]> git.proxmox.com Git - mirror_ovs.git/blob - lib/packets.h
netdev-offload-tc: Use single 'once' variable for probing tc features
[mirror_ovs.git] / lib / packets.h
1 /*
2 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef PACKETS_H
18 #define PACKETS_H 1
19
20 #include <inttypes.h>
21 #include <sys/types.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include "compiler.h"
25 #include "openvswitch/geneve.h"
26 #include "openvswitch/packets.h"
27 #include "openvswitch/types.h"
28 #include "openvswitch/nsh.h"
29 #include "odp-netlink.h"
30 #include "random.h"
31 #include "hash.h"
32 #include "tun-metadata.h"
33 #include "unaligned.h"
34 #include "util.h"
35 #include "timeval.h"
36
37 struct dp_packet;
38 struct conn;
39 struct ds;
40
41 /* Purely internal to OVS userspace. These flags should never be exposed to
42 * the outside world and so aren't included in the flags mask. */
43
44 /* Tunnel information is in userspace datapath format. */
45 #define FLOW_TNL_F_UDPIF (1 << 4)
46
47 static inline bool ipv6_addr_is_set(const struct in6_addr *addr);
48
49 static inline bool
50 flow_tnl_dst_is_set(const struct flow_tnl *tnl)
51 {
52 return tnl->ip_dst || ipv6_addr_is_set(&tnl->ipv6_dst);
53 }
54
55 static inline bool
56 flow_tnl_src_is_set(const struct flow_tnl *tnl)
57 {
58 return tnl->ip_src || ipv6_addr_is_set(&tnl->ipv6_src);
59 }
60
61 struct in6_addr flow_tnl_dst(const struct flow_tnl *tnl);
62 struct in6_addr flow_tnl_src(const struct flow_tnl *tnl);
63
64 /* Returns an offset to 'src' covering all the meaningful fields in 'src'. */
65 static inline size_t
66 flow_tnl_size(const struct flow_tnl *src)
67 {
68 if (!flow_tnl_dst_is_set(src)) {
69 /* Covers ip_dst and ipv6_dst only. */
70 return offsetof(struct flow_tnl, ip_src);
71 }
72 if (src->flags & FLOW_TNL_F_UDPIF) {
73 /* Datapath format, cover all options we have. */
74 return offsetof(struct flow_tnl, metadata.opts)
75 + src->metadata.present.len;
76 }
77 if (!src->metadata.present.map) {
78 /* No TLVs, opts is irrelevant. */
79 return offsetof(struct flow_tnl, metadata.opts);
80 }
81 /* Have decoded TLVs, opts is relevant. */
82 return sizeof *src;
83 }
84
85 /* Copy flow_tnl, but avoid copying unused portions of tun_metadata. Unused
86 * data in 'dst' is NOT cleared, so this must not be used in cases where the
87 * uninitialized portion may be hashed over. */
88 static inline void
89 flow_tnl_copy__(struct flow_tnl *dst, const struct flow_tnl *src)
90 {
91 memcpy(dst, src, flow_tnl_size(src));
92 }
93
94 static inline bool
95 flow_tnl_equal(const struct flow_tnl *a, const struct flow_tnl *b)
96 {
97 size_t a_size = flow_tnl_size(a);
98
99 return a_size == flow_tnl_size(b) && !memcmp(a, b, a_size);
100 }
101
102 /* Datapath packet metadata */
103 struct pkt_metadata {
104 PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline0,
105 uint32_t recirc_id; /* Recirculation id carried with the
106 recirculating packets. 0 for packets
107 received from the wire. */
108 uint32_t dp_hash; /* hash value computed by the recirculation
109 action. */
110 uint32_t skb_priority; /* Packet priority for QoS. */
111 uint32_t pkt_mark; /* Packet mark. */
112 uint8_t ct_state; /* Connection state. */
113 bool ct_orig_tuple_ipv6;
114 uint16_t ct_zone; /* Connection zone. */
115 uint32_t ct_mark; /* Connection mark. */
116 ovs_u128 ct_label; /* Connection label. */
117 union flow_in_port in_port; /* Input port. */
118 struct conn *conn; /* Cached conntrack connection. */
119 bool reply; /* True if reply direction. */
120 bool icmp_related; /* True if ICMP related. */
121 );
122
123 PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline1,
124 union { /* Populated only for non-zero 'ct_state'. */
125 struct ovs_key_ct_tuple_ipv4 ipv4;
126 struct ovs_key_ct_tuple_ipv6 ipv6; /* Used only if */
