) 2013, 2014, 2015, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ovs-thread.h"
19 #include <errno.h>
20 #include <poll.h>
21 #ifndef _WIN32
22 #include <signal.h>
23 #endif
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include "compiler.h"
27 #include "fatal-signal.h"
28 #include "hash.h"
29 #include "openvswitch/list.h"
30 #include "ovs-rcu.h"
31 #include "openvswitch/poll-loop.h"
32 #include "seq.h"
33 #include "socket-util.h"
34 #include "util.h"
35
36 #ifdef __CHECKER__
37 /* Omit the definitions in this file because they are somewhat difficult to
38 * write without prompting "sparse" complaints, without ugliness or
39 * cut-and-paste. Since "sparse" is just a checker, not a compiler, it
40 * doesn't matter that we don't define them. */
41 #else
42 #include "openvswitch/vlog.h"
43
44 VLOG_DEFINE_THIS_MODULE(ovs_thread);
45
46 /* If there is a reason that we cannot fork anymore (unless the fork will be
47 * immediately followed by an exec), then this points to a string that
48 * explains why. */
49 static const char *must_not_fork;
50
51 /* True if we created any threads beyond the main initial thread. */
52 static bool multithreaded;
53
54 #define LOCK_FUNCTION(TYPE, FUN) \
55 void \
56 ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
57 const char *where) \
58 OVS_NO_THREAD_SAFETY_ANALYSIS \
59 { \
60 struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
61 int error; \
62 \
63 /* Verify that 'l' was initialized. */ \
64 if (OVS_UNLIKELY(!l->where)) { \
65 ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
66 where, __func__); \
67 } \
68 \
69 error = pthread_##TYPE##_##FUN(&l->lock); \
70 if (OVS_UNLIKELY(error)) { \
71 ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
72 } \
73 l->where = where; \
74 }
75 LOCK_FUNCTION(mutex, lock);
76 LOCK_FUNCTION(rwlock, rdlock);
77 LOCK_FUNCTION(rwlock, wrlock);
78 #ifdef HAVE_PTHREAD_SPIN_LOCK
79 LOCK_FUNCTION(spin, lock);
80 #endif
81
82 #define TRY_LOCK_FUNCTION(TYPE, FUN) \
83 int \
84 ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
85 const char *where) \
86 OVS_NO_THREAD_SAFETY_ANALYSIS \
87 { \
88 struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
89 int error; \
90 \
91 /* Verify that 'l' was initialized. */ \
92 if (OVS_UNLIKELY(!l->where)) { \
93 ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
94 where, __func__); \
95 } \
96 \
97 error = pthread_##TYPE##_##FUN(&l->lock); \
98 if (OVS_UNLIKELY(error) && error != EBUSY) { \
99 ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
100 } \
101 if (!error) { \
102 l->where = where; \
103 } \
104 return error; \
105 }
106 TRY_LOCK_FUNCTION(mutex, trylock);
107 TRY_LOCK_FUNCTION(rwlock, tryrdlock);
108 TRY_LOCK_FUNCTION(rwlock, trywrlock);
109 #ifdef HAVE_PTHREAD_SPIN_LOCK
110 TRY_LOCK_FUNCTION(spin, trylock);
111 #endif
112
113 #define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \
114 void \
115 ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \
116 OVS_NO_THREAD_SAFETY_ANALYSIS \
117 { \
118 struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
119 int error; \
120 \
121 /* Verify that 'l' was initialized. */ \
122 ovs_assert(l->where); \
123 \
124 l->where = WHERE; \
125 error = pthread_##TYPE##_##FUN(&l->lock); \
126 if (OVS_UNLIKELY(error)) { \
127 ovs_abort(error, "pthread_%s_%s failed", #TYPE, #FUN); \
128 } \
129 }
130 UNLOCK_FUNCTION(mutex, unlock, "<unlocked>");
131 UNLOCK_FUNCTION(mutex, destroy, NULL);
132 UNLOCK_FUNCTION(rwlock, unlock, "<unlocked>");
133 UNLOCK_FUNCTION(rwlock, destroy, NULL);
134 #ifdef HAVE_PTHREAD_SPIN_LOCK
135 UNLOCK_FUNCTION(spin, unlock, "<unlocked>");
136 UNLOCK_FUNCTION(spin, destroy, NULL);
137 #endif
138
139 #define XPTHREAD_FUNC1(FUNCTION, PARAM1) \
140 void \
141 x##FUNCTION(PARAM1 arg1) \
142 { \
143 int error = FUNCTION(arg1); \
144 if (OVS_UNLIKELY(error)) { \
145 ovs_abort(error, "%s failed", #FUNCTION); \
