]> git.proxmox.com Git - mirror_ovs.git/blob - lib/ovs-thread.c
lib: Use a more accurate value for CPU count (sched_getaffinity).
[mirror_ovs.git] / lib / ovs-thread.c
1 /*
2 * Copyright (c) 2013, 2014, 2015, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ovs-thread.h"
19 #include <errno.h>
20 #include <poll.h>
21 #ifndef _WIN32
22 #include <signal.h>
23 #endif
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include "compiler.h"
27 #include "fatal-signal.h"
28 #include "hash.h"
29 #include "openvswitch/list.h"
30 #include "netdev-dpdk.h"
31 #include "ovs-rcu.h"
32 #include "poll-loop.h"
33 #include "seq.h"
34 #include "socket-util.h"
35 #include "util.h"
36
37 #ifdef __CHECKER__
38 /* Omit the definitions in this file because they are somewhat difficult to
39 * write without prompting "sparse" complaints, without ugliness or
40 * cut-and-paste. Since "sparse" is just a checker, not a compiler, it
41 * doesn't matter that we don't define them. */
42 #else
43 #include "openvswitch/vlog.h"
44
45 VLOG_DEFINE_THIS_MODULE(ovs_thread);
46
47 /* If there is a reason that we cannot fork anymore (unless the fork will be
48 * immediately followed by an exec), then this points to a string that
49 * explains why. */
50 static const char *must_not_fork;
51
52 /* True if we created any threads beyond the main initial thread. */
53 static bool multithreaded;
54
55 #define LOCK_FUNCTION(TYPE, FUN) \
56 void \
57 ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
58 const char *where) \
59 OVS_NO_THREAD_SAFETY_ANALYSIS \
60 { \
61 struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
62 int error; \
63 \
64 /* Verify that 'l' was initialized. */ \
65 if (OVS_UNLIKELY(!l->where)) { \
66 ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
67 where, __func__); \
68 } \
69 \
70 error = pthread_##TYPE##_##FUN(&l->lock); \
71 if (OVS_UNLIKELY(error)) { \
72 ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
73 } \
74 l->where = where; \
75 }
76 LOCK_FUNCTION(mutex, lock);
77 LOCK_FUNCTION(rwlock, rdlock);
78 LOCK_FUNCTION(rwlock, wrlock);
79
80 #define TRY_LOCK_FUNCTION(TYPE, FUN) \
81 int \
82 ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
83 const char *where) \
84 OVS_NO_THREAD_SAFETY_ANALYSIS \
85 { \
86 struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
87 int error; \
88 \
89 /* Verify that 'l' was initialized. */ \
90 if (OVS_UNLIKELY(!l->where)) { \
91 ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
92 where, __func__); \
93 } \
94 \
95 error = pthread_##TYPE##_##FUN(&l->lock); \
96 if (OVS_UNLIKELY(error) && error != EBUSY) { \
97 ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
98 } \
99 if (!error) { \
100 l->where = where; \
101 } \
102 return error; \
103 }
104 TRY_LOCK_FUNCTION(mutex, trylock);
105 TRY_LOCK_FUNCTION(rwlock, tryrdlock);
106 TRY_LOCK_FUNCTION(rwlock, trywrlock);
107
108 #define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \
109 void \
110 ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \
111 OVS_NO_THREAD_SAFETY_ANALYSIS \
112 { \
113 struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
114 int error; \
115 \
116 /* Verify that 'l' was initialized. */ \
117 ovs_assert(l->where); \
118 \
119 l->where = WHERE; \
120 error = pthread_##TYPE##_##FUN(&l->lock); \
121 if (OVS_UNLIKELY(error)) { \
122 ovs_abort(error, "pthread_%s_%s failed", #TYPE, #FUN); \
123 } \
124 }
125 UNLOCK_FUNCTION(mutex, unlock, "<unlocked>");
126 UNLOCK_FUNCTION(mutex, destroy, NULL);
127 UNLOCK_FUNCTION(rwlock, unlock, "<unlocked>");
128 UNLOCK_FUNCTION(rwlock, destroy, NULL);
129
130 #define XPTHREAD_FUNC1(FUNCTION, PARAM1) \
131 void \
132 x##FUNCTION(PARAM1 arg1) \
133 { \
134 int error = FUNCTION(arg1); \
135 if (OVS_UNLIKELY(error)) { \
136 ovs_abort(error, "%s failed", #FUNCTION); \
137 } \
138 }
139 #define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2) \
140 void \
141 x##FUNCTION(PARAM1 arg1, PARAM2 arg2) \
142 { \
143 int error = FUNCTION(arg1, arg2); \
144 if (OVS_UNLIKELY(error)) { \
145 ovs_abort(error, "%s failed", #FUNCTION); \
146 } \
147 }
148 #define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\
149 void \
150 x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3) \
151 { \
152 int error = FUNCTION(arg1, arg2, arg3); \