127 } ct_orig_tuple; /* 'ct_orig_tuple_ipv6' is set */
128 );
129
130 PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline2,
131 struct flow_tnl tunnel; /* Encapsulating tunnel parameters. Note that
132 * if 'ip_dst' == 0, the rest of the fields may
133 * be uninitialized. */
134 );
135 };
136
137 BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline0) == 0);
138 BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline1) ==
139 CACHE_LINE_SIZE);
140 BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline2) ==
141 2 * CACHE_LINE_SIZE);
142
143 static inline void
144 pkt_metadata_init_tnl(struct pkt_metadata *md)
145 {
146 /* Zero up through the tunnel metadata options. The length and table
147 * are before this and as long as they are empty, the options won't
148 * be looked at. */
149 memset(md, 0, offsetof(struct pkt_metadata, tunnel.metadata.opts));
150 }
151
152 static inline void
153 pkt_metadata_init_conn(struct pkt_metadata *md)
154 {
155 md->conn = NULL;
156 }
157
158 static inline void
159 pkt_metadata_init(struct pkt_metadata *md, odp_port_t port)
160 {
161 /* This is called for every packet in userspace datapath and affects
162 * performance if all the metadata is initialized. Hence, fields should
163 * only be zeroed out when necessary.
164 *
165 * Initialize only till ct_state. Once the ct_state is zeroed out rest
166 * of ct fields will not be looked at unless ct_state != 0.
167 */
168 memset(md, 0, offsetof(struct pkt_metadata, ct_orig_tuple_ipv6));
169
170 /* It can be expensive to zero out all of the tunnel metadata. However,
171 * we can just zero out ip_dst and the rest of the data will never be
172 * looked at. */
173 md->tunnel.ip_dst = 0;
174 md->tunnel.ipv6_dst = in6addr_any;
175 md->in_port.odp_port = port;
176 md->conn = NULL;
177 }
178
179 /* This function prefetches the cachelines touched by pkt_metadata_init()
180 * and pkt_metadata_init_tnl(). For performance reasons the two functions
181 * should be kept in sync. */
182 static inline void
183 pkt_metadata_prefetch_init(struct pkt_metadata *md)
184 {
185 /* Prefetch cacheline0 as members till ct_state and odp_port will
186 * be initialized later in pkt_metadata_init(). */
187 OVS_PREFETCH(md->cacheline0);
188
189 /* Prefetch cacheline1 as members of this cacheline will be zeroed out
190 * in pkt_metadata_init_tnl(). */
191 OVS_PREFETCH(md->cacheline1);
192
193 /* Prefetch cachline2 as ip_dst & ipv6_dst fields will be initialized. */
194 OVS_PREFETCH(md->cacheline2);
195 }
196
197 bool dpid_from_string(const char *s, uint64_t *dpidp);
198
199 #define ETH_ADDR_LEN 6
200
201 static const struct eth_addr eth_addr_broadcast OVS_UNUSED
202 = ETH_ADDR_C(ff,ff,ff,ff,ff,ff);
203
204 static const struct eth_addr eth_addr_exact OVS_UNUSED
205 = ETH_ADDR_C(ff,ff,ff,ff,ff,ff);
206
207 static const struct eth_addr eth_addr_zero OVS_UNUSED
208 = ETH_ADDR_C(00,00,00,00,00,00);
209 static const struct eth_addr64 eth_addr64_zero OVS_UNUSED
210 = ETH_ADDR64_C(00,00,00,00,00,00,00,00);
211
212 static const struct eth_addr eth_addr_stp OVS_UNUSED
213 = ETH_ADDR_C(01,80,c2,00,00,00);
214
215 static const struct eth_addr eth_addr_lacp OVS_UNUSED
216 = ETH_ADDR_C(01,80,c2,00,00,02);
217
218 static const struct eth_addr eth_addr_bfd OVS_UNUSED
219 = ETH_ADDR_C(00,23,20,00,00,01);
220
221 static inline bool eth_addr_is_broadcast(const struct eth_addr a)
222 {
223 return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff);
224 }
225
226 static inline bool eth_addr_is_multicast(const struct eth_addr a)
227 {
228 return a.ea[0] & 1;
229 }
230
231 static inline bool eth_addr_is_local(const struct eth_addr a)
232 {
233 /* Local if it is either a locally administered address or a Nicira random
234 * address. */
235 return a.ea[0] & 2
