]> git.proxmox.com Git - mirror_ovs.git/blob - lib/packets.c
ovsdb-idl: Fix iteration over tracked rows with no actual data.
[mirror_ovs.git] / lib / packets.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "packets.h"
19 #include <sys/types.h>
20 #include <netinet/in.h>
21 #include <arpa/inet.h>
22 #include <sys/socket.h>
23 #include <netinet/ip6.h>
24 #include <netinet/icmp6.h>
25 #include <stdlib.h>
26 #include <netdb.h>
27 #include "byte-order.h"
28 #include "csum.h"
29 #include "crc32c.h"
30 #include "flow.h"
31 #include "openvswitch/hmap.h"
32 #include "openvswitch/dynamic-string.h"
33 #include "ovs-thread.h"
34 #include "odp-util.h"
35 #include "dp-packet.h"
36 #include "unaligned.h"
37
38 const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
39 const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
40 const struct in6_addr in6addr_all_routers = IN6ADDR_ALL_ROUTERS_INIT;
41
42 struct in6_addr
43 flow_tnl_dst(const struct flow_tnl *tnl)
44 {
45 return tnl->ip_dst ? in6_addr_mapped_ipv4(tnl->ip_dst) : tnl->ipv6_dst;
46 }
47
48 struct in6_addr
49 flow_tnl_src(const struct flow_tnl *tnl)
50 {
51 return tnl->ip_src ? in6_addr_mapped_ipv4(tnl->ip_src) : tnl->ipv6_src;
52 }
53
54 /* Returns true if 's' consists entirely of hex digits, false otherwise. */
55 static bool
56 is_all_hex(const char *s)
57 {
58 return s[strspn(s, "0123456789abcdefABCDEF")] == '\0';
59 }
60
61 /* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
62 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
63 * into '*dpidp' and returns false.
64 *
65 * Rejects an all-zeros dpid as invalid. */
66 bool
67 dpid_from_string(const char *s, uint64_t *dpidp)
68 {
69 size_t len = strlen(s);
70 *dpidp = ((len == 16 && is_all_hex(s))
71 || (len <= 18 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
72 && is_all_hex(s + 2))
73 ? strtoull(s, NULL, 16)
74 : 0);
75 return *dpidp != 0;
76 }
77
78 uint64_t
79 eth_addr_to_uint64(const struct eth_addr ea)
80 {
81 return (((uint64_t) ntohs(ea.be16[0]) << 32)
82 | ((uint64_t) ntohs(ea.be16[1]) << 16)
83 | ntohs(ea.be16[2]));
84 }
85
86 void
87 eth_addr_from_uint64(uint64_t x, struct eth_addr *ea)
88 {
89 ea->be16[0] = htons(x >> 32);
90 ea->be16[1] = htons((x & 0xFFFF0000) >> 16);
91 ea->be16[2] = htons(x & 0xFFFF);
92 }
93
94 void
95 eth_addr_mark_random(struct eth_addr *ea)
96 {
97 ea->ea[0] &= ~1; /* Unicast. */
98 ea->ea[0] |= 2; /* Private. */
99 }
100
101 /* Returns true if 'ea' is a reserved address, that a bridge must never
102 * forward, false otherwise.
103 *
104 * If you change this function's behavior, please update corresponding
105 * documentation in vswitch.xml at the same time. */
106 bool
107 eth_addr_is_reserved(const struct eth_addr ea)
108 {
109 struct eth_addr_node {
110 struct hmap_node hmap_node;
111 const uint64_t ea64;
112 };
113
114 static struct eth_addr_node nodes[] = {
115 /* STP, IEEE pause frames, and other reserved protocols. */
116 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
117 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
118 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
119 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
120 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
121 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
122 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
123 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
124 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
125 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
126 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
127 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
128 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
129 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
130 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
131 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
132
133 /* Extreme protocols. */
134 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
135 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
136 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
137
138 /* Cisco protocols. */
139 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
140 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
141 * DTP, VTP. */
142 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
143 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
144 * FlexLink. */
145
146 /* Cisco CFM. */
147 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
148 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
149 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
150 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
151 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
152 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
153 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
154 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
155 };
156
157 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
158 struct eth_addr_node *node;
159 static struct hmap addrs;
160 uint64_t ea64;
161
162 if (ovsthread_once_start(&once)) {
163 hmap_init(&addrs);
164 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
165 hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
166 }
167 ovsthread_once_done(&once);
168 }
169
170 ea64 = eth_addr_to_uint64(ea);
171 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
172 if (node->ea64 == ea64) {
173 return true;
174 }
175 }
176 return false;
177 }
178
179 /* Attempts to parse 's' as an Ethernet address. If successful, stores the
180 * address in 'ea' and returns true, otherwise zeros 'ea' and returns
181 * false. This function checks trailing characters. */
182 bool
183 eth_addr_from_string(const char *s, struct eth_addr *ea)
184 {
185 int n = 0;
186 if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*ea), &n)
187 && !s[n]) {
188 return true;
189 } else {
190 *ea = eth_addr_zero;
191 return false;
192 }
193 }
194
195 /* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
196 * This function is used by Open vSwitch to compose packets in cases where
197 * context is important but content doesn't (or shouldn't) matter.
198 *
199 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
200 * desired. */
201 void
202 compose_rarp(struct dp_packet *b, const struct eth_addr eth_src)
203 {
204 struct eth_header *eth;
205 struct arp_eth_header *arp;
206
207 dp_packet_clear(b);
208 dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
209 + ARP_ETH_HEADER_LEN);
210 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
211 eth = dp_packet_put_uninit(b, sizeof *eth);
212 eth->eth_dst = eth_addr_broadcast;
213 eth->eth_src = eth_src;
214 eth->eth_type = htons(ETH_TYPE_RARP);
215
216 arp = dp_packet_put_uninit(b, sizeof *arp);
217 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
218 arp->ar_pro = htons(ARP_PRO_IP);
219 arp->ar_hln = sizeof arp->ar_sha;
220 arp->ar_pln = sizeof arp->ar_spa;
221 arp->ar_op = htons(ARP_OP_RARP);
222 arp->ar_sha = eth_src;
223 put_16aligned_be32(&arp->ar_spa, htonl(0));
224 arp->ar_tha = eth_src;
225 put_16aligned_be32(&arp->ar_tpa, htonl(0));
226
227 dp_packet_reset_offsets(b);
228 dp_packet_set_l3(b, arp);
229 b->packet_type = htonl(PT_ETH);
230 }
231
232 /* Insert VLAN header according to given TCI. Packet passed must be Ethernet
233 * packet. Ignores the CFI bit of 'tci' using 0 instead.
234 *
235 * Also adjusts the layer offsets accordingly. */
236 void
237 eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
238 {
239 struct vlan_eth_header *veh;
240
241 /* Insert new 802.1Q header. */
242 veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
243 memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
244 veh->veth_type = tpid;
245 veh->veth_tci = tci & htons(~VLAN_CFI);
246 }
247
248 /* Removes outermost VLAN header (if any is present) from 'packet'.
249 *
250 * 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
251 * or may be NULL if there are no VLAN headers. */
252 void
253 eth_pop_vlan(struct dp_packet *packet)
254 {
255 struct vlan_eth_header *veh = dp_packet_eth(packet);
256
257 if (veh && dp_packet_size(packet) >= sizeof *veh
258 && eth_type_vlan(veh->veth_type)) {
259
260 memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
261 dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
262 }
263 }
264
265 /* Push Ethernet header onto 'packet' assuming it is layer 3 */
266 void
267 push_eth(struct dp_packet *packet, const struct eth_addr *dst,
268 const struct eth_addr *src)
269 {
270 struct eth_header *eh;
271
272 ovs_assert(!dp_packet_is_eth(packet));
273 eh = dp_packet_resize_l2(packet, ETH_HEADER_LEN);
274 eh->eth_dst = *dst;
275 eh->eth_src = *src;
276 eh->eth_type = pt_ns_type_be(packet->packet_type);
277 packet->packet_type = htonl(PT_ETH);
278 }
279
280 /* Removes Ethernet header, including VLAN header, from 'packet'.
