]> git.proxmox.com Git - mirror_ovs.git/blob - lib/ovs-thread.h
ovs-thread: Add new support for thread-specific data.
[mirror_ovs.git] / lib / ovs-thread.h
1 /*
2 * Copyright (c) 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef OVS_THREAD_H
18 #define OVS_THREAD_H 1
19
20 #include <pthread.h>
21 #include <stddef.h>
22 #include <sys/types.h>
23 #include "ovs-atomic.h"
24 #include "util.h"
25
26
27 /* Mutex. */
28 struct OVS_LOCKABLE ovs_mutex {
29 pthread_mutex_t lock;
30 const char *where;
31 };
32
33 /* "struct ovs_mutex" initializer. */
34 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
35 #define OVS_MUTEX_INITIALIZER { PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP, NULL }
36 #else
37 #define OVS_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, NULL }
38 #endif
39
40 /* ovs_mutex functions analogous to pthread_mutex_*() functions.
41 *
42 * Most of these functions abort the process with an error message on any
43 * error. ovs_mutex_trylock() is an exception: it passes through a 0 or EBUSY
44 * return value to the caller and aborts on any other error. */
45 void ovs_mutex_init(const struct ovs_mutex *);
46 void ovs_mutex_init_recursive(const struct ovs_mutex *);
47 void ovs_mutex_destroy(const struct ovs_mutex *);
48 void ovs_mutex_unlock(const struct ovs_mutex *mutex) OVS_RELEASES(mutex);
49 void ovs_mutex_lock_at(const struct ovs_mutex *mutex, const char *where)
50 OVS_ACQUIRES(mutex);
51 #define ovs_mutex_lock(mutex) \
52 ovs_mutex_lock_at(mutex, SOURCE_LOCATOR)
53
54 int ovs_mutex_trylock_at(const struct ovs_mutex *mutex, const char *where)
55 OVS_TRY_LOCK(0, mutex);
56 #define ovs_mutex_trylock(mutex) \
57 ovs_mutex_trylock_at(mutex, SOURCE_LOCATOR)
58
59 void ovs_mutex_cond_wait(pthread_cond_t *, const struct ovs_mutex *);
60
61 /* Wrappers for pthread_mutex_*() that abort the process on any error.
62 * This is still needed when ovs-atomic-pthreads.h is used. */
63 void xpthread_mutex_lock(pthread_mutex_t *mutex);
64 void xpthread_mutex_unlock(pthread_mutex_t *mutex);
65
66 /* Wrappers for pthread_mutexattr_*() that abort the process on any error. */
67 void xpthread_mutexattr_init(pthread_mutexattr_t *);
68 void xpthread_mutexattr_destroy(pthread_mutexattr_t *);
69 void xpthread_mutexattr_settype(pthread_mutexattr_t *, int type);
70 void xpthread_mutexattr_gettype(pthread_mutexattr_t *, int *typep);
71
72 /* Read-write lock. */
73 struct OVS_LOCKABLE ovs_rwlock {
74 pthread_rwlock_t lock;
75 const char *where;
76 };
77
78 /* Initializer. */
79 #define OVS_RWLOCK_INITIALIZER { PTHREAD_RWLOCK_INITIALIZER, NULL }
80
81 /* ovs_rwlock functions analogous to pthread_rwlock_*() functions.
82 *
83 * Most of these functions abort the process with an error message on any
84 * error. The "trylock" functions are exception: they pass through a 0 or
85 * EBUSY return value to the caller and abort on any other error. */
86 void ovs_rwlock_init(const struct ovs_rwlock *);
87 void ovs_rwlock_destroy(const struct ovs_rwlock *);
88 void ovs_rwlock_unlock(const struct ovs_rwlock *rwlock) OVS_RELEASES(rwlock);
89
90 void ovs_rwlock_wrlock_at(const struct ovs_rwlock *rwlock, const char *where)
91 OVS_ACQ_WRLOCK(rwlock);
92 #define ovs_rwlock_wrlock(rwlock) \
93 ovs_rwlock_wrlock_at(rwlock, SOURCE_LOCATOR)
94
95 int ovs_rwlock_trywrlock_at(const struct ovs_rwlock *rwlock, const char *where)
96 OVS_TRY_WRLOCK(0, rwlock);
97 #define ovs_rwlock_trywrlock(rwlock) \
98 ovs_rwlock_trywrlock_at(rwlock, SOURCE_LOCATOR)
99
100 void ovs_rwlock_rdlock_at(const struct ovs_rwlock *rwlock, const char *where)
101 OVS_ACQ_RDLOCK(rwlock);
102 #define ovs_rwlock_rdlock(rwlock) \
103 ovs_rwlock_rdlock_at(rwlock, SOURCE_LOCATOR)
104
105 int ovs_rwlock_tryrdlock_at(const struct ovs_rwlock *rwlock, const char *where)
106 OVS_TRY_RDLOCK(0, rwlock);
107 #define ovs_rwlock_tryrdlock(rwlock) \
108 ovs_rwlock_tryrdlock_at(rwlock, SOURCE_LOCATOR)
109
110 /* Wrappers for xpthread_cond_*() that abort the process on any error.