236 || (a.be16[0] == htons(0x0023)
237 && (a.be16[1] & htons(0xff80)) == htons(0x2080));
238 }
239 static inline bool eth_addr_is_zero(const struct eth_addr a)
240 {
241 return !(a.be16[0] | a.be16[1] | a.be16[2]);
242 }
243 static inline bool eth_addr64_is_zero(const struct eth_addr64 a)
244 {
245 return !(a.be16[0] | a.be16[1] | a.be16[2] | a.be16[3]);
246 }
247
248 static inline int eth_mask_is_exact(const struct eth_addr a)
249 {
250 return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff);
251 }
252
253 static inline int eth_addr_compare_3way(const struct eth_addr a,
254 const struct eth_addr b)
255 {
256 return memcmp(&a, &b, sizeof a);
257 }
258 static inline int eth_addr64_compare_3way(const struct eth_addr64 a,
259 const struct eth_addr64 b)
260 {
261 return memcmp(&a, &b, sizeof a);
262 }
263
264 static inline bool eth_addr_equals(const struct eth_addr a,
265 const struct eth_addr b)
266 {
267 return !eth_addr_compare_3way(a, b);
268 }
269 static inline bool eth_addr64_equals(const struct eth_addr64 a,
270 const struct eth_addr64 b)
271 {
272 return !eth_addr64_compare_3way(a, b);
273 }
274
275 static inline bool eth_addr_equal_except(const struct eth_addr a,
276 const struct eth_addr b,
277 const struct eth_addr mask)
278 {
279 return !(((a.be16[0] ^ b.be16[0]) & mask.be16[0])
280 || ((a.be16[1] ^ b.be16[1]) & mask.be16[1])
281 || ((a.be16[2] ^ b.be16[2]) & mask.be16[2]));
282 }
283
284 uint64_t eth_addr_to_uint64(const struct eth_addr ea);
285
286 static inline uint64_t eth_addr_vlan_to_uint64(const struct eth_addr ea,
287 uint16_t vlan)
288 {
289 return (((uint64_t)vlan << 48) | eth_addr_to_uint64(ea));
290 }
291
292 void eth_addr_from_uint64(uint64_t x, struct eth_addr *ea);
293
294 static inline struct eth_addr eth_addr_invert(const struct eth_addr src)
295 {
296 struct eth_addr dst;
297
298 for (int i = 0; i < ARRAY_SIZE(src.be16); i++) {
299 dst.be16[i] = ~src.be16[i];
300 }
301
302 return dst;
303 }
304
305 void eth_addr_mark_random(struct eth_addr *ea);
306
307 static inline void eth_addr_random(struct eth_addr *ea)
308 {
309 random_bytes((uint8_t *)ea, sizeof *ea);
310 eth_addr_mark_random(ea);
311 }
312
313 static inline void eth_addr_nicira_random(struct eth_addr *ea)
314 {
315 eth_addr_random(ea);
316
317 /* Set the OUI to the Nicira one. */
318 ea->ea[0] = 0x00;
319 ea->ea[1] = 0x23;
320 ea->ea[2] = 0x20;
321
322 /* Set the top bit to indicate random Nicira address. */
323 ea->ea[3] |= 0x80;
324 }
325 static inline uint32_t hash_mac(const struct eth_addr ea,
326 const uint16_t vlan, const uint32_t basis)
327 {
328 return hash_uint64_basis(eth_addr_vlan_to_uint64(ea, vlan), basis);
329 }
330
331 bool eth_addr_is_reserved(const struct eth_addr);
332 bool eth_addr_from_string(const char *, struct eth_addr *);
333
334 void compose_rarp(struct dp_packet *, const struct eth_addr);
335
336 void eth_push_vlan(struct dp_packet *, ovs_be16 tpid, ovs_be16 tci);
337 void eth_pop_vlan(struct dp_packet *);
338
339 const char *eth_from_hex(const char *hex, struct dp_packet **packetp);
340 void eth_format_masked(const struct eth_addr ea,
341 const struct eth_addr *mask, struct ds *s);
342
343 void set_mpls_lse(struct dp_packet *, ovs_be32 label);
344 void push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse);
345 void pop_mpls(struct dp_packet *, ovs_be16 ethtype);
346
347 void set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl);
348 void set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc);
349 void set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label);
350 void set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos);
351 ovs_be32 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos,
352 ovs_be32 label);
353
354 /* Example:
355 *
356 * struct eth_addr mac;
357 * [...]