281 *
282 * Previous to calling this function, 'ofpbuf_l3(packet)' must not be NULL */
283 void
284 pop_eth(struct dp_packet *packet)
285 {
286 char *l2_5 = dp_packet_l2_5(packet);
287 char *l3 = dp_packet_l3(packet);
288 ovs_be16 ethertype;
289 int increment;
290
291 ovs_assert(dp_packet_is_eth(packet));
292 ovs_assert(l3 != NULL);
293
294 if (l2_5) {
295 increment = packet->l2_5_ofs;
296 ethertype = *(ALIGNED_CAST(ovs_be16 *, (l2_5 - 2)));
297 } else {
298 increment = packet->l3_ofs;
299 ethertype = *(ALIGNED_CAST(ovs_be16 *, (l3 - 2)));
300 }
301
302 dp_packet_resize_l2(packet, -increment);
303 packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(ethertype));
304 }
305
306 /* Set ethertype of the packet. */
307 static void
308 set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
309 {
310 struct eth_header *eh = dp_packet_eth(packet);
311
312 if (!eh) {
313 return;
314 }
315
316 if (eth_type_vlan(eh->eth_type)) {
317 ovs_be16 *p;
318 char *l2_5 = dp_packet_l2_5(packet);
319
320 p = ALIGNED_CAST(ovs_be16 *,
321 (l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
322 *p = eth_type;
323 } else {
324 eh->eth_type = eth_type;
325 }
326 }
327
328 static bool is_mpls(struct dp_packet *packet)
329 {
330 return packet->l2_5_ofs != UINT16_MAX;
331 }
332
333 /* Set time to live (TTL) of an MPLS label stack entry (LSE). */
334 void
335 set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
336 {
337 *lse &= ~htonl(MPLS_TTL_MASK);
338 *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
339 }
340
341 /* Set traffic class (TC) of an MPLS label stack entry (LSE). */
342 void
343 set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
344 {
345 *lse &= ~htonl(MPLS_TC_MASK);
346 *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
347 }
348
349 /* Set label of an MPLS label stack entry (LSE). */
350 void
351 set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
352 {
353 *lse &= ~htonl(MPLS_LABEL_MASK);
354 *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
355 }
356
357 /* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
358 void
359 set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
360 {
361 *lse &= ~htonl(MPLS_BOS_MASK);
362 *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
363 }
364
365 /* Compose an MPLS label stack entry (LSE) from its components:
366 * label, traffic class (TC), time to live (TTL) and
367 * bottom of stack (BoS) bit. */
368 ovs_be32
369 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
370 {
371 ovs_be32 lse = htonl(0);
372 set_mpls_lse_ttl(&lse, ttl);
373 set_mpls_lse_tc(&lse, tc);
374 set_mpls_lse_bos(&lse, bos);
375 set_mpls_lse_label(&lse, label);
376 return lse;
377 }
378
379 /* Set MPLS label stack entry to outermost MPLS header.*/
380 void
381 set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
382 {
383 /* Packet type should be MPLS to set label stack entry. */
384 if (is_mpls(packet)) {
385 struct mpls_hdr *mh = dp_packet_l2_5(packet);
386
387 /* Update mpls label stack entry. */
388 put_16aligned_be32(&mh->mpls_lse, mpls_lse);
389 }
390 }
391
392 /* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
393 * header. If 'packet' does not already have any MPLS labels, then its
394 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
395 void
396 push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
397 {
398 char * header;
399 size_t len;
400
401 if (!eth_type_mpls(ethtype)) {
402 return;
403 }
404
405 if (!is_mpls(packet)) {
406 /* Set MPLS label stack offset. */
407 packet->l2_5_ofs = packet->l3_ofs;
408 }
409
410 set_ethertype(packet, ethtype);
411
412 /* Push new MPLS shim header onto packet. */
413 len = packet->l2_5_ofs;
414 header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
415 memmove(header, header + MPLS_HLEN, len);
416 memcpy(header + len, &lse, sizeof lse);
417
418 pkt_metadata_init_conn(&packet->md);
419 }
420
421 /* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
422 * If the label that was removed was the only MPLS label, changes 'packet''s
423 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
424 * Ethertype). */
425 void
426 pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
427 {
428 if (is_mpls(packet)) {
429 struct mpls_hdr *mh = dp_packet_l2_5(packet);
430 size_t len = packet->l2_5_ofs;
431
432 set_ethertype(packet, ethtype);
433 if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
434 dp_packet_set_l2_5(packet, NULL);
435 }
436 /* Shift the l2 header forward. */
437 memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
438 dp_packet_resize_l2_5(packet, -MPLS_HLEN);
439
440 /* Invalidate offload flags as they are not valid after
441 * decapsulation of MPLS header. */
442 dp_packet_reset_offload(packet);
443 }
444 }
445
446 void
447 push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src)
448 {
449 struct nsh_hdr *nsh;
450 size_t length = nsh_hdr_len(nsh_hdr_src);
451 uint8_t next_proto;
452
453 switch (ntohl(packet->packet_type)) {
454 case PT_ETH:
455 next_proto = NSH_P_ETHERNET;
456 break;
457 case PT_IPV4:
458 next_proto = NSH_P_IPV4;
459 break;
460 case PT_IPV6:
461 next_proto = NSH_P_IPV6;
462 break;
463 case PT_NSH:
464 next_proto = NSH_P_NSH;
465 break;
466 default:
467 OVS_NOT_REACHED();
468 }
469
470 nsh = (struct nsh_hdr *) dp_packet_push_uninit(packet, length);
471 memcpy(nsh, nsh_hdr_src, length);
472 nsh->next_proto = next_proto;
473 packet->packet_type = htonl(PT_NSH);
474 dp_packet_reset_offsets(packet);
475 packet->l3_ofs = 0;
476 }
477
478 bool
479 pop_nsh(struct dp_packet *packet)
480 {
481 struct nsh_hdr *nsh = (struct nsh_hdr *) dp_packet_l3(packet);
482 size_t length;
483 uint32_t next_pt;
484
485 if (packet->packet_type == htonl(PT_NSH) && nsh) {
486 switch (nsh->next_proto) {
487 case NSH_P_ETHERNET:
488 next_pt = PT_ETH;
489 break;
490 case NSH_P_IPV4:
491 next_pt = PT_IPV4;
492 break;
493 case NSH_P_IPV6:
494 next_pt = PT_IPV6;
495 break;
496 case NSH_P_NSH:
497 next_pt = PT_NSH;
498 break;
499 default:
500 /* Unknown inner packet type. Drop packet. */
501 return false;
502 }
503
504 length = nsh_hdr_len(nsh);
505 dp_packet_reset_packet(packet, length);
506 packet->packet_type = htonl(next_pt);
507 /* Packet must be recirculated for further processing. */
508 }
509 return true;
510 }
511
512 /* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
513 * caller must free '*packetp'. On success, returns NULL. On failure, returns
514 * an error message and stores NULL in '*packetp'.