146 } \
147 }
148 #define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2) \
149 void \
150 x##FUNCTION(PARAM1 arg1, PARAM2 arg2) \
151 { \
152 int error = FUNCTION(arg1, arg2); \
153 if (OVS_UNLIKELY(error)) { \
154 ovs_abort(error, "%s failed", #FUNCTION); \
155 } \
156 }
157 #define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\
158 void \
159 x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3) \
160 { \
161 int error = FUNCTION(arg1, arg2, arg3); \
162 if (OVS_UNLIKELY(error)) { \
163 ovs_abort(error, "%s failed", #FUNCTION); \
164 } \
165 }
166
167 XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *);
168 XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *);
169 XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int);
170 XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *);
171
172 XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *);
173 XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *);
174 #ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
175 XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int);
176 #endif
177
178 XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *);
179 XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *);
180 XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *);
181 XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *);
182
183 XPTHREAD_FUNC2(pthread_join, pthread_t, void **);
184
185 typedef void destructor_func(void *);
186 XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *);
187 XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t);
188 XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *);
189
190 #ifndef _WIN32
191 XPTHREAD_FUNC3(pthread_sigmask, int, const sigset_t *, sigset_t *);
192 #endif
193
194 static void
195 ovs_mutex_init__(const struct ovs_mutex *l_, int type)
196 {
197 struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_);
198 pthread_mutexattr_t attr;
199 int error;
200
201 l->where = "<unlocked>";
202 xpthread_mutexattr_init(&attr);
203 xpthread_mutexattr_settype(&attr, type);
204 error = pthread_mutex_init(&l->lock, &attr);
205 if (OVS_UNLIKELY(error)) {
206 ovs_abort(error, "pthread_mutex_init failed");
207 }
208 xpthread_mutexattr_destroy(&attr);
209 }
210
211 /* Initializes 'mutex' as a normal (non-recursive) mutex. */
212 void
213 ovs_mutex_init(const struct ovs_mutex *mutex)
214 {
215 ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK);
216 }
217
218 /* Initializes 'mutex' as a recursive mutex. */
219 void
220 ovs_mutex_init_recursive(const struct ovs_mutex *mutex)
221 {
222 ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE);
223 }
224
225 /* Initializes 'mutex' as a recursive mutex. */
226 void
227 ovs_mutex_init_adaptive(const struct ovs_mutex *mutex)
228 {
229 #ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
230 ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP);
231 #else
232 ovs_mutex_init(mutex);
233 #endif
234 }
235
236 void
237 ovs_rwlock_init(const struct ovs_rwlock *l_)
238 {
239 struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_);
240 int error;
241
242 l->where = "<unlocked>";
243
244 #ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
245 pthread_rwlockattr_t attr;
246 xpthread_rwlockattr_init(&attr);
247 xpthread_rwlockattr_setkind_np(
248 &attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
249 error = pthread_rwlock_init(&l->lock, &attr);
250 xpthread_rwlockattr_destroy(&attr);
251 #else
252 /* It is important to avoid passing a rwlockattr in this case because
253 * Windows pthreads 2.9.1 (and earlier) fail and abort if passed one, even
254 * one without any special attributes. */
255 error = pthread_rwlock_init(&l->lock, NULL);
256 #endif
257
258 if (OVS_UNLIKELY(error)) {
259 ovs_abort(error, "pthread_rwlock_init failed");
260 }
261 }
262
263 /* Provides an error-checking wrapper around pthread_cond_wait().