358 * printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac));
359 *
360 */
361 #define ETH_ADDR_FMT \
362 "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8
363 #define ETH_ADDR_ARGS(EA) ETH_ADDR_BYTES_ARGS((EA).ea)
364 #define ETH_ADDR_BYTES_ARGS(EAB) \
365 (EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], (EAB)[4], (EAB)[5]
366 #define ETH_ADDR_STRLEN 17
367
368 /* Example:
369 *
370 * struct eth_addr64 eui64;
371 * [...]
372 * printf("The EUI-64 address is "ETH_ADDR64_FMT"\n", ETH_ADDR64_ARGS(mac));
373 *
374 */
375 #define ETH_ADDR64_FMT \
376 "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":" \
377 "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8
378 #define ETH_ADDR64_ARGS(EA) ETH_ADDR64_BYTES_ARGS((EA).ea64)
379 #define ETH_ADDR64_BYTES_ARGS(EAB) \
380 (EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], \
381 (EAB)[4], (EAB)[5], (EAB)[6], (EAB)[7]
382 #define ETH_ADDR64_STRLEN 23
383
384 /* Example:
385 *
386 * char *string = "1 00:11:22:33:44:55 2";
387 * struct eth_addr mac;
388 * int a, b;
389 *
390 * if (ovs_scan(string, "%d"ETH_ADDR_SCAN_FMT"%d",
391 * &a, ETH_ADDR_SCAN_ARGS(mac), &b)) {
392 * ...
393 * }
394 */
395 #define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8
396 #define ETH_ADDR_SCAN_ARGS(EA) \
397 &(EA).ea[0], &(EA).ea[1], &(EA).ea[2], &(EA).ea[3], &(EA).ea[4], &(EA).ea[5]
398
399 #define ETH_TYPE_IP 0x0800
400 #define ETH_TYPE_ARP 0x0806
401 #define ETH_TYPE_TEB 0x6558
402 #define ETH_TYPE_VLAN_8021Q 0x8100
403 #define ETH_TYPE_VLAN ETH_TYPE_VLAN_8021Q
404 #define ETH_TYPE_VLAN_8021AD 0x88a8
405 #define ETH_TYPE_IPV6 0x86dd
406 #define ETH_TYPE_LACP 0x8809
407 #define ETH_TYPE_RARP 0x8035
408 #define ETH_TYPE_MPLS 0x8847
409 #define ETH_TYPE_MPLS_MCAST 0x8848
410 #define ETH_TYPE_NSH 0x894f
411 #define ETH_TYPE_ERSPAN1 0x88be /* version 1 type II */
412 #define ETH_TYPE_ERSPAN2 0x22eb /* version 2 type III */
413
414 static inline bool eth_type_mpls(ovs_be16 eth_type)
415 {
416 return eth_type == htons(ETH_TYPE_MPLS) ||
417 eth_type == htons(ETH_TYPE_MPLS_MCAST);
418 }
419
420 static inline bool eth_type_vlan(ovs_be16 eth_type)
421 {
422 return eth_type == htons(ETH_TYPE_VLAN_8021Q) ||
423 eth_type == htons(ETH_TYPE_VLAN_8021AD);
424 }
425
426
427 /* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame
428 * lengths. */
429 #define ETH_TYPE_MIN 0x600
430
431 #define ETH_HEADER_LEN 14
432 #define ETH_PAYLOAD_MIN 46
433 #define ETH_PAYLOAD_MAX 1500
434 #define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN)
435 #define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX)
436 #define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX)
437 struct eth_header {
438 struct eth_addr eth_dst;
439 struct eth_addr eth_src;
440 ovs_be16 eth_type;
441 };
442 BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header));
443
444 void push_eth(struct dp_packet *packet, const struct eth_addr *dst,
445 const struct eth_addr *src);
446 void pop_eth(struct dp_packet *packet);
447
448 void push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src);
449 bool pop_nsh(struct dp_packet *packet);
450
451 #define LLC_DSAP_SNAP 0xaa
452 #define LLC_SSAP_SNAP 0xaa
453 #define LLC_CNTL_SNAP 3
454
455 #define LLC_HEADER_LEN 3
456 struct llc_header {
457 uint8_t llc_dsap;
458 uint8_t llc_ssap;
459 uint8_t llc_cntl;
460 };
461 BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header));