515 *
516 * Aligns the L3 header of '*packetp' on a 32-bit boundary. */
517 const char *
518 eth_from_hex(const char *hex, struct dp_packet **packetp)
519 {
520 struct dp_packet *packet;
521
522 /* Use 2 bytes of headroom to 32-bit align the L3 header. */
523 packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);
524
525 if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
526 dp_packet_delete(packet);
527 *packetp = NULL;
528 return "Trailing garbage in packet data";
529 }
530
531 if (dp_packet_size(packet) < ETH_HEADER_LEN) {
532 dp_packet_delete(packet);
533 *packetp = NULL;
534 return "Packet data too short for Ethernet";
535 }
536
537 return NULL;
538 }
539
540 void
541 eth_format_masked(const struct eth_addr eth,
542 const struct eth_addr *mask, struct ds *s)
543 {
544 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
545 if (mask && !eth_mask_is_exact(*mask)) {
546 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(*mask));
547 }
548 }
549
550 void
551 in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6)
552 {
553 union ovs_16aligned_in6_addr *taddr =
554 (union ovs_16aligned_in6_addr *) addr;
555 memset(taddr->be16, 0, sizeof(taddr->be16));
556 taddr->be16[0] = htons(0xff02);
557 taddr->be16[5] = htons(0x1);
558 taddr->be16[6] = htons(0xff00);
559 memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3);
560 }
561
562 /*
563 * Generates ipv6 EUI64 address from the given eth addr
564 * and prefix and stores it in 'lla'
565 */
566 void
567 in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
568 struct in6_addr *lla)
569 {
570 union ovs_16aligned_in6_addr *taddr =
571 (union ovs_16aligned_in6_addr *) lla;
572 union ovs_16aligned_in6_addr *prefix_taddr =
573 (union ovs_16aligned_in6_addr *) prefix;
574 taddr->be16[0] = prefix_taddr->be16[0];
575 taddr->be16[1] = prefix_taddr->be16[1];
576 taddr->be16[2] = prefix_taddr->be16[2];
577 taddr->be16[3] = prefix_taddr->be16[3];
578 taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
579 taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
580 taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
581 taddr->be16[7] = ea.be16[2];
582 }
583
584 /* Generates ipv6 link local address from the given eth addr
585 * with prefix 'fe80::/64' and stores it in 'lla'. */
586 void
587 in6_generate_lla(struct eth_addr ea, struct in6_addr *lla)
588 {
589 union ovs_16aligned_in6_addr *taddr =
590 (union ovs_16aligned_in6_addr *) lla;
591 memset(taddr->be16, 0, sizeof(taddr->be16));
592 taddr->be16[0] = htons(0xfe80);
593 taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
594 taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
595 taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
596 taddr->be16[7] = ea.be16[2];
597 }
598
599 /* Returns true if 'addr' is a link local address. Otherwise, false. */
600 bool
601 in6_is_lla(struct in6_addr *addr)
602 {
603 #ifdef s6_addr32
604 return addr->s6_addr32[0] == htonl(0xfe800000) && !(addr->s6_addr32[1]);
605 #else
606 return addr->s6_addr[0] == 0xfe && addr->s6_addr[1] == 0x80 &&
607 !(addr->s6_addr[2] | addr->s6_addr[3] | addr->s6_addr[4] |
608 addr->s6_addr[5] | addr->s6_addr[6] | addr->s6_addr[7]);
609 #endif
610 }
611
612 void
613 ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6)
614 {
615 eth->ea[0] = 0x33;
616 eth->ea[1] = 0x33;
617 eth->ea[2] = ip6->s6_addr[12];
618 eth->ea[3] = ip6->s6_addr[13];
619 eth->ea[4] = ip6->s6_addr[14];
620 eth->ea[5] = ip6->s6_addr[15];
621 }
622
623 /* Given the IP netmask 'netmask', returns the number of bits of the IP address
624 * that it specifies, that is, the number of 1-bits in 'netmask'.
625 *
626 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
627 * still be in the valid range but isn't otherwise meaningful. */
628 int
629 ip_count_cidr_bits(ovs_be32 netmask)
630 {
631 return 32 - ctz32(ntohl(netmask));
632 }
633
634 void
635 ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
636 {
637 ds_put_format(s, IP_FMT, IP_ARGS(ip));
638 if (mask != OVS_BE32_MAX) {
639 if (ip_is_cidr(mask)) {
640 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
641 } else {
642 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
643 }
644 }
645 }
646
647 /* Parses string 's', which must be an IP address. Stores the IP address into
648 * '*ip'. Returns true if successful, otherwise false. */
649 bool
650 ip_parse(const char *s, ovs_be32 *ip)
651 {
652 return inet_pton(AF_INET, s, ip) == 1;
653 }
654
655 /* Parses string 's', which must be an IP address with a port number
656 * with ":" as a separator (e.g.: 192.168.1.2:80).
657 * Stores the IP address into '*ip' and port number to '*port'.
658 *
659 * Returns NULL if successful, otherwise an error message that the caller must
660 * free(). */
661 char * OVS_WARN_UNUSED_RESULT
662 ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
663 {
664 int n = 0;
665 if (ovs_scan(s, IP_PORT_SCAN_FMT"%n", IP_PORT_SCAN_ARGS(ip, port), &n)
666 && !s[n]) {
667 return NULL;
668 }
669
670 return xasprintf("%s: invalid IP address or port number", s);
671 }
672
673 /* Parses string 's', which must be an IP address with an optional netmask or
674 * CIDR prefix length. Stores the IP address into '*ip', netmask into '*mask',
675 * (255.255.255.255, if 's' lacks a netmask), and number of scanned characters
676 * into '*n'.
677 *
678 * Returns NULL if successful, otherwise an error message that the caller must
679 * free(). */
680 char * OVS_WARN_UNUSED_RESULT
681 ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip,
682 ovs_be32 *mask)
683 {
684 int prefix;
685
686 if (ovs_scan_len(s, n, IP_SCAN_FMT"/"IP_SCAN_FMT,
687 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
688 /* OK. */
689 } else if (ovs_scan_len(s, n, IP_SCAN_FMT"/%d",
690 IP_SCAN_ARGS(ip), &prefix)) {
691 if (prefix < 0 || prefix > 32) {
692 return xasprintf("%s: IPv4 network prefix bits not between 0 and "
693 "32, inclusive", s);
694 }
695 *mask = be32_prefix_mask(prefix);
696 } else if (ovs_scan_len(s, n, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
697 *mask = OVS_BE32_MAX;
698 } else {
699 return xasprintf("%s: invalid IP address", s);
700 }
701 return NULL;
702 }
703
704 /* This function is similar to ip_parse_masked_len(), but doesn't return the
705 * number of scanned characters and expects 's' to end after the ip/(optional)
706 * mask.
707 *
708 * Returns NULL if successful, otherwise an error message that the caller must
709 * free(). */
710 char * OVS_WARN_UNUSED_RESULT
711 ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
712 {
713 int n = 0;
714
715 char *error = ip_parse_masked_len(s, &n, ip, mask);
716 if (!error && s[n]) {
717 return xasprintf("%s: invalid IP address", s);
718 }
719 return error;
720 }
721
722 /* Similar to ip_parse_masked_len(), but the mask, if present, must be a CIDR
723 * mask and is returned as a prefix len in '*plen'. */
724 char * OVS_WARN_UNUSED_RESULT
725 ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen)
726 {
727 ovs_be32 mask;
728 char *error;
729
730 error = ip_parse_masked_len(s, n, ip, &mask);
731 if (error) {
732 return error;
733 }
734
735 if (!ip_is_cidr(mask)) {
736 return xasprintf("%s: CIDR network required", s);
737 }
738 *plen = ip_count_cidr_bits(mask);
739 return NULL;
740 }
741
742 /* Similar to ip_parse_cidr_len(), but doesn't return the number of scanned
743 * characters and expects 's' to be NULL terminated at the end of the
744 * ip/(optional) cidr. */
745 char * OVS_WARN_UNUSED_RESULT
746 ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
747 {
748 int n = 0;
749
750 char *error = ip_parse_cidr_len(s, &n, ip, plen);
751 if (!error && s[n]) {
752 return xasprintf("%s: invalid IP address", s);
753 }
754 return error;
755 }
756
757 /* Parses string 's', which must be an IPv6 address. Stores the IPv6 address
758 * into '*ip'. Returns true if successful, otherwise false. */
759 bool
760 ipv6_parse(const char *s, struct in6_addr *ip)
761 {
762 return inet_pton(AF_INET6, s, ip) == 1;
763 }
764
765 /* Parses string 's', which must be an IPv6 address with an optional netmask or
766 * CIDR prefix length. Stores the IPv6 address into '*ip' and the netmask into
767 * '*mask' (if 's' does not contain a netmask, all-one-bits is assumed), and
768 * number of scanned characters into '*n'.