153 if (OVS_UNLIKELY(error)) { \
154 ovs_abort(error, "%s failed", #FUNCTION); \
155 } \
156 }
157
158 XPTHREAD_FUNC1(pthread_mutex_lock, pthread_mutex_t *);
159 XPTHREAD_FUNC1(pthread_mutex_unlock, pthread_mutex_t *);
160 XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *);
161 XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *);
162 XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int);
163 XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *);
164
165 XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *);
166 XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *);
167 #ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
168 XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int);
169 #endif
170
171 XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *);
172 XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *);
173 XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *);
174 XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *);
175
176 XPTHREAD_FUNC2(pthread_join, pthread_t, void **);
177
178 typedef void destructor_func(void *);
179 XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *);
180 XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t);
181 XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *);
182
183 #ifndef _WIN32
184 XPTHREAD_FUNC3(pthread_sigmask, int, const sigset_t *, sigset_t *);
185 #endif
186
187 static void
188 ovs_mutex_init__(const struct ovs_mutex *l_, int type)
189 {
190 struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_);
191 pthread_mutexattr_t attr;
192 int error;
193
194 l->where = "<unlocked>";
195 xpthread_mutexattr_init(&attr);
196 xpthread_mutexattr_settype(&attr, type);
197 error = pthread_mutex_init(&l->lock, &attr);
198 if (OVS_UNLIKELY(error)) {
199 ovs_abort(error, "pthread_mutex_init failed");
200 }
201 xpthread_mutexattr_destroy(&attr);
202 }
203
204 /* Initializes 'mutex' as a normal (non-recursive) mutex. */
205 void
206 ovs_mutex_init(const struct ovs_mutex *mutex)
207 {
208 ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK);
209 }
210
211 /* Initializes 'mutex' as a recursive mutex. */
212 void
213 ovs_mutex_init_recursive(const struct ovs_mutex *mutex)
214 {
215 ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE);
216 }
217
218 /* Initializes 'mutex' as a recursive mutex. */
219 void
220 ovs_mutex_init_adaptive(const struct ovs_mutex *mutex)
221 {
222 #ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
223 ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP);
224 #else
225 ovs_mutex_init(mutex);
226 #endif
227 }
228
229 void
230 ovs_rwlock_init(const struct ovs_rwlock *l_)
231 {
232 struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_);
233 pthread_rwlockattr_t attr;
234 int error;
235
236 l->where = "<unlocked>";
237
238 xpthread_rwlockattr_init(&attr);
239 #ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
240 xpthread_rwlockattr_setkind_np(
241 &attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
242 #endif
243 error = pthread_rwlock_init(&l->lock, NULL);
244 if (OVS_UNLIKELY(error)) {
245 ovs_abort(error, "pthread_rwlock_init failed");
246 }
247 xpthread_rwlockattr_destroy(&attr);
248 }
249
250 /* Provides an error-checking wrapper around pthread_cond_wait().
251 *
252 * If the wait can take a significant amount of time, consider bracketing this
253 * call with calls to ovsrcu_quiesce_start() and ovsrcu_quiesce_end(). */
254 void
255 ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_)
256 {
257 struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_);
258 int error;
259
260 error = pthread_cond_wait(cond, &mutex->lock);
261
262 if (OVS_UNLIKELY(error)) {
263 ovs_abort(error, "pthread_cond_wait failed");
264 }
265 }
266
267 /* Initializes the 'barrier'. 'size' is the number of threads
268 * expected to hit the barrier. */
269 void
270 ovs_barrier_init(struct ovs_barrier *barrier, uint32_t size)
271 {
272 barrier->size = size;
273 atomic_count_init(&barrier->count, 0);
274 barrier->seq = seq_create();
275 }
276
277 /* Destroys the 'barrier'. */
278 void
279 ovs_barrier_destroy(struct ovs_barrier *barrier)
280 {
281 seq_destroy(barrier->seq);
282 }
283
284 /* Makes the calling thread block on the 'barrier' until all
285 * 'barrier->size' threads hit the barrier.