111 *
112 * Use ovs_mutex_cond_wait() to wait for a condition. */
113 void xpthread_cond_init(pthread_cond_t *, pthread_condattr_t *);
114 void xpthread_cond_destroy(pthread_cond_t *);
115 void xpthread_cond_signal(pthread_cond_t *);
116 void xpthread_cond_broadcast(pthread_cond_t *);
117
118 #ifdef __CHECKER__
119 /* Replace these functions by the macros already defined in the <pthread.h>
120 * annotations, because the macro definitions have correct semantics for the
121 * conditional acquisition that can't be captured in a function annotation.
122 * The difference in semantics from pthread_*() to xpthread_*() does not matter
123 * because sparse is not a compiler. */
124 #define xpthread_mutex_trylock pthread_mutex_trylock
125 #define xpthread_rwlock_tryrdlock pthread_rwlock_tryrdlock
126 #define xpthread_rwlock_trywrlock pthread_rwlock_trywrlock
127 #endif
128
129 void xpthread_key_create(pthread_key_t *, void (*destructor)(void *));
130 void xpthread_key_delete(pthread_key_t);
131 void xpthread_setspecific(pthread_key_t, const void *);
132
133 void xpthread_create(pthread_t *, pthread_attr_t *, void *(*)(void *), void *);
134 void xpthread_join(pthread_t, void **);
135 \f
136 /* Per-thread data.
137 *
138 *
139 * Standard Forms
140 * ==============
141 *
142 * Multiple forms of standard per-thread data exist, each with its own pluses
143 * and minuses. In general, if one of these forms is appropriate, then it's a
144 * good idea to use it:
145 *
146 * - POSIX per-thread data via pthread_key_t is portable to any pthreads
147 * implementation, and allows a destructor function to be defined. It
148 * only (directly) supports per-thread pointers, which are always
149 * initialized to NULL. It requires once-only allocation of a
150 * pthread_key_t value. It is relatively slow. Typically few
151 * "pthread_key_t"s are available (POSIX requires only at least 128,
152 * glibc supplies only 1024).
153 *
154 * - The thread_local feature newly defined in C11 <threads.h> works with
155 * any data type and initializer, and it is fast. thread_local does not
156 * require once-only initialization like pthread_key_t. C11 does not
157 * define what happens if one attempts to access a thread_local object
158 * from a thread other than the one to which that object belongs. There
159 * is no provision to call a user-specified destructor when a thread
160 * ends. Typical implementations allow for an arbitrary amount of
161 * thread_local storage, but statically allocated only.
162 *
163 * - The __thread keyword is a GCC extension similar to thread_local but
164 * with a longer history. __thread is not portable to every GCC version
165 * or environment. __thread does not restrict the use of a thread-local
166 * object outside its own thread.
167 *
168 * Here's a handy summary:
169 *
170 * pthread_key_t thread_local __thread
171 * ------------- ------------ -------------
172 * portability high low medium
173 * speed low high high
174 * supports destructors? yes no no
175 * needs key allocation? yes no no
176 * arbitrary initializer? no yes yes
177 * cross-thread access? yes no yes
178 * amount available? few arbitrary arbitrary
179 * dynamically allocated? yes no no
180 *
181 *
182 * Extensions
183 * ==========
184 *
185 * OVS provides some extensions and wrappers:
186 *
187 * - In a situation where the performance of thread_local or __thread is
188 * desirable, but portability is required, DEFINE_STATIC_PER_THREAD_DATA
189 * and DECLARE_EXTERN_PER_THREAD_DATA/DEFINE_EXTERN_PER_THREAD_DATA may
190 * be appropriate (see below).
191 *
192 * - DEFINE_PER_THREAD_MALLOCED_DATA can be convenient for simple
193 * per-thread malloc()'d buffers.