769 *
770 * Returns NULL if successful, otherwise an error message that the caller must
771 * free(). */
772 char * OVS_WARN_UNUSED_RESULT
773 ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ip,
774 struct in6_addr *mask)
775 {
776 char ipv6_s[IPV6_SCAN_LEN + 1];
777 int prefix;
778
779 if (ovs_scan_len(s, n, " "IPV6_SCAN_FMT, ipv6_s)
780 && ipv6_parse(ipv6_s, ip)) {
781 if (ovs_scan_len(s, n, "/%d", &prefix)) {
782 if (prefix < 0 || prefix > 128) {
783 return xasprintf("%s: IPv6 network prefix bits not between 0 "
784 "and 128, inclusive", s);
785 }
786 *mask = ipv6_create_mask(prefix);
787 } else if (ovs_scan_len(s, n, "/"IPV6_SCAN_FMT, ipv6_s)) {
788 if (!ipv6_parse(ipv6_s, mask)) {
789 return xasprintf("%s: Invalid IPv6 mask", s);
790 }
791 /* OK. */
792 } else {
793 /* OK. No mask. */
794 *mask = in6addr_exact;
795 }
796 return NULL;
797 }
798 return xasprintf("%s: invalid IPv6 address", s);
799 }
800
801 /* This function is similar to ipv6_parse_masked_len(), but doesn't return the
802 * number of scanned characters and expects 's' to end following the
803 * ipv6/(optional) mask. */
804 char * OVS_WARN_UNUSED_RESULT
805 ipv6_parse_masked(const char *s, struct in6_addr *ip, struct in6_addr *mask)
806 {
807 int n = 0;
808
809 char *error = ipv6_parse_masked_len(s, &n, ip, mask);
810 if (!error && s[n]) {
811 return xasprintf("%s: invalid IPv6 address", s);
812 }
813 return error;
814 }
815
816 /* Similar to ipv6_parse_masked_len(), but the mask, if present, must be a CIDR
817 * mask and is returned as a prefix length in '*plen'. */
818 char * OVS_WARN_UNUSED_RESULT
819 ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
820 unsigned int *plen)
821 {
822 struct in6_addr mask;
823 char *error;
824
825 error = ipv6_parse_masked_len(s, n, ip, &mask);
826 if (error) {
827 return error;
828 }
829
830 if (!ipv6_is_cidr(&mask)) {
831 return xasprintf("%s: IPv6 CIDR network required", s);
832 }
833 *plen = ipv6_count_cidr_bits(&mask);
834 return NULL;
835 }
836
837 /* Similar to ipv6_parse_cidr_len(), but doesn't return the number of scanned
838 * characters and expects 's' to end after the ipv6/(optional) cidr. */
839 char * OVS_WARN_UNUSED_RESULT
840 ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
841 {
842 int n = 0;
843
844 char *error = ipv6_parse_cidr_len(s, &n, ip, plen);
845 if (!error && s[n]) {
846 return xasprintf("%s: invalid IPv6 address", s);
847 }
848 return error;
849 }
850
851 /* Stores the string representation of the IPv6 address 'addr' into the
852 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
853 * bytes long. */
854 void
855 ipv6_format_addr(const struct in6_addr *addr, struct ds *s)
856 {
857 char *dst;
858
859 ds_reserve(s, s->length + INET6_ADDRSTRLEN);
860
861 dst = s->string + s->length;
862 inet_ntop(AF_INET6, addr, dst, INET6_ADDRSTRLEN);
863 s->length += strlen(dst);
864 }
865
866 /* Same as print_ipv6_addr, but optionally encloses the address in square
867 * brackets. */
868 void
869 ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *s,
870 bool bracket)
871 {
872 if (bracket) {
873 ds_put_char(s, '[');
874 }
875 ipv6_format_addr(addr, s);
876 if (bracket) {
877 ds_put_char(s, ']');
878 }
879 }
880
881 void
882 ipv6_format_mapped(const struct in6_addr *addr, struct ds *s)
883 {
884 if (IN6_IS_ADDR_V4MAPPED(addr)) {
885 ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
886 addr->s6_addr[14], addr->s6_addr[15]);
887 } else {
888 ipv6_format_addr(addr, s);
889 }
890 }
891
892 void
893 ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask,
894 struct ds *s)
895 {
896 ipv6_format_addr(addr, s);
897 if (mask && !ipv6_mask_is_exact(mask)) {
898 if (ipv6_is_cidr(mask)) {
899 int cidr_bits = ipv6_count_cidr_bits(mask);
900 ds_put_format(s, "/%d", cidr_bits);
901 } else {
902 ds_put_char(s, '/');
903 ipv6_format_addr(mask, s);
904 }
905 }
906 }
907
908 /* Stores the string representation of the IPv6 address 'addr' into the
909 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
910 * bytes long. If addr is IPv4-mapped, store an IPv4 dotted-decimal string. */
911 const char *
912 ipv6_string_mapped(char *addr_str, const struct in6_addr *addr)
913 {
914 ovs_be32 ip;
915 ip = in6_addr_get_mapped_ipv4(addr);
916 if (ip) {
917 return inet_ntop(AF_INET, &ip, addr_str, INET6_ADDRSTRLEN);
918 } else {
919 return inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
920 }
921 }
922
923 #ifdef s6_addr32
924 #define s6_addrX s6_addr32
925 #define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 4; VAR++)
926 #else
927 #define s6_addrX s6_addr
928 #define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 16; VAR++)
929 #endif
930
931 struct in6_addr
932 ipv6_addr_bitand(const struct in6_addr *a, const struct in6_addr *b)
933 {
934 struct in6_addr dst;
935 IPV6_FOR_EACH (i) {
936 dst.s6_addrX[i] = a->s6_addrX[i] & b->s6_addrX[i];
937 }
938 return dst;
939 }
940
941 struct in6_addr
942 ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b)
943 {
944 struct in6_addr dst;
945 IPV6_FOR_EACH (i) {
946 dst.s6_addrX[i] = a->s6_addrX[i] ^ b->s6_addrX[i];
947 }
948 return dst;
949 }
950
951 bool
952 ipv6_is_zero(const struct in6_addr *a)
953 {
954 IPV6_FOR_EACH (i) {
955 if (a->s6_addrX[i]) {
956 return false;
957 }
958 }
959 return true;
960 }
961
962 /* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
963 * low-order 0-bits. */
964 struct in6_addr
965 ipv6_create_mask(int mask)
966 {
967 struct in6_addr netmask;
968 uint8_t *netmaskp = &netmask.s6_addr[0];
969
970 memset(&netmask, 0, sizeof netmask);
971 while (mask > 8) {
972 *netmaskp = 0xff;
973 netmaskp++;
974 mask -= 8;
975 }
976
977 if (mask) {
978 *netmaskp = 0xff << (8 - mask);
979 }
980
981 return netmask;
982 }
983
984 /* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
985 * address that it specifies, that is, the number of 1-bits in 'netmask'.