462
463 /* LLC field values used for STP frames. */
464 #define STP_LLC_SSAP 0x42
465 #define STP_LLC_DSAP 0x42
466 #define STP_LLC_CNTL 0x03
467
468 #define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so
469 sizeof(SNAP_ORG_ETHERNET) == 3. */
470 #define SNAP_HEADER_LEN 5
471 OVS_PACKED(
472 struct snap_header {
473 uint8_t snap_org[3];
474 ovs_be16 snap_type;
475 });
476 BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header));
477
478 #define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN)
479 OVS_PACKED(
480 struct llc_snap_header {
481 struct llc_header llc;
482 struct snap_header snap;
483 });
484 BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header));
485
486 #define VLAN_VID_MASK 0x0fff
487 #define VLAN_VID_SHIFT 0
488
489 #define VLAN_PCP_MASK 0xe000
490 #define VLAN_PCP_SHIFT 13
491
492 #define VLAN_CFI 0x1000
493 #define VLAN_CFI_SHIFT 12
494
495 /* Given the vlan_tci field from an 802.1Q header, in network byte order,
496 * returns the VLAN ID in host byte order. */
497 static inline uint16_t
498 vlan_tci_to_vid(ovs_be16 vlan_tci)
499 {
500 return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT;
501 }
502
503 /* Given the vlan_tci field from an 802.1Q header, in network byte order,
504 * returns the priority code point (PCP) in host byte order. */
505 static inline int
506 vlan_tci_to_pcp(ovs_be16 vlan_tci)
507 {
508 return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT;
509 }
510
511 /* Given the vlan_tci field from an 802.1Q header, in network byte order,
512 * returns the Canonical Format Indicator (CFI). */
513 static inline int
514 vlan_tci_to_cfi(ovs_be16 vlan_tci)
515 {
516 return (vlan_tci & htons(VLAN_CFI)) != 0;
517 }
518
519 #define VLAN_HEADER_LEN 4
520 struct vlan_header {
521 ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */
522 ovs_be16 vlan_next_type;
523 };
524 BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header));
525
526 #define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN)
527 struct vlan_eth_header {
528 struct eth_addr veth_dst;
529 struct eth_addr veth_src;
530 ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */
531 ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */
532 ovs_be16 veth_next_type;
533 };
534 BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header));
535
536 /* MPLS related definitions */
537 #define MPLS_TTL_MASK 0x000000ff
538 #define MPLS_TTL_SHIFT 0
539
540 #define MPLS_BOS_MASK 0x00000100
541 #define MPLS_BOS_SHIFT 8
542
543 #define MPLS_TC_MASK 0x00000e00
544 #define MPLS_TC_SHIFT 9
545
546 #define MPLS_LABEL_MASK 0xfffff000
547 #define MPLS_LABEL_SHIFT 12
548
549 #define MPLS_HLEN 4
550
551 struct mpls_hdr {
552 ovs_16aligned_be32 mpls_lse;
553 };
554 BUILD_ASSERT_DECL(MPLS_HLEN == sizeof(struct mpls_hdr));
555
556 /* Given a mpls label stack entry in network byte order
557 * return mpls label in host byte order */
558 static inline uint32_t
559 mpls_lse_to_label(ovs_be32 mpls_lse)
560 {
561 return (ntohl(mpls_lse) & MPLS_LABEL_MASK) >> MPLS_LABEL_SHIFT;
562 }
563
564 /* Given a mpls label stack entry in network byte order
565 * return mpls tc */
566 static inline uint8_t
567 mpls_lse_to_tc(ovs_be32 mpls_lse)
568 {
569 return (ntohl(mpls_lse) & MPLS_TC_MASK) >> MPLS_TC_SHIFT;
570 }
571
572 /* Given a mpls label stack entry in network byte order
573 * return mpls ttl */