264 *
265 * If the wait can take a significant amount of time, consider bracketing this
266 * call with calls to ovsrcu_quiesce_start() and ovsrcu_quiesce_end(). */
267 void
268 ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_)
269 OVS_NO_THREAD_SAFETY_ANALYSIS
270 {
271 struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_);
272 int error;
273
274 error = pthread_cond_wait(cond, &mutex->lock);
275
276 if (OVS_UNLIKELY(error)) {
277 ovs_abort(error, "pthread_cond_wait failed");
278 }
279 }
280
281 #ifdef HAVE_PTHREAD_SPIN_LOCK
282 static void
283 ovs_spin_init__(const struct ovs_spin *l_, int pshared)
284 {
285 struct ovs_spin *l = CONST_CAST(struct ovs_spin *, l_);
286 int error;
287
288 l->where = "<unlocked>";
289 error = pthread_spin_init(&l->lock, pshared);
290 if (OVS_UNLIKELY(error)) {
291 ovs_abort(error, "pthread_spin_init failed");
292 }
293 }
294
295 void
296 ovs_spin_init(const struct ovs_spin *spin)
297 {
298 ovs_spin_init__(spin, PTHREAD_PROCESS_PRIVATE);
299 }
300 #endif
301
302 /* Initializes the 'barrier'. 'size' is the number of threads
303 * expected to hit the barrier. */
304 void
305 ovs_barrier_init(struct ovs_barrier *barrier, uint32_t size)
306 {
307 barrier->size = size;
308 atomic_count_init(&barrier->count, 0);
309 barrier->seq = seq_create();
310 }
311
312 /* Destroys the 'barrier'. */
313 void
314 ovs_barrier_destroy(struct ovs_barrier *barrier)
315 {
316 seq_destroy(barrier->seq);
317 }
318
319 /* Makes the calling thread block on the 'barrier' until all
320 * 'barrier->size' threads hit the barrier.
321 * ovs_barrier provides the necessary acquire-release semantics to make
322 * the effects of prior memory accesses of all the participating threads
323 * visible on return and to prevent the following memory accesses to be
324 * reordered before the ovs_barrier_block(). */
325 void
326 ovs_barrier_block(struct ovs_barrier *barrier)
327 {
328 uint64_t seq = seq_read(barrier->seq);
329 uint32_t orig;
330
331 orig = atomic_count_inc(&barrier->count);
332 if (orig + 1 == barrier->size) {
333 atomic_count_set(&barrier->count, 0);
334 /* seq_change() serves as a release barrier against the other threads,
335 * so the zeroed count is visible to them as they continue. */
336 seq_change(barrier->seq);
337 } else {
338 /* To prevent thread from waking up by other event,
339 * keeps waiting for the change of 'barrier->seq'. */
340 while (seq == seq_read(barrier->seq)) {
341 seq_wait(barrier->seq, seq);
342 poll_block();
343 }
344 }
345 }
346 \f
347 DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, OVSTHREAD_ID_UNSET);
348
349 struct ovsthread_aux {
350 void *(*start)(void *);
351 void *arg;
352 char name[16];
353 };
354
355 unsigned int
356 ovsthread_id_init(void)
357 {
358 static atomic_count next_id = ATOMIC_COUNT_INIT(0);
359
360 ovs_assert(*ovsthread_id_get() == OVSTHREAD_ID_UNSET);
361 return *ovsthread_id_get() = atomic_count_inc(&next_id);
362 }
363
364 static void *
365 ovsthread_wrapper(void *aux_)
366 {
367 struct ovsthread_aux *auxp = aux_;
368 struct ovsthread_aux aux;
369 unsigned int id;
370
371 id = ovsthread_id_init();
372
373 aux = *auxp;
374 free(auxp);
375
376 /* The order of the following calls is important, because
377 * ovsrcu_quiesce_end() saves a copy of the thread name. */
378 char *subprogram_name = xasprintf("%s%u", aux.name, id);
379 set_subprogram_name(subprogram_name);
380 free(subprogram_name);
381 ovsrcu_quiesce_end();
382
383 return aux.start(aux.arg);
384 }
385
386 static void
387 set_min_stack_size(pthread_attr_t *attr, size_t min_stacksize)
388 {
389 size_t stacksize;
390 int error;
391
392 error = pthread_attr_getstacksize(attr, &stacksize);
393 if (error) {
394 ovs_abort(error, "pthread_attr_getstacksize failed");
395 }
396
397 if (stacksize < min_stacksize) {
398 error = pthread_attr_setstacksize(attr, min_stacksize);
399 if (error) {
400 ovs_abort(error, "pthread_attr_setstacksize failed");
401 }
402 }
403 }
404
405 /* Starts a thread that calls 'start(arg)'. Sets the thread's name to 'name'
406 * (suffixed by its ovsthread_id()). Returns the new thread's pthread_t. */
407 pthread_t
408 ovs_thread_create(const char *name, void *(*start)(void *), void *arg)
409 {
410 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
411 struct ovsthread_aux *aux;
412 pthread_t thread;
413 int error;
414
415 forbid_forking("multiple threads exist");
416
417 if (ovsthread_once_start(&once)) {
418 /* The first call to this function has to happen in the main thread.
419 * Before the process becomes multithreaded we make sure that the
420 * main thread is considered non quiescent.
421 *
422 * For other threads this is done in ovs_thread_wrapper(), but the
423 * main thread has no such wrapper.