986 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
987 *
988 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
989 * will still be in the valid range but isn't otherwise meaningful. */
990 int
991 ipv6_count_cidr_bits(const struct in6_addr *netmask)
992 {
993 int i;
994 int count = 0;
995 const uint8_t *netmaskp = &netmask->s6_addr[0];
996
997 for (i=0; i<16; i++) {
998 if (netmaskp[i] == 0xff) {
999 count += 8;
1000 } else {
1001 uint8_t nm;
1002
1003 for(nm = netmaskp[i]; nm; nm <<= 1) {
1004 count++;
1005 }
1006 break;
1007 }
1008
1009 }
1010
1011 return count;
1012 }
1013
1014 /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
1015 * high-order 1-bits and 128-N low-order 0-bits. */
1016 bool
1017 ipv6_is_cidr(const struct in6_addr *netmask)
1018 {
1019 const uint8_t *netmaskp = &netmask->s6_addr[0];
1020 int i;
1021
1022 for (i=0; i<16; i++) {
1023 if (netmaskp[i] != 0xff) {
1024 uint8_t x = ~netmaskp[i];
1025 if (x & (x + 1)) {
1026 return false;
1027 }
1028 while (++i < 16) {
1029 if (netmaskp[i]) {
1030 return false;
1031 }
1032 }
1033 }
1034 }
1035
1036 return true;
1037 }
1038
1039 /* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
1040 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
1041 * in 'b' and returned. This payload may be populated with appropriate
1042 * information by the caller. Sets 'b''s 'frame' pointer and 'l3' offset to
1043 * the Ethernet header and payload respectively. Aligns b->l3 on a 32-bit
1044 * boundary.
1045 *
1046 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
1047 * desired. */
1048 void *
1049 eth_compose(struct dp_packet *b, const struct eth_addr eth_dst,
1050 const struct eth_addr eth_src, uint16_t eth_type,
1051 size_t size)
1052 {
1053 void *data;
1054 struct eth_header *eth;
1055
1056
1057 dp_packet_clear(b);
1058
1059 /* The magic 2 here ensures that the L3 header (when it is added later)
1060 * will be 32-bit aligned. */
1061 dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
1062 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
1063 eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
1064 data = dp_packet_put_zeros(b, size);
1065
1066 eth->eth_dst = eth_dst;
1067 eth->eth_src = eth_src;
1068 eth->eth_type = htons(eth_type);
1069
1070 b->packet_type = htonl(PT_ETH);
1071 dp_packet_reset_offsets(b);
1072 dp_packet_set_l3(b, data);
1073
1074 return data;
1075 }
1076
1077 void
1078 packet_set_ipv4_addr(struct dp_packet *packet,
1079 ovs_16aligned_be32 *addr, ovs_be32 new_addr)
1080 {
1081 struct ip_header *nh = dp_packet_l3(packet);
1082 ovs_be32 old_addr = get_16aligned_be32(addr);
1083 size_t l4_size = dp_packet_l4_size(packet);
1084
1085 pkt_metadata_init_conn(&packet->md);
1086
1087 if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
1088 struct tcp_header *th = dp_packet_l4(packet);
1089
1090 th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
1091 } else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
1092 struct udp_header *uh = dp_packet_l4(packet);
1093
1094 if (uh->udp_csum) {
1095 uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
1096 if (!uh->udp_csum) {
1097 uh->udp_csum = htons(0xffff);
1098 }
1099 }
1100 }
1101 nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
1102 put_16aligned_be32(addr, new_addr);
1103 }
1104
1105 /* Returns true, if packet contains at least one routing header where
1106 * segements_left > 0.
1107 *
1108 * This function assumes that L3 and L4 offsets are set in the packet. */
1109 static bool
1110 packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr)
1111 {
1112 const struct ovs_16aligned_ip6_hdr *nh;
1113 size_t len;
1114 size_t remaining;
1115 uint8_t *data = dp_packet_l3(packet);
1116
1117 remaining = packet->l4_ofs - packet->l3_ofs;
1118 if (remaining < sizeof *nh) {
1119 return false;
1120 }
1121 nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
1122 data += sizeof *nh;
1123 remaining -= sizeof *nh;
1124 *nexthdr = nh->ip6_nxt;
1125
1126 while (1) {
1127 if ((*nexthdr != IPPROTO_HOPOPTS)
1128 && (*nexthdr != IPPROTO_ROUTING)
1129 && (*nexthdr != IPPROTO_DSTOPTS)
1130 && (*nexthdr != IPPROTO_AH)
1131 && (*nexthdr != IPPROTO_FRAGMENT)) {
1132 /* It's either a terminal header (e.g., TCP, UDP) or one we
1133 * don't understand. In either case, we're done with the
1134 * packet, so use it to fill in 'nw_proto'. */
1135 break;
1136 }
1137
1138 /* We only verify that at least 8 bytes of the next header are
1139 * available, but many of these headers are longer. Ensure that
1140 * accesses within the extension header are within those first 8
1141 * bytes. All extension headers are required to be at least 8
1142 * bytes. */
1143 if (remaining < 8) {
1144 return false;
1145 }
1146
1147 if (*nexthdr == IPPROTO_AH) {
1148 /* A standard AH definition isn't available, but the fields
1149 * we care about are in the same location as the generic
1150 * option header--only the header length is calculated
1151 * differently. */
1152 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
1153
1154 *nexthdr = ext_hdr->ip6e_nxt;
1155 len = (ext_hdr->ip6e_len + 2) * 4;
1156 } else if (*nexthdr == IPPROTO_FRAGMENT) {
1157 const struct ovs_16aligned_ip6_frag *frag_hdr
1158 = ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);
1159
1160 *nexthdr = frag_hdr->ip6f_nxt;
1161 len = sizeof *frag_hdr;
1162 } else if (*nexthdr == IPPROTO_ROUTING) {
1163 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
1164
1165 if (rh->ip6r_segleft > 0) {
1166 return true;
1167 }
1168
1169 *nexthdr = rh->ip6r_nxt;
1170 len = (rh->ip6r_len + 1) * 8;
1171 } else {
1172 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
1173
1174 *nexthdr = ext_hdr->ip6e_nxt;
1175 len = (ext_hdr->ip6e_len + 1) * 8;
1176 }
1177
1178 if (remaining < len) {
1179 return false;
1180 }
1181 remaining -= len;
1182 data += len;
1183 }
1184
1185 return false;
1186 }
1187
1188 static void
1189 packet_update_csum128(struct dp_packet *packet, uint8_t proto,
1190 ovs_16aligned_be32 addr[4],
1191 const struct in6_addr *new_addr)
1192 {
1193 size_t l4_size = dp_packet_l4_size(packet);
1194
1195 if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
1196 struct tcp_header *th = dp_packet_l4(packet);
1197
1198 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
1199 } else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
1200 struct udp_header *uh = dp_packet_l4(packet);
1201
1202 if (uh->udp_csum) {
1203 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
1204 if (!uh->udp_csum) {
1205 uh->udp_csum = htons(0xffff);
1206 }
1207 }
1208 } else if (proto == IPPROTO_ICMPV6 &&
1209 l4_size >= sizeof(struct icmp6_header)) {
1210 struct icmp6_header *icmp = dp_packet_l4(packet);
1211
1212 icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
1213 }
1214 }
1215
1216 void
1217 packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
1218 ovs_16aligned_be32 addr[4],
1219 const struct in6_addr *new_addr,
1220 bool recalculate_csum)
1221 {
1222 if (recalculate_csum) {
1223 packet_update_csum128(packet, proto, addr, new_addr);
1224 }
1225 memcpy(addr, new_addr, sizeof(ovs_be32[4]));
1226 pkt_metadata_init_conn(&packet->md);
1227 }
1228
1229 static void
1230 packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
1231 {
1232 ovs_be32 old_label = get_16aligned_be32(flow_label);
1233 ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
1234 put_16aligned_be32(flow_label, new_label);
1235 }
1236
1237 static void
1238 packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
1239 {
1240 ovs_be32 old_label = get_16aligned_be32(flow_label);
1241 ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
1242 put_16aligned_be32(flow_label, new_label);
1243 }
1244
1245 /* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