286 * ovs_barrier provides the necessary acquire-release semantics to make
287 * the effects of prior memory accesses of all the participating threads
288 * visible on return and to prevent the following memory accesses to be
289 * reordered before the ovs_barrier_block(). */
290 void
291 ovs_barrier_block(struct ovs_barrier *barrier)
292 {
293 uint64_t seq = seq_read(barrier->seq);
294 uint32_t orig;
295
296 orig = atomic_count_inc(&barrier->count);
297 if (orig + 1 == barrier->size) {
298 atomic_count_set(&barrier->count, 0);
299 /* seq_change() serves as a release barrier against the other threads,
300 * so the zeroed count is visible to them as they continue. */
301 seq_change(barrier->seq);
302 } else {
303 /* To prevent thread from waking up by other event,
304 * keeps waiting for the change of 'barrier->seq'. */
305 while (seq == seq_read(barrier->seq)) {
306 seq_wait(barrier->seq, seq);
307 poll_block();
308 }
309 }
310 }
311 \f
312 DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, 0);
313
314 struct ovsthread_aux {
315 void *(*start)(void *);
316 void *arg;
317 char name[16];
318 };
319
320 static void *
321 ovsthread_wrapper(void *aux_)
322 {
323 static atomic_count next_id = ATOMIC_COUNT_INIT(1);
324
325 struct ovsthread_aux *auxp = aux_;
326 struct ovsthread_aux aux;
327 unsigned int id;
328
329 id = atomic_count_inc(&next_id);
330 *ovsthread_id_get() = id;
331
332 aux = *auxp;
333 free(auxp);
334
335 /* The order of the following calls is important, because
336 * ovsrcu_quiesce_end() saves a copy of the thread name. */
337 char *subprogram_name = xasprintf("%s%u", aux.name, id);
338 set_subprogram_name(subprogram_name);
339 free(subprogram_name);
340 ovsrcu_quiesce_end();
341
342 return aux.start(aux.arg);
343 }
344
345 static void
346 set_min_stack_size(pthread_attr_t *attr, size_t min_stacksize)
347 {
348 size_t stacksize;
349 int error;
350
351 error = pthread_attr_getstacksize(attr, &stacksize);
352 if (error) {
353 ovs_abort(error, "pthread_attr_getstacksize failed");
354 }
355
356 if (stacksize < min_stacksize) {
357 error = pthread_attr_setstacksize(attr, min_stacksize);
358 if (error) {
359 ovs_abort(error, "pthread_attr_setstacksize failed");
360 }
361 }
362 }
363
364 /* Starts a thread that calls 'start(arg)'. Sets the thread's name to 'name'
365 * (suffixed by its ovsthread_id()). Returns the new thread's pthread_t. */
366 pthread_t
367 ovs_thread_create(const char *name, void *(*start)(void *), void *arg)
368 {
369 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
370 struct ovsthread_aux *aux;
371 pthread_t thread;
372 int error;
373
374 forbid_forking("multiple threads exist");
375 multithreaded = true;
376
377 if (ovsthread_once_start(&once)) {
378 /* The first call to this function has to happen in the main thread.
379 * Before the process becomes multithreaded we make sure that the
380 * main thread is considered non quiescent.
381 *
382 * For other threads this is done in ovs_thread_wrapper(), but the
383 * main thread has no such wrapper.