424 *
425 * There's no reason to call ovsrcu_quiesce_end() in subsequent
426 * invocations of this function and it might introduce problems
427 * for other threads. */
428 ovsrcu_quiesce_end();
429 ovsthread_once_done(&once);
430 }
431
432 multithreaded = true;
433 aux = xmalloc(sizeof *aux);
434 aux->start = start;
435 aux->arg = arg;
436 ovs_strlcpy(aux->name, name, sizeof aux->name);
437
438 /* Some small systems use a default stack size as small as 80 kB, but OVS
439 * requires approximately 384 kB according to the following analysis:
440 * https://mail.openvswitch.org/pipermail/ovs-dev/2016-January/308592.html
441 *
442 * We use 512 kB to give us some margin of error. */
443 pthread_attr_t attr;
444 pthread_attr_init(&attr);
445 set_min_stack_size(&attr, 512 * 1024);
446
447 error = pthread_create(&thread, &attr, ovsthread_wrapper, aux);
448 if (error) {
449 ovs_abort(error, "pthread_create failed");
450 }
451 pthread_attr_destroy(&attr);
452 return thread;
453 }
454 \f
455 bool
456 ovsthread_once_start__(struct ovsthread_once *once)
457 {
458 ovs_mutex_lock(&once->mutex);
459 /* Mutex synchronizes memory, so we get the current value of 'done'. */
460 if (!once->done) {
461 return true;
462 }
463 ovs_mutex_unlock(&once->mutex);
464 return false;
465 }
466
467 void
468 ovsthread_once_done(struct ovsthread_once *once)
469 {
470 /* We need release semantics here, so that the following store may not
471 * be moved ahead of any of the preceding initialization operations.
472 * A release atomic_thread_fence provides that prior memory accesses
473 * will not be reordered to take place after the following store. */
474 atomic_thread_fence(memory_order_release);
475 once->done = true;
476 ovs_mutex_unlock(&once->mutex);
477 }
478 \f
479 bool
480 single_threaded(void)
481 {
482 return !multithreaded;
483 }
484
485 /* Asserts that the process has not yet created any threads (beyond the initial
486 * thread).
487 *
488 * ('where' is used in logging. Commonly one would use
489 * assert_single_threaded() to automatically provide the caller's source file
490 * and line number for 'where'.) */
491 void
492 assert_single_threaded_at(const char *where)
493 {
494 if (multithreaded) {
495 VLOG_FATAL("%s: attempted operation not allowed when multithreaded",
496 where);
497 }
498 }
499
500 #ifndef _WIN32
501 /* Forks the current process (checking that this is allowed). Aborts with
502 * VLOG_FATAL if fork() returns an error, and otherwise returns the value
503 * returned by fork().
504 *
505 * ('where' is used in logging. Commonly one would use xfork() to
506 * automatically provide the caller's source file and line number for
507 * 'where'.) */
508 pid_t
509 xfork_at(const char *where)
510 {
511 pid_t pid;
512
513 if (must_not_fork) {
514 VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)",
515 where, must_not_fork);
516 }
517
518 pid = fork();
519 if (pid < 0) {
520 VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno));
521 }
522 return pid;
523 }
524 #endif
525
526 /* Notes that the process must not call fork() from now on, for the specified
527 * 'reason'. (The process may still fork() if it execs itself immediately
528 * afterward.) */
529 void
530 forbid_forking(const char *reason)
531 {
532 ovs_assert(reason != NULL);
533 must_not_fork = reason;
534 }
535
536 /* Returns true if the process is allowed to fork, false otherwise. */
537 bool
538 may_fork(void)
539 {
540 return !must_not_fork;
541 }
542 \f
543 /* ovsthread_stats. */
544
545 void
546 ovsthread_stats_init(struct ovsthread_stats *stats)
547 {
548 int i;
549
550 ovs_mutex_init(&stats->mutex);
551 for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) {
552 stats->buckets[i] = NULL;
553 }
554 }
555
556 void
557 ovsthread_stats_destroy(struct ovsthread_stats *stats)
558 {
559 ovs_mutex_destroy(&stats->mutex);
560 }
561
562 void *
563 ovsthread_stats_bucket_get(struct ovsthread_stats *stats,
564 void *(*new_bucket)(void))
565 {
566 unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1);
567 void *bucket = stats->buckets[idx];
568 if (!bucket) {