1246 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
1247 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
1248 * markers. */
1249 void
1250 packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
1251 uint8_t tos, uint8_t ttl)
1252 {
1253 struct ip_header *nh = dp_packet_l3(packet);
1254
1255 if (get_16aligned_be32(&nh->ip_src) != src) {
1256 packet_set_ipv4_addr(packet, &nh->ip_src, src);
1257 }
1258
1259 if (get_16aligned_be32(&nh->ip_dst) != dst) {
1260 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
1261 }
1262
1263 if (nh->ip_tos != tos) {
1264 uint8_t *field = &nh->ip_tos;
1265
1266 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
1267 htons((uint16_t) tos));
1268 *field = tos;
1269 }
1270
1271 if (nh->ip_ttl != ttl) {
1272 uint8_t *field = &nh->ip_ttl;
1273
1274 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
1275 htons(ttl << 8));
1276 *field = ttl;
1277 }
1278 }
1279
1280 /* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
1281 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
1282 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
1283 * populated l[34] offsets. */
1284 void
1285 packet_set_ipv6(struct dp_packet *packet, const struct in6_addr *src,
1286 const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl,
1287 uint8_t key_hl)
1288 {
1289 struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
1290 uint8_t proto = 0;
1291 bool rh_present;
1292
1293 rh_present = packet_rh_present(packet, &proto);
1294
1295 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
1296 packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32, src, true);
1297 }
1298
1299 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
1300 packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
1301 !rh_present);
1302 }
1303
1304 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
1305 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
1306 nh->ip6_hlim = key_hl;
1307 }
1308
1309 static void
1310 packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
1311 {
1312 if (*port != new_port) {
1313 *csum = recalc_csum16(*csum, *port, new_port);
1314 *port = new_port;
1315 }
1316 }
1317
1318 /* Sets the TCP source and destination port ('src' and 'dst' respectively) of
1319 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
1320 * with its l4 offset properly populated. */
1321 void
1322 packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
1323 {
1324 struct tcp_header *th = dp_packet_l4(packet);
1325
1326 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
1327 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
1328 pkt_metadata_init_conn(&packet->md);
1329 }
1330
1331 /* Sets the UDP source and destination port ('src' and 'dst' respectively) of
1332 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
1333 * with its l4 offset properly populated. */
1334 void
1335 packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
1336 {
1337 struct udp_header *uh = dp_packet_l4(packet);
1338
1339 if (uh->udp_csum) {
1340 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
1341 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
1342
1343 if (!uh->udp_csum) {
1344 uh->udp_csum = htons(0xffff);
1345 }
1346 } else {
1347 uh->udp_src = src;
1348 uh->udp_dst = dst;
1349 }
1350 pkt_metadata_init_conn(&packet->md);
1351 }
1352
1353 /* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
1354 * the SCTP header contained in 'packet'. 'packet' must be a valid SCTP packet
1355 * with its l4 offset properly populated. */
1356 void
1357 packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
1358 {
1359 struct sctp_header *sh = dp_packet_l4(packet);
1360 ovs_be32 old_csum, old_correct_csum, new_csum;
1361 uint16_t tp_len = dp_packet_l4_size(packet);
1362
1363 old_csum = get_16aligned_be32(&sh->sctp_csum);
1364 put_16aligned_be32(&sh->sctp_csum, 0);
1365 old_correct_csum = crc32c((void *)sh, tp_len);
1366
1367 sh->sctp_src = src;
1368 sh->sctp_dst = dst;
1369
1370 new_csum = crc32c((void *)sh, tp_len);
1371 put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum ^ new_csum);
1372 pkt_metadata_init_conn(&packet->md);
1373 }
1374
1375 /* Sets the ICMP type and code of the ICMP header contained in 'packet'.
1376 * 'packet' must be a valid ICMP packet with its l4 offset properly
1377 * populated. */
1378 void
1379 packet_set_icmp(struct dp_packet *packet, uint8_t type, uint8_t code)
1380 {
1381 struct icmp_header *ih = dp_packet_l4(packet);
1382 ovs_be16 orig_tc = htons(ih->icmp_type << 8 | ih->icmp_code);
1383 ovs_be16 new_tc = htons(type << 8 | code);
1384
1385 if (orig_tc != new_tc) {
1386 ih->icmp_type = type;
1387 ih->icmp_code = code;
1388
1389 ih->icmp_csum = recalc_csum16(ih->icmp_csum, orig_tc, new_tc);
1390 }
1391 pkt_metadata_init_conn(&packet->md);
1392 }
1393
1394 /* Sets the IGMP type to IGMP_HOST_MEMBERSHIP_QUERY and populates the
1395 * v3 query header fields in 'packet'. 'packet' must be a valid IGMPv3
1396 * query packet with its l4 offset properly populated.
1397 */
1398 void
1399 packet_set_igmp3_query(struct dp_packet *packet, uint8_t max_resp,
1400 ovs_be32 group, bool srs, uint8_t qrv, uint8_t qqic)
1401 {
1402 struct igmpv3_query_header *igh = dp_packet_l4(packet);
1403 ovs_be16 orig_type_max_resp =
1404 htons(igh->type << 8 | igh->max_resp);
1405 ovs_be16 new_type_max_resp =
1406 htons(IGMP_HOST_MEMBERSHIP_QUERY << 8 | max_resp);
1407
1408 if (orig_type_max_resp != new_type_max_resp) {
1409 igh->type = IGMP_HOST_MEMBERSHIP_QUERY;
1410 igh->max_resp = max_resp;
1411 igh->csum = recalc_csum16(igh->csum, orig_type_max_resp,
1412 new_type_max_resp);
1413 }
1414
1415 ovs_be32 old_group = get_16aligned_be32(&igh->group);
1416
1417 if (old_group != group) {
1418 put_16aligned_be32(&igh->group, group);
1419 igh->csum = recalc_csum32(igh->csum, old_group, group);
1420 }
1421
1422 /* See RFC 3376 4.1.6. */
1423 if (qrv > 7) {
1424 qrv = 0;
1425 }
1426
1427 ovs_be16 orig_srs_qrv_qqic = htons(igh->srs_qrv << 8 | igh->qqic);
1428 ovs_be16 new_srs_qrv_qqic = htons(srs << 11 | qrv << 8 | qqic);
1429
1430 if (orig_srs_qrv_qqic != new_srs_qrv_qqic) {
1431 igh->srs_qrv = (srs << 3 | qrv);
1432 igh->qqic = qqic;
1433 igh->csum = recalc_csum16(igh->csum, orig_srs_qrv_qqic,
1434 new_srs_qrv_qqic);
1435 }
1436 }
1437
1438 void
1439 packet_set_nd_ext(struct dp_packet *packet, const ovs_16aligned_be32 rso_flags,
1440 const uint8_t opt_type)
1441 {
1442 struct ovs_nd_msg *ns;
1443 struct ovs_nd_lla_opt *opt;
1444 int bytes_remain = dp_packet_l4_size(packet);
1445 struct ovs_16aligned_ip6_hdr * nh = dp_packet_l3(packet);
1446 uint32_t pseudo_hdr_csum = 0;
1447
1448 if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
1449 return;
1450 }
1451
1452 if (nh) {
1453 pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
1454 }
1455
1456 ns = dp_packet_l4(packet);
1457 opt = &ns->options[0];
1458
1459 /* set RSO flags and option type */
1460 ns->rso_flags = rso_flags;
1461 opt->type = opt_type;
1462
1463 /* recalculate checksum */
1464 ovs_be16 *csum_value = &(ns->icmph.icmp6_cksum);
1465 *csum_value = 0;
1466 *csum_value = csum_finish(csum_continue(pseudo_hdr_csum,
1467 &(ns->icmph), bytes_remain));
1468
1469 }
1470
1471 void
1472 packet_set_nd(struct dp_packet *packet, const struct in6_addr *target,
1473 const struct eth_addr sll, const struct eth_addr tll)
1474 {
1475 struct ovs_nd_msg *ns;
1476 struct ovs_nd_lla_opt *opt;
1477 int bytes_remain = dp_packet_l4_size(packet);
1478
1479 if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
1480 return;
1481 }
1482
1483 ns = dp_packet_l4(packet);
1484 opt = &ns->options[0];
1485 bytes_remain -= sizeof(*ns);
1486
1487 if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