384 *
385 * There's no reason to call ovsrcu_quiesce_end() in subsequent
386 * invocations of this function and it might introduce problems
387 * for other threads. */
388 ovsrcu_quiesce_end();
389 ovsthread_once_done(&once);
390 }
391
392 aux = xmalloc(sizeof *aux);
393 aux->start = start;
394 aux->arg = arg;
395 ovs_strlcpy(aux->name, name, sizeof aux->name);
396
397 /* Some small systems use a default stack size as small as 80 kB, but OVS
398 * requires approximately 384 kB according to the following analysis:
399 * http://openvswitch.org/pipermail/dev/2016-January/065049.html
400 *
401 * We use 512 kB to give us some margin of error. */
402 pthread_attr_t attr;
403 pthread_attr_init(&attr);
404 set_min_stack_size(&attr, 512 * 1024);
405
406 error = pthread_create(&thread, &attr, ovsthread_wrapper, aux);
407 if (error) {
408 ovs_abort(error, "pthread_create failed");
409 }
410 pthread_attr_destroy(&attr);
411 return thread;
412 }
413 \f
414 bool
415 ovsthread_once_start__(struct ovsthread_once *once)
416 {
417 ovs_mutex_lock(&once->mutex);
418 /* Mutex synchronizes memory, so we get the current value of 'done'. */
419 if (!once->done) {
420 return true;
421 }
422 ovs_mutex_unlock(&once->mutex);
423 return false;
424 }
425
426 void
427 ovsthread_once_done(struct ovsthread_once *once)
428 {
429 /* We need release semantics here, so that the following store may not
430 * be moved ahead of any of the preceding initialization operations.
431 * A release atomic_thread_fence provides that prior memory accesses
432 * will not be reordered to take place after the following store. */
433 atomic_thread_fence(memory_order_release);
434 once->done = true;
435 ovs_mutex_unlock(&once->mutex);
436 }
437 \f
438 bool
439 single_threaded(void)
440 {
441 return !multithreaded;
442 }
443
444 /* Asserts that the process has not yet created any threads (beyond the initial
445 * thread).
446 *
447 * ('where' is used in logging. Commonly one would use
448 * assert_single_threaded() to automatically provide the caller's source file
449 * and line number for 'where'.) */
450 void
451 assert_single_threaded_at(const char *where)
452 {
453 if (multithreaded) {
454 VLOG_FATAL("%s: attempted operation not allowed when multithreaded",
455 where);
456 }
457 }
458
459 #ifndef _WIN32
460 /* Forks the current process (checking that this is allowed). Aborts with
461 * VLOG_FATAL if fork() returns an error, and otherwise returns the value
462 * returned by fork().
463 *
464 * ('where' is used in logging. Commonly one would use xfork() to
465 * automatically provide the caller's source file and line number for
466 * 'where'.) */
467 pid_t
468 xfork_at(const char *where)
469 {
470 pid_t pid;
471
472 if (must_not_fork) {
473 VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)",
474 where, must_not_fork);
475 }
476
477 pid = fork();
478 if (pid < 0) {
479 VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno));
480 }
481 return pid;
482 }
483 #endif
484
485 /* Notes that the process must not call fork() from now on, for the specified
486 * 'reason'. (The process may still fork() if it execs itself immediately
487 * afterward.) */
488 void
489 forbid_forking(const char *reason)
490 {
491 ovs_assert(reason != NULL);
492 must_not_fork = reason;
493 }
494
495 /* Returns true if the process is allowed to fork, false otherwise. */
496 bool
497 may_fork(void)
498 {
499 return !must_not_fork;
500 }
501 \f
502 /* ovsthread_stats. */
503
504 void
505 ovsthread_stats_init(struct ovsthread_stats *stats)
506 {
507 int i;
508
509 ovs_mutex_init(&stats->mutex);
510 for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) {
511 stats->buckets[i] = NULL;
512 }
513 }
514
515 void
516 ovsthread_stats_destroy(struct ovsthread_stats *stats)
517 {
518 ovs_mutex_destroy(&stats->mutex);
519 }
520
521 void *
522 ovsthread_stats_bucket_get(struct ovsthread_stats *stats,
523 void *(*new_bucket)(void))
524 {
525 unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1);
526 void *bucket = stats->buckets[idx];
527 if (!bucket) {
528 ovs_mutex_lock(&stats->mutex);