194 *
195 * - struct ovs_tsd provides an alternative to pthread_key_t that isn't
196 * limited to a small number of keys.
197 */
198
199 /* For static data, use this macro in a source file:
200 *
201 * DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, INITIALIZER).
202 *
203 * For global data, "declare" the data in the header and "define" it in
204 * the source file, with:
205 *
206 * DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME).
207 * DEFINE_EXTERN_PER_THREAD_DATA(NAME, INITIALIZER).
208 *
209 * One should prefer to use POSIX per-thread data, via pthread_key_t, when its
210 * performance is acceptable, because of its portability (see the table above).
211 * This macro is an alternatives that takes advantage of thread_local (and
212 * __thread), for its performance, when it is available, and falls back to
213 * POSIX per-thread data otherwise.
214 *
215 * Defines per-thread variable NAME with the given TYPE, initialized to
216 * INITIALIZER (which must be valid as an initializer for a variable with
217 * static lifetime).
218 *
219 * The public interface to the variable is:
220 *
221 * TYPE *NAME_get(void)
222 * TYPE *NAME_get_unsafe(void)
223 *
224 * Returns the address of this thread's instance of NAME.
225 *
226 * Use NAME_get() in a context where this might be the first use of the
227 * per-thread variable in the program. Use NAME_get_unsafe(), which
228 * avoids a conditional test and is thus slightly faster, in a context
229 * where one knows that NAME_get() has already been called previously.
230 *
231 * There is no "NAME_set()" (or "NAME_set_unsafe()") function. To set the
232 * value of the per-thread variable, dereference the pointer returned by
233 * TYPE_get() or TYPE_get_unsafe(), e.g. *TYPE_get() = 0.
234 */
235 #if HAVE_THREAD_LOCAL || HAVE___THREAD
236
237 #if HAVE_THREAD_LOCAL
238 #include <threads.h>
239 #elif HAVE___THREAD
240 #define thread_local __thread
241 #else
242 #error
243 #endif
244
245 #define DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, ...) \
246 typedef TYPE NAME##_type; \
247 \
248 static NAME##_type * \
249 NAME##_get_unsafe(void) \
250 { \
251 static thread_local NAME##_type var = __VA_ARGS__; \
252 return &var; \
253 } \
254 \
255 static NAME##_type * \
256 NAME##_get(void) \
257 { \
258 return NAME##_get_unsafe(); \
259 }
260 #define DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME) \
261 typedef TYPE NAME##_type; \
262 extern thread_local NAME##_type NAME##_var; \
263 \
264 static inline NAME##_type * \
265 NAME##_get_unsafe(void) \
266 { \
267 return &NAME##_var; \
268 } \
269 \
270 static inline NAME##_type * \
271 NAME##_get(void) \
272 { \
273 return NAME##_get_unsafe(); \
274 }
275 #define DEFINE_EXTERN_PER_THREAD_DATA(NAME, ...) \
276 thread_local NAME##_type NAME##_var = __VA_ARGS__;
277 #else /* no C implementation support for thread-local storage */
278 #define DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, ...) \
279 typedef TYPE NAME##_type; \
280 static pthread_key_t NAME##_key; \
281 \
282 static NAME##_type * \
283 NAME##_get_unsafe(void) \
284 { \
285 return pthread_getspecific(NAME##_key); \
286 } \
287 \
288 static void \
289 NAME##_once_init(void) \
290 { \
291 if (pthread_key_create(&NAME##_key, free)) { \
292 abort(); \
293 } \
294 } \
295 \
296 static NAME##_type * \
297 NAME##_get(void) \
298 { \
299 static pthread_once_t once = PTHREAD_ONCE_INIT; \
300 NAME##_type *value; \
301 \
302 pthread_once(&once, NAME##_once_init); \
303 value = NAME##_get_unsafe(); \
304 if (!value) { \
305 static const NAME##_type initial_value = __VA_ARGS__; \
306 \
307 value = malloc(sizeof *value); \
308 if (value == NULL) { \
309 out_of_memory(); \
310 } \
311 *value = initial_value; \
312 xpthread_setspecific(NAME##_key, value); \
313 } \
314 return value; \
315 }
316 #define DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME) \
317 typedef TYPE NAME##_type; \
318 static pthread_key_t NAME##_key; \
319 \
320 static inline NAME##_type * \
321 NAME##_get_unsafe(void) \
322 { \
323 return pthread_getspecific(NAME##_key); \
324 } \
325 \
326 NAME##_type *NAME##_get(void);
327 #define DEFINE_EXTERN_PER_THREAD_DATA(NAME, ...) \
328 static void \
329 NAME##_once_init(void) \
330 { \
331 if (pthread_key_create(&NAME##_key, free)) { \
332 abort(); \
333 } \
334 } \
335 \
336 NAME##_type * \
337 NAME##_get(void) \
338 { \
339 static pthread_once_t once = PTHREAD_ONCE_INIT; \
340 NAME##_type *value; \
341 \
342 pthread_once(&once, NAME##_once_init); \
343 value = NAME##_get_unsafe(); \
344 if (!value) { \
345 static const NAME##_type initial_value = __VA_ARGS__; \
346 \
347 value = malloc(sizeof *value); \
348 if (value == NULL) { \
349 out_of_memory(); \
350 } \
351 *value = initial_value; \
352 xpthread_setspecific(NAME##_key, value); \
353 } \
354 return value; \
355 }
356 #endif
357
358 /* DEFINE_PER_THREAD_MALLOCED_DATA(TYPE, NAME).