1488 packet_set_ipv6_addr(packet, IPPROTO_ICMPV6, ns->target.be32, target,
1489 true);
1490 }
1491
1492 while (bytes_remain >= ND_LLA_OPT_LEN && opt->len != 0) {
1493 if (opt->type == ND_OPT_SOURCE_LINKADDR && opt->len == 1) {
1494 if (!eth_addr_equals(opt->mac, sll)) {
1495 ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
1496
1497 *csum = recalc_csum48(*csum, opt->mac, sll);
1498 opt->mac = sll;
1499 }
1500
1501 /* A packet can only contain one SLL or TLL option */
1502 break;
1503 } else if (opt->type == ND_OPT_TARGET_LINKADDR && opt->len == 1) {
1504 if (!eth_addr_equals(opt->mac, tll)) {
1505 ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
1506
1507 *csum = recalc_csum48(*csum, opt->mac, tll);
1508 opt->mac = tll;
1509 }
1510
1511 /* A packet can only contain one SLL or TLL option */
1512 break;
1513 }
1514
1515 opt += opt->len;
1516 bytes_remain -= opt->len * ND_LLA_OPT_LEN;
1517 }
1518 }
1519
1520 const char *
1521 packet_tcp_flag_to_string(uint32_t flag)
1522 {
1523 switch (flag) {
1524 case TCP_FIN:
1525 return "fin";
1526 case TCP_SYN:
1527 return "syn";
1528 case TCP_RST:
1529 return "rst";
1530 case TCP_PSH:
1531 return "psh";
1532 case TCP_ACK:
1533 return "ack";
1534 case TCP_URG:
1535 return "urg";
1536 case TCP_ECE:
1537 return "ece";
1538 case TCP_CWR:
1539 return "cwr";
1540 case TCP_NS:
1541 return "ns";
1542 case 0x200:
1543 return "[200]";
1544 case 0x400:
1545 return "[400]";
1546 case 0x800:
1547 return "[800]";
1548 default:
1549 return NULL;
1550 }
1551 }
1552
1553 /* Appends a string representation of the TCP flags value 'tcp_flags'
1554 * (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
1555 * format used by tcpdump. */
1556 void
1557 packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
1558 {
1559 if (!tcp_flags) {
1560 ds_put_cstr(s, "none");
1561 return;
1562 }
1563
1564 if (tcp_flags & TCP_SYN) {
1565 ds_put_char(s, 'S');
1566 }
1567 if (tcp_flags & TCP_FIN) {
1568 ds_put_char(s, 'F');
1569 }
1570 if (tcp_flags & TCP_PSH) {
1571 ds_put_char(s, 'P');
1572 }
1573 if (tcp_flags & TCP_RST) {
1574 ds_put_char(s, 'R');
1575 }
1576 if (tcp_flags & TCP_URG) {
1577 ds_put_char(s, 'U');
1578 }
1579 if (tcp_flags & TCP_ACK) {
1580 ds_put_char(s, '.');
1581 }
1582 if (tcp_flags & TCP_ECE) {
1583 ds_put_cstr(s, "E");
1584 }
1585 if (tcp_flags & TCP_CWR) {
1586 ds_put_cstr(s, "C");
1587 }
1588 if (tcp_flags & TCP_NS) {
1589 ds_put_cstr(s, "N");
1590 }
1591 if (tcp_flags & 0x200) {
1592 ds_put_cstr(s, "[200]");
1593 }
1594 if (tcp_flags & 0x400) {
1595 ds_put_cstr(s, "[400]");
1596 }
1597 if (tcp_flags & 0x800) {
1598 ds_put_cstr(s, "[800]");
1599 }
1600 }
1601
1602 #define ARP_PACKET_SIZE (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
1603 ARP_ETH_HEADER_LEN)
1604
1605 /* Clears 'b' and replaces its contents by an ARP frame with the specified
1606 * 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'. The outer
1607 * Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
1608 * 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
1609 * 'broadcast' is true. Points the L3 header to the ARP header. */
1610 void
1611 compose_arp(struct dp_packet *b, uint16_t arp_op,
1612 const struct eth_addr arp_sha, const struct eth_addr arp_tha,
1613 bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa)
1614 {
1615 compose_arp__(b);
1616
1617 struct eth_header *eth = dp_packet_eth(b);
1618 eth->eth_dst = broadcast ? eth_addr_broadcast : arp_tha;
1619 eth->eth_src = arp_sha;
1620
1621 struct arp_eth_header *arp = dp_packet_l3(b);
1622 arp->ar_op = htons(arp_op);
1623 arp->ar_sha = arp_sha;
1624 arp->ar_tha = arp_tha;
1625 put_16aligned_be32(&arp->ar_spa, arp_spa);
1626 put_16aligned_be32(&arp->ar_tpa, arp_tpa);
1627 }
1628
1629 /* Clears 'b' and replaces its contents by an ARP frame. Sets the fields in
1630 * the Ethernet and ARP headers that are fixed for ARP frames to those fixed
1631 * values, and zeroes the other fields. Points the L3 header to the ARP
1632 * header. */
1633 void
1634 compose_arp__(struct dp_packet *b)
1635 {
1636 dp_packet_clear(b);
1637 dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
1638 dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
1639
1640 struct eth_header *eth = dp_packet_put_zeros(b, sizeof *eth);
1641 eth->eth_type = htons(ETH_TYPE_ARP);
1642
1643 struct arp_eth_header *arp = dp_packet_put_zeros(b, sizeof *arp);
1644 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
1645 arp->ar_pro = htons(ARP_PRO_IP);
1646 arp->ar_hln = sizeof arp->ar_sha;
1647 arp->ar_pln = sizeof arp->ar_spa;
1648
1649 dp_packet_reset_offsets(b);
1650 dp_packet_set_l3(b, arp);
1651
1652 b->packet_type = htonl(PT_ETH);
1653 }
1654
1655 /* This function expects packet with ethernet header with correct
1656 * l3 pointer set. */
1657 void *
1658 compose_ipv6(struct dp_packet *packet, uint8_t proto,
1659 const struct in6_addr *src, const struct in6_addr *dst,
1660 uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size)
1661 {
1662 struct ip6_hdr *nh;
1663 void *data;
1664
1665 nh = dp_packet_l3(packet);
1666 nh->ip6_vfc = 0x60;
1667 nh->ip6_nxt = proto;
1668 nh->ip6_plen = htons(size);
1669 data = dp_packet_put_zeros(packet, size);
1670 dp_packet_set_l4(packet, data);
1671 packet_set_ipv6(packet, src, dst, key_tc, key_fl, key_hl);
1672 return data;
1673 }
1674
1675 /* Compose an IPv6 Neighbor Discovery Neighbor Solicitation message. */
1676 void
1677 compose_nd_ns(struct dp_packet *b, const struct eth_addr eth_src,
1678 const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst)
1679 {
1680 struct in6_addr sn_addr;
1681 struct eth_addr eth_dst;
1682 struct ovs_nd_msg *ns;
1683 struct ovs_nd_lla_opt *lla_opt;
1684 uint32_t icmp_csum;
1685
1686 in6_addr_solicited_node(&sn_addr, ipv6_dst);
1687 ipv6_multicast_to_ethernet(&eth_dst, &sn_addr);
1688
1689 eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1690 ns = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, &sn_addr,
1691 0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
1692
1693 ns->icmph.icmp6_type = ND_NEIGHBOR_SOLICIT;
1694 ns->icmph.icmp6_code = 0;
1695 put_16aligned_be32(&ns->rso_flags, htonl(0));
1696
1697 lla_opt = &ns->options[0];
1698 lla_opt->type = ND_OPT_SOURCE_LINKADDR;
1699 lla_opt->len = 1;
1700
1701 packet_set_nd(b, ipv6_dst, eth_src, eth_addr_zero);
1702
1703 ns->icmph.icmp6_cksum = 0;
1704 icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1705 ns->icmph.icmp6_cksum = csum_finish(
1706 csum_continue(icmp_csum, ns, ND_MSG_LEN + ND_LLA_OPT_LEN));
1707 }
1708
1709 /* Compose an IPv6 Neighbor Discovery Neighbor Advertisement message. */
1710 void
1711 compose_nd_na(struct dp_packet *b,
1712 const struct eth_addr eth_src, const struct eth_addr eth_dst,
1713 const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
1714 ovs_be32 rso_flags)
1715 {
1716 struct ovs_nd_msg *na;
1717 struct ovs_nd_lla_opt *lla_opt;
1718 uint32_t icmp_csum;
1719
1720 eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1721 na = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst,
1722 0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
1723
1724 na->icmph.icmp6_type = ND_NEIGHBOR_ADVERT;
1725 na->icmph.icmp6_code = 0;
1726 put_16aligned_be32(&na->rso_flags, rso_flags);
1727
1728 lla_opt = &na->options[0];
1729 lla_opt->type = ND_OPT_TARGET_LINKADDR;
1730 lla_opt->len = 1;
1731
1732 packet_set_nd(b, ipv6_src, eth_addr_zero, eth_src);
1733
1734 na->icmph.icmp6_cksum = 0;
1735 icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1736 na->icmph.icmp6_cksum = csum_finish(csum_continue(
1737 icmp_csum, na, ND_MSG_LEN + ND_LLA_OPT_LEN));
1738 }
1739
1740 /* Compose an IPv6 Neighbor Discovery Router Advertisement message with
1741 * Source Link-layer Address Option and MTU Option.