529 bucket = stats->buckets[idx];
530 if (!bucket) {
531 bucket = stats->buckets[idx] = new_bucket();
532 }
533 ovs_mutex_unlock(&stats->mutex);
534 }
535 return bucket;
536 }
537
538 size_t
539 ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i)
540 {
541 for (; i < ARRAY_SIZE(stats->buckets); i++) {
542 if (stats->buckets[i]) {
543 break;
544 }
545 }
546 return i;
547 }
548
549 \f
550 /* Returns the total number of cores available to this process, or 0 if the
551 * number cannot be determined. */
552 int
553 count_cpu_cores(void)
554 {
555 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
556 static long int n_cores;
557
558 if (ovsthread_once_start(&once)) {
559 #ifndef _WIN32
560 n_cores = sysconf(_SC_NPROCESSORS_ONLN);
561 #ifdef __linux__
562 if (n_cores > 0) {
563 cpu_set_t *set = CPU_ALLOC(n_cores);
564
565 if (set) {
566 size_t size = CPU_ALLOC_SIZE(n_cores);
567
568 if (!sched_getaffinity(0, size, set)) {
569 n_cores = CPU_COUNT_S(size, set);
570 }
571 CPU_FREE(set);
572 }
573 }
574 #endif
575 #else
576 SYSTEM_INFO sysinfo;
577 GetSystemInfo(&sysinfo);
578 n_cores = sysinfo.dwNumberOfProcessors;
579 #endif
580 ovsthread_once_done(&once);
581 }
582
583 return n_cores > 0 ? n_cores : 0;
584 }
585
586 /* Returns 'true' if current thread is PMD thread. */
587 bool
588 thread_is_pmd(void)
589 {
590 const char *name = get_subprogram_name();
591 return !strncmp(name, "pmd", 3);
592 }
593
594 \f
595 /* ovsthread_key. */
596
597 #define L1_SIZE 1024
598 #define L2_SIZE 1024
599 #define MAX_KEYS (L1_SIZE * L2_SIZE)
600
601 /* A piece of thread-specific data. */
602 struct ovsthread_key {
603 struct ovs_list list_node; /* In 'inuse_keys' or 'free_keys'. */
604 void (*destructor)(void *); /* Called at thread exit. */
605
606 /* Indexes into the per-thread array in struct ovsthread_key_slots.
607 * This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */
608 unsigned int index;
609 };
610
611 /* Per-thread data structure. */
612 struct ovsthread_key_slots {
613 struct ovs_list list_node; /* In 'slots_list'. */
614 void **p1[L1_SIZE];
615 };
616
617 /* Contains "struct ovsthread_key_slots *". */
618 static pthread_key_t tsd_key;
619
620 /* Guards data structures below. */
621 static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER;
622
623 /* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not
624 * yet destroyed.
625 *
626 * 'free_keys' holds "struct ovsthread_key"s that have been deleted and are
627 * ready for reuse. (We keep them around only to be able to easily locate
628 * free indexes.)
629 *
630 * Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index
631 * from 0 to n_keys - 1, inclusive. */
632 static struct ovs_list inuse_keys OVS_GUARDED_BY(key_mutex)
633 = OVS_LIST_INITIALIZER(&inuse_keys);
634 static struct ovs_list free_keys OVS_GUARDED_BY(key_mutex)
635 = OVS_LIST_INITIALIZER(&free_keys);
636 static unsigned int n_keys OVS_GUARDED_BY(key_mutex);
637
638 /* All existing struct ovsthread_key_slots. */
639 static struct ovs_list slots_list OVS_GUARDED_BY(key_mutex)
640 = OVS_LIST_INITIALIZER(&slots_list);
641
642 static void *
643 clear_slot(struct ovsthread_key_slots *slots, unsigned int index)
644 {
645 void **p2 = slots->p1[index / L2_SIZE];
646 if (p2) {
647 void **valuep = &p2[index % L2_SIZE];
648 void *value = *valuep;
649 *valuep = NULL;
650 return value;
651 } else {
652 return NULL;
653 }
654 }
655
656 static void
657 ovsthread_key_destruct__(void *slots_)
658 {
659 struct ovsthread_key_slots *slots = slots_;
660 struct ovsthread_key *key;
661 unsigned int n;
662 int i;
663
664 ovs_mutex_lock(&key_mutex);
665 ovs_list_remove(&slots->list_node);
666 LIST_FOR_EACH (key, list_node, &inuse_keys) {
667 void *value = clear_slot(slots, key->index);
668 if (value && key->destructor) {
669 key->destructor(value);
670 }
671 }
672 n = n_keys;
673 ovs_mutex_unlock(&key_mutex);
674
675 for (i = 0; i < DIV_ROUND_UP(n, L2_SIZE); i++) {
676 free(slots->p1[i]);
677 }
678 free(slots);
679 }
680
681 /* Cancels the callback to ovsthread_key_destruct__().