569 ovs_mutex_lock(&stats->mutex);
570 bucket = stats->buckets[idx];
571 if (!bucket) {
572 bucket = stats->buckets[idx] = new_bucket();
573 }
574 ovs_mutex_unlock(&stats->mutex);
575 }
576 return bucket;
577 }
578
579 size_t
580 ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i)
581 {
582 for (; i < ARRAY_SIZE(stats->buckets); i++) {
583 if (stats->buckets[i]) {
584 break;
585 }
586 }
587 return i;
588 }
589
590 \f
591 /* Returns the total number of cores available to this process, or 0 if the
592 * number cannot be determined. */
593 int
594 count_cpu_cores(void)
595 {
596 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
597 static long int n_cores;
598
599 if (ovsthread_once_start(&once)) {
600 #ifndef _WIN32
601 n_cores = sysconf(_SC_NPROCESSORS_ONLN);
602 #ifdef __linux__
603 if (n_cores > 0) {
604 cpu_set_t *set = CPU_ALLOC(n_cores);
605
606 if (set) {
607 size_t size = CPU_ALLOC_SIZE(n_cores);
608
609 if (!sched_getaffinity(0, size, set)) {
610 n_cores = CPU_COUNT_S(size, set);
611 }
612 CPU_FREE(set);
613 }
614 }
615 #endif
616 #else
617 SYSTEM_INFO sysinfo;
618 GetSystemInfo(&sysinfo);
619 n_cores = sysinfo.dwNumberOfProcessors;
620 #endif
621 ovsthread_once_done(&once);
622 }
623
624 return n_cores > 0 ? n_cores : 0;
625 }
626
627 /* Returns 'true' if current thread is PMD thread. */
628 bool
629 thread_is_pmd(void)
630 {
631 const char *name = get_subprogram_name();
632 return !strncmp(name, "pmd", 3);
633 }
634
635 \f
636 /* ovsthread_key. */
637
638 #define L1_SIZE 1024
639 #define L2_SIZE 1024
640 #define MAX_KEYS (L1_SIZE * L2_SIZE)
641
642 /* A piece of thread-specific data. */
643 struct ovsthread_key {
644 struct ovs_list list_node; /* In 'inuse_keys' or 'free_keys'. */
645 void (*destructor)(void *); /* Called at thread exit. */
646
647 /* Indexes into the per-thread array in struct ovsthread_key_slots.
648 * This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */
649 unsigned int index;
650 };
651
652 /* Per-thread data structure. */
653 struct ovsthread_key_slots {
654 struct ovs_list list_node; /* In 'slots_list'. */
655 void **p1[L1_SIZE];
656 };
657
658 /* Contains "struct ovsthread_key_slots *". */
659 static pthread_key_t tsd_key;
660
661 /* Guards data structures below. */
662 static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER;
663
664 /* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not
665 * yet destroyed.
666 *
667 * 'free_keys' holds "struct ovsthread_key"s that have been deleted and are
668 * ready for reuse. (We keep them around only to be able to easily locate
669 * free indexes.)
670 *
671 * Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index
672 * from 0 to n_keys - 1, inclusive. */
673 static struct ovs_list inuse_keys OVS_GUARDED_BY(key_mutex)
674 = OVS_LIST_INITIALIZER(&inuse_keys);
675 static struct ovs_list free_keys OVS_GUARDED_BY(key_mutex)
676 = OVS_LIST_INITIALIZER(&free_keys);
677 static unsigned int n_keys OVS_GUARDED_BY(key_mutex);
678
679 /* All existing struct ovsthread_key_slots. */
680 static struct ovs_list slots_list OVS_GUARDED_BY(key_mutex)
681 = OVS_LIST_INITIALIZER(&slots_list);
682
683 static void *
684 clear_slot(struct ovsthread_key_slots *slots, unsigned int index)
685 {
686 void **p2 = slots->p1[index / L2_SIZE];
687 if (p2) {
688 void **valuep = &p2[index % L2_SIZE];
689 void *value = *valuep;
690 *valuep = NULL;
691 return value;
692 } else {
693 return NULL;
694 }
695 }
696
697 static void
698 ovsthread_key_destruct__(void *slots_)
699 {
700 struct ovsthread_key_slots *slots = slots_;
701 struct ovsthread_key *key;
702 unsigned int n;
703 int i;
704
705 ovs_mutex_lock(&key_mutex);
706 ovs_list_remove(&slots->list_node);
707 LIST_FOR_EACH (key, list_node, &inuse_keys) {
708 void *value = clear_slot(slots, key->index);
709 if (value && key->destructor) {
710 key->destructor(value);
711 }
712 }
713 n = n_keys;
714 ovs_mutex_unlock(&key_mutex);
715
716 for (i = 0; i < DIV_ROUND_UP(n, L2_SIZE); i++) {
717 free(slots->p1[i]);
718 }
719 free(slots);
720 }
721
722 /* Cancels the callback to ovsthread_key_destruct__().