1742 * Caller can call packet_put_ra_prefix_opt to append Prefix Information
1743 * Options to composed messags in 'b'. */
1744 void
1745 compose_nd_ra(struct dp_packet *b,
1746 const struct eth_addr eth_src, const struct eth_addr eth_dst,
1747 const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
1748 uint8_t cur_hop_limit, uint8_t mo_flags,
1749 ovs_be16 router_lt, ovs_be32 reachable_time,
1750 ovs_be32 retrans_timer, uint32_t mtu)
1751 {
1752 /* Don't compose Router Advertisement packet with MTU Option if mtu
1753 * value is 0. */
1754 bool with_mtu = mtu != 0;
1755 size_t mtu_opt_len = with_mtu ? ND_MTU_OPT_LEN : 0;
1756
1757 eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
1758
1759 struct ovs_ra_msg *ra = compose_ipv6(
1760 b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst, 0, 0, 255,
1761 RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len);
1762 ra->icmph.icmp6_type = ND_ROUTER_ADVERT;
1763 ra->icmph.icmp6_code = 0;
1764 ra->cur_hop_limit = cur_hop_limit;
1765 ra->mo_flags = mo_flags;
1766 ra->router_lifetime = router_lt;
1767 ra->reachable_time = reachable_time;
1768 ra->retrans_timer = retrans_timer;
1769
1770 struct ovs_nd_lla_opt *lla_opt = ra->options;
1771 lla_opt->type = ND_OPT_SOURCE_LINKADDR;
1772 lla_opt->len = 1;
1773 lla_opt->mac = eth_src;
1774
1775 if (with_mtu) {
1776 /* ovs_nd_mtu_opt has the same size with ovs_nd_lla_opt. */
1777 struct ovs_nd_mtu_opt *mtu_opt
1778 = (struct ovs_nd_mtu_opt *)(lla_opt + 1);
1779 mtu_opt->type = ND_OPT_MTU;
1780 mtu_opt->len = 1;
1781 mtu_opt->reserved = 0;
1782 put_16aligned_be32(&mtu_opt->mtu, htonl(mtu));
1783 }
1784
1785 ra->icmph.icmp6_cksum = 0;
1786 uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1787 ra->icmph.icmp6_cksum = csum_finish(csum_continue(
1788 icmp_csum, ra, RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len));
1789 }
1790
1791 /* Append an IPv6 Neighbor Discovery Prefix Information option to a
1792 * Router Advertisement message. */
1793 void
1794 packet_put_ra_prefix_opt(struct dp_packet *b,
1795 uint8_t plen, uint8_t la_flags,
1796 ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime,
1797 const ovs_be128 prefix)
1798 {
1799 size_t prev_l4_size = dp_packet_l4_size(b);
1800 struct ip6_hdr *nh = dp_packet_l3(b);
1801 nh->ip6_plen = htons(prev_l4_size + ND_PREFIX_OPT_LEN);
1802
1803 struct ovs_nd_prefix_opt *prefix_opt =
1804 dp_packet_put_uninit(b, sizeof *prefix_opt);
1805 prefix_opt->type = ND_OPT_PREFIX_INFORMATION;
1806 prefix_opt->len = 4;
1807 prefix_opt->prefix_len = plen;
1808 prefix_opt->la_flags = la_flags;
1809 put_16aligned_be32(&prefix_opt->valid_lifetime, valid_lifetime);
1810 put_16aligned_be32(&prefix_opt->preferred_lifetime, preferred_lifetime);
1811 put_16aligned_be32(&prefix_opt->reserved, 0);
1812 memcpy(prefix_opt->prefix.be32, prefix.be32, sizeof(ovs_be32[4]));
1813
1814 struct ovs_ra_msg *ra = dp_packet_l4(b);
1815 ra->icmph.icmp6_cksum = 0;
1816 uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
1817 ra->icmph.icmp6_cksum = csum_finish(csum_continue(
1818 icmp_csum, ra, prev_l4_size + ND_PREFIX_OPT_LEN));
1819 }
1820
1821 uint32_t
1822 packet_csum_pseudoheader(const struct ip_header *ip)
1823 {
1824 uint32_t partial = 0;
1825
1826 partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
1827 partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
1828 partial = csum_add16(partial, htons(ip->ip_proto));
1829 partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
1830 IP_IHL(ip->ip_ihl_ver) * 4));
1831
1832 return partial;
1833 }
1834
1835 #ifndef __CHECKER__
1836 uint32_t
1837 packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *ip6)
1838 {
1839 uint32_t partial = 0;
1840
1841 partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
1842 partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
1843 partial = csum_add16(partial, htons(ip6->ip6_nxt));
1844 partial = csum_add16(partial, ip6->ip6_plen);
1845
1846 return partial;
1847 }
1848
1849 /* Calculate the IPv6 upper layer checksum according to RFC2460. We pass the
1850 ip6_nxt and ip6_plen values, so it will also work if extension headers
1851 are present. */
1852 ovs_be16
1853 packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *ip6,
1854 const void *data, uint8_t l4_protocol,
1855 uint16_t l4_size)
1856 {
1857 uint32_t partial = 0;
1858
1859 partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
1860 partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
1861 partial = csum_add16(partial, htons(l4_protocol));
1862 partial = csum_add16(partial, htons(l4_size));
1863
1864 partial = csum_continue(partial, data, l4_size);
1865
1866 return csum_finish(partial);
1867 }
1868 #endif
1869
1870 void
1871 IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6)
1872 {
1873 if (is_ipv6) {
1874 ovs_16aligned_be32 *ip6 = dp_packet_l3(pkt);
1875
1876 put_16aligned_be32(ip6, get_16aligned_be32(ip6) |
1877 htonl(IP_ECN_CE << 20));
1878 } else {
1879 struct ip_header *nh = dp_packet_l3(pkt);
1880 uint8_t tos = nh->ip_tos;
1881
1882 tos |= IP_ECN_CE;
1883 if (nh->ip_tos != tos) {
1884 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(nh->ip_tos),
1885 htons((uint16_t) tos));
1886 nh->ip_tos = tos;
1887 }
1888 }
1889 }