682 *
683 * Cancelling the call to the destructor during the main thread exit
684 * is needed while using pthreads-win32 library in Windows. It has been
685 * observed that in pthreads-win32, a call to the destructor during
686 * main thread exit causes undefined behavior. */
687 static void
688 ovsthread_cancel_ovsthread_key_destruct__(void *aux OVS_UNUSED)
689 {
690 pthread_setspecific(tsd_key, NULL);
691 }
692
693 /* Initializes '*keyp' as a thread-specific data key. The data items are
694 * initially null in all threads.
695 *
696 * If a thread exits with non-null data, then 'destructor', if nonnull, will be
697 * called passing the final data value as its argument. 'destructor' must not
698 * call any thread-specific data functions in this API.
699 *
700 * This function is similar to xpthread_key_create(). */
701 void
702 ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *))
703 {
704 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
705 struct ovsthread_key *key;
706
707 if (ovsthread_once_start(&once)) {
708 xpthread_key_create(&tsd_key, ovsthread_key_destruct__);
709 fatal_signal_add_hook(ovsthread_cancel_ovsthread_key_destruct__,
710 NULL, NULL, true);
711 ovsthread_once_done(&once);
712 }
713
714 ovs_mutex_lock(&key_mutex);
715 if (ovs_list_is_empty(&free_keys)) {
716 key = xmalloc(sizeof *key);
717 key->index = n_keys++;
718 if (key->index >= MAX_KEYS) {
719 abort();
720 }
721 } else {
722 key = CONTAINER_OF(ovs_list_pop_back(&free_keys),
723 struct ovsthread_key, list_node);
724 }
725 ovs_list_push_back(&inuse_keys, &key->list_node);
726 key->destructor = destructor;
727 ovs_mutex_unlock(&key_mutex);
728
729 *keyp = key;
730 }
731
732 /* Frees 'key'. The destructor supplied to ovsthread_key_create(), if any, is
733 * not called.
734 *
735 * This function is similar to xpthread_key_delete(). */
736 void
737 ovsthread_key_delete(ovsthread_key_t key)
738 {
739 struct ovsthread_key_slots *slots;
740
741 ovs_mutex_lock(&key_mutex);
742
743 /* Move 'key' from 'inuse_keys' to 'free_keys'. */
744 ovs_list_remove(&key->list_node);
745 ovs_list_push_back(&free_keys, &key->list_node);
746
747 /* Clear this slot in all threads. */
748 LIST_FOR_EACH (slots, list_node, &slots_list) {
749 clear_slot(slots, key->index);
750 }
751
752 ovs_mutex_unlock(&key_mutex);
753 }
754
755 static void **
756 ovsthread_key_lookup__(const struct ovsthread_key *key)
757 {
758 struct ovsthread_key_slots *slots;
759 void **p2;
760
761 slots = pthread_getspecific(tsd_key);
762 if (!slots) {
763 slots = xzalloc(sizeof *slots);
764
765 ovs_mutex_lock(&key_mutex);
766 pthread_setspecific(tsd_key, slots);
767 ovs_list_push_back(&slots_list, &slots->list_node);
768 ovs_mutex_unlock(&key_mutex);
769 }
770
771 p2 = slots->p1[key->index / L2_SIZE];
772 if (!p2) {
773 p2 = xzalloc(L2_SIZE * sizeof *p2);
774 slots->p1[key->index / L2_SIZE] = p2;
775 }
776
777 return &p2[key->index % L2_SIZE];
778 }
779
780 /* Sets the value of thread-specific data item 'key', in the current thread, to
781 * 'value'.
782 *
783 * This function is similar to pthread_setspecific(). */
784 void
785 ovsthread_setspecific(ovsthread_key_t key, const void *value)
786 {
787 *ovsthread_key_lookup__(key) = CONST_CAST(void *, value);
788 }
789
790 /* Returns the value of thread-specific data item 'key' in the current thread.
791 *
792 * This function is similar to pthread_getspecific(). */
793 void *
794 ovsthread_getspecific(ovsthread_key_t key)
795 {
796 return *ovsthread_key_lookup__(key);
797 }
798 #endif