723 *
724 * Cancelling the call to the destructor during the main thread exit
725 * is needed while using pthreads-win32 library in Windows. It has been
726 * observed that in pthreads-win32, a call to the destructor during
727 * main thread exit causes undefined behavior. */
728 static void
729 ovsthread_cancel_ovsthread_key_destruct__(void *aux OVS_UNUSED)
730 {
731 pthread_setspecific(tsd_key, NULL);
732 }
733
734 /* Initializes '*keyp' as a thread-specific data key. The data items are
735 * initially null in all threads.
736 *
737 * If a thread exits with non-null data, then 'destructor', if nonnull, will be
738 * called passing the final data value as its argument. 'destructor' must not
739 * call any thread-specific data functions in this API.
740 *
741 * This function is similar to xpthread_key_create(). */
742 void
743 ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *))
744 {
745 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
746 struct ovsthread_key *key;
747
748 if (ovsthread_once_start(&once)) {
749 xpthread_key_create(&tsd_key, ovsthread_key_destruct__);
750 fatal_signal_add_hook(ovsthread_cancel_ovsthread_key_destruct__,
751 NULL, NULL, true);
752 ovsthread_once_done(&once);
753 }
754
755 ovs_mutex_lock(&key_mutex);
756 if (ovs_list_is_empty(&free_keys)) {
757 key = xmalloc(sizeof *key);
758 key->index = n_keys++;
759 if (key->index >= MAX_KEYS) {
760 abort();
761 }
762 } else {
763 key = CONTAINER_OF(ovs_list_pop_back(&free_keys),
764 struct ovsthread_key, list_node);
765 }
766 ovs_list_push_back(&inuse_keys, &key->list_node);
767 key->destructor = destructor;
768 ovs_mutex_unlock(&key_mutex);
769
770 *keyp = key;
771 }
772
773 /* Frees 'key'. The destructor supplied to ovsthread_key_create(), if any, is
774 * not called.
775 *
776 * This function is similar to xpthread_key_delete(). */
777 void
778 ovsthread_key_delete(ovsthread_key_t key)
779 {
780 struct ovsthread_key_slots *slots;
781
782 ovs_mutex_lock(&key_mutex);
783
784 /* Move 'key' from 'inuse_keys' to 'free_keys'. */
785 ovs_list_remove(&key->list_node);
786 ovs_list_push_back(&free_keys, &key->list_node);
787
788 /* Clear this slot in all threads. */
789 LIST_FOR_EACH (slots, list_node, &slots_list) {
790 clear_slot(slots, key->index);
791 }
792
793 ovs_mutex_unlock(&key_mutex);
794 }
795
796 static void **
797 ovsthread_key_lookup__(const struct ovsthread_key *key)
798 {
799 struct ovsthread_key_slots *slots;
800 void **p2;
801
802 slots = pthread_getspecific(tsd_key);
803 if (!slots) {
804 slots = xzalloc(sizeof *slots);
805
806 ovs_mutex_lock(&key_mutex);
807 pthread_setspecific(tsd_key, slots);
808 ovs_list_push_back(&slots_list, &slots->list_node);
809 ovs_mutex_unlock(&key_mutex);
810 }
811
812 p2 = slots->p1[key->index / L2_SIZE];
813 if (!p2) {
814 p2 = xzalloc(L2_SIZE * sizeof *p2);
815 slots->p1[key->index / L2_SIZE] = p2;
816 }
817
818 return &p2[key->index % L2_SIZE];
819 }
820
821 /* Sets the value of thread-specific data item 'key', in the current thread, to
822 * 'value'.
823 *
824 * This function is similar to pthread_setspecific(). */
825 void
826 ovsthread_setspecific(ovsthread_key_t key, const void *value)
827 {
828 *ovsthread_key_lookup__(key) = CONST_CAST(void *, value);
829 }
830
831 /* Returns the value of thread-specific data item 'key' in the current thread.
832 *
833 * This function is similar to pthread_getspecific(). */
834 void *
835 ovsthread_getspecific(ovsthread_key_t key)
836 {
837 return *ovsthread_key_lookup__(key);
838 }
839 #endif