359 *
360 * This is a simple wrapper around POSIX per-thread data primitives. It
361 * defines per-thread variable NAME with the given TYPE, which must be a
362 * pointer type. In each thread, the per-thread variable is initialized to
363 * NULL. When a thread terminates, the variable is freed with free().
364 *
365 * The public interface to the variable is:
366 *
367 * TYPE NAME_get(void)
368 * TYPE NAME_get_unsafe(void)
369 *
370 * Returns the value of per-thread variable NAME in this thread.
371 *
372 * Use NAME_get() in a context where this might be the first use of the
373 * per-thread variable in the program. Use NAME_get_unsafe(), which
374 * avoids a conditional test and is thus slightly faster, in a context
375 * where one knows that NAME_get() has already been called previously.
376 *
377 * TYPE NAME_set(TYPE new_value)
378 * TYPE NAME_set_unsafe(TYPE new_value)
379 *
380 * Sets the value of per-thread variable NAME to 'new_value' in this
381 * thread, and returns its previous value.
382 *
383 * Use NAME_set() in a context where this might be the first use of the
384 * per-thread variable in the program. Use NAME_set_unsafe(), which
385 * avoids a conditional test and is thus slightly faster, in a context
386 * where one knows that NAME_set() has already been called previously.
387 */
388 #define DEFINE_PER_THREAD_MALLOCED_DATA(TYPE, NAME) \
389 static pthread_key_t NAME##_key; \
390 \
391 static void \
392 NAME##_once_init(void) \
393 { \
394 if (pthread_key_create(&NAME##_key, free)) { \
395 abort(); \
396 } \
397 } \
398 \
399 static void \
400 NAME##_init(void) \
401 { \
402 static pthread_once_t once = PTHREAD_ONCE_INIT; \
403 pthread_once(&once, NAME##_once_init); \
404 } \
405 \
406 static TYPE \
407 NAME##_get_unsafe(void) \
408 { \
409 return pthread_getspecific(NAME##_key); \
410 } \
411 \
412 static OVS_UNUSED TYPE \
413 NAME##_get(void) \
414 { \
415 NAME##_init(); \
416 return NAME##_get_unsafe(); \
417 } \
418 \
419 static TYPE \
420 NAME##_set_unsafe(TYPE value) \
421 { \
422 TYPE old_value = NAME##_get_unsafe(); \
423 xpthread_setspecific(NAME##_key, value); \
424 return old_value; \
425 } \
426 \
427 static OVS_UNUSED TYPE \
428 NAME##_set(TYPE value) \
429 { \
430 NAME##_init(); \
431 return NAME##_set_unsafe(value); \
432 }
433
434 /* Dynamically allocated thread-specific data with lots of slots.
435 *
436 * pthread_key_t can provide as few as 128 pieces of thread-specific data (even
437 * glibc is limited to 1,024). Thus, one must be careful to allocate only a
438 * few keys globally. One cannot, for example, allocate a key for every
439 * instance of a data structure if there might be an arbitrary number of those
440 * data structures.
441 *
442 * This API is similar to the pthread one (simply search and replace pthread_
443 * by ovsthread_) but it a much larger limit that can be raised if necessary
444 * (by recompiling). Thus, one may more freely use this form of
445 * thread-specific data.
446 *
447 * Compared to pthread_key_t, ovsthread_key_t has the follow limitations:
448 *
449 * - Destructors must not access thread-specific data (via ovsthread_key).
450 */
451 typedef struct ovsthread_key *ovsthread_key_t;
452
453 void ovsthread_key_create(ovsthread_key_t *, void (*destructor)(void *));
454 void ovsthread_key_delete(ovsthread_key_t);
455
456 void ovsthread_setspecific(ovsthread_key_t, const void *);
457 void *ovsthread_getspecific(ovsthread_key_t);
458 \f
459 /* Convenient once-only execution.
460 *
461 *
462 * Problem
463 * =======
464 *
465 * POSIX provides pthread_once_t and pthread_once() as primitives for running a
466 * set of code only once per process execution. They are used like this:
467 *
468 * static void run_once(void) { ...initialization... }
469 * static pthread_once_t once = PTHREAD_ONCE_INIT;
470 * ...
471 * pthread_once(&once, run_once);
472 *
473 * pthread_once() does not allow passing any parameters to the initialization
474 * function, which is often inconvenient, because it means that the function
475 * can only access data declared at file scope.
476 *
477 *
478 * Solution
479 * ========
480 *
481 * Use ovsthread_once, like this, instead:
482 *
483 * static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
484 *
485 * if (ovsthread_once_start(&once)) {
486 * ...initialization...
487 * ovsthread_once_done(&once);
488 * }
489 */
490
491 struct ovsthread_once {
492 atomic_bool done;
493 struct ovs_mutex mutex;
494 };
495
496 #define OVSTHREAD_ONCE_INITIALIZER \
497 { \
498 ATOMIC_VAR_INIT(false), \
499 OVS_MUTEX_INITIALIZER, \
500 }
501
502 static inline bool ovsthread_once_start(struct ovsthread_once *once)
503 OVS_TRY_LOCK(true, once->mutex);
504 void ovsthread_once_done(struct ovsthread_once *once)
505 OVS_RELEASES(once->mutex);
506
507 bool ovsthread_once_start__(struct ovsthread_once *once)
508 OVS_TRY_LOCK(false, once->mutex);
509
510 static inline bool
511 ovsthread_once_is_done__(struct ovsthread_once *once)
512 {
513 bool done;
514
515 atomic_read_explicit(&once->done, &done, memory_order_relaxed);
516 return done;
517 }
518
519 /* Returns true if this is the first call to ovsthread_once_start() for
520 * 'once'. In this case, the caller should perform whatever initialization
521 * actions it needs to do, then call ovsthread_once_done() for 'once'.
522 *
523 * Returns false if this is not the first call to ovsthread_once_start() for
524 * 'once'. In this case, the call will not return until after
525 * ovsthread_once_done() has been called. */
526 static inline bool
527 ovsthread_once_start(struct ovsthread_once *once)
528 {
529 return OVS_UNLIKELY(!ovsthread_once_is_done__(once)
530 && !ovsthread_once_start__(once));
531 }
532 \f
533 /* Thread ID.
534 *
535 * pthread_t isn't so nice for some purposes. Its size and representation are
536 * implementation dependent, which means that there is no way to hash it.
537 * This thread ID avoids the problem.
538 */
539
540 DECLARE_EXTERN_PER_THREAD_DATA(unsigned int, ovsthread_id);
541
542 /* Returns a per-thread identifier unique within the lifetime of the
543 * process. */
544 static inline unsigned int
545 ovsthread_id_self(void)
546 {
547 return *ovsthread_id_get();
548 }
549 \f
550 /* Simulated global counter.
551 *
552 * Incrementing such a counter is meant to be cheaper than incrementing a
553 * global counter protected by a lock. It is probably more expensive than
554 * incrementing a truly thread-local variable, but such a variable has no
555 * straightforward way to get the sum.
556 *
557 *
558 * Thread-safety
559 * =============
560 *
561 * Fully thread-safe. */
562
563 struct ovsthread_counter *ovsthread_counter_create(void);
564 void ovsthread_counter_destroy(struct ovsthread_counter *);
565 void ovsthread_counter_inc(struct ovsthread_counter *, unsigned long long int);
566 unsigned long long int ovsthread_counter_read(
567 const struct ovsthread_counter *);
568 \f
569 void assert_single_threaded_at(const char *where);
570 #define assert_single_threaded() assert_single_threaded_at(SOURCE_LOCATOR)
571
572 pid_t xfork_at(const char *where);
573 #define xfork() xfork_at(SOURCE_LOCATOR)
574
575 void forbid_forking(const char *reason);
576 bool may_fork(void);
577 \f
578 /* Useful functions related to threading. */
579
580 int count_cpu_cores(void);
581
582 #endif /* ovs-thread.h */