574 static inline uint8_t
575 mpls_lse_to_ttl(ovs_be32 mpls_lse)
576 {
577 return (ntohl(mpls_lse) & MPLS_TTL_MASK) >> MPLS_TTL_SHIFT;
578 }
579
580 /* Set label in mpls lse. */
581 static inline void
582 flow_set_mpls_lse_label(ovs_be32 *mpls_lse, uint32_t label)
583 {
584 *mpls_lse &= ~htonl(MPLS_LABEL_MASK);
585 *mpls_lse |= htonl(label << MPLS_LABEL_SHIFT);
586 }
587
588 /* Set TC in mpls lse. */
589 static inline void
590 flow_set_mpls_lse_tc(ovs_be32 *mpls_lse, uint8_t tc)
591 {
592 *mpls_lse &= ~htonl(MPLS_TC_MASK);
593 *mpls_lse |= htonl((tc & 0x7) << MPLS_TC_SHIFT);
594 }
595
596 /* Set BOS in mpls lse. */
597 static inline void
598 flow_set_mpls_lse_bos(ovs_be32 *mpls_lse, uint8_t bos)
599 {
600 *mpls_lse &= ~htonl(MPLS_BOS_MASK);
601 *mpls_lse |= htonl((bos & 0x1) << MPLS_BOS_SHIFT);
602 }
603
604 /* Set TTL in mpls lse. */
605 static inline void
606 flow_set_mpls_lse_ttl(ovs_be32 *mpls_lse, uint8_t ttl)
607 {
608 *mpls_lse &= ~htonl(MPLS_TTL_MASK);
609 *mpls_lse |= htonl(ttl << MPLS_TTL_SHIFT);
610 }
611
612 /* Given a mpls label stack entry in network byte order
613 * return mpls BoS bit */
614 static inline uint8_t
615 mpls_lse_to_bos(ovs_be32 mpls_lse)
616 {
617 return (mpls_lse & htonl(MPLS_BOS_MASK)) != 0;
618 }
619
620 #define IP_FMT "%"PRIu32".%"PRIu32".%"PRIu32".%"PRIu32
621 #define IP_ARGS(ip) \
622 ntohl(ip) >> 24, \
623 (ntohl(ip) >> 16) & 0xff, \
624 (ntohl(ip) >> 8) & 0xff, \
625 ntohl(ip) & 0xff
626
627 /* Example:
628 *
629 * char *string = "1 33.44.55.66 2";
630 * ovs_be32 ip;
631 * int a, b;
632 *
633 * if (ovs_scan(string, "%d"IP_SCAN_FMT"%d", &a, IP_SCAN_ARGS(&ip), &b)) {
634 * ...
635 * }
636 */
637 #define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8
638 #define IP_SCAN_ARGS(ip) \
639 ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \
640 &((uint8_t *) ip)[1], \
641 &((uint8_t *) ip)[2], \
642 &((uint8_t *) ip)[3]
643
644 #define IP_PORT_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8":%"SCNu16
645 #define IP_PORT_SCAN_ARGS(ip, port) \
646 ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \
647 &((uint8_t *) ip)[1], \
648 &((uint8_t *) ip)[2], \
649 &((uint8_t *) ip)[3], \
650 ((void) (ovs_be16) *(port), (uint16_t *) port)
651
652 /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
653 * high-order 1-bits and 32-N low-order 0-bits. */
654 static inline bool
655 ip_is_cidr(ovs_be32 netmask)
656 {
657 uint32_t x = ~ntohl(netmask);
658 return !(x & (x + 1));
659 }
660 static inline bool
661 ip_is_multicast(ovs_be32 ip)
662 {
663 return (ip & htonl(0xf0000000)) == htonl(0xe0000000);
664 }
665 static inline bool
666 ip_is_local_multicast(ovs_be32 ip)
667 {
668 return (ip & htonl(0xffffff00)) == htonl(0xe0000000);
669 }
670 int ip_count_cidr_bits(ovs_be32 netmask);
671 void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *);
672 bool ip_parse(const char *s, ovs_be32 *ip);
673 char *ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
674 OVS_WARN_UNUSED_RESULT;
675 char *ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
676 OVS_WARN_UNUSED_RESULT;
677 char *ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
678 OVS_WARN_UNUSED_RESULT;
679 char *ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip, ovs_be32 *mask)
680 OVS_WARN_UNUSED_RESULT;
681 char *ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip,
682 unsigned int *plen)
683 OVS_WARN_UNUSED_RESULT;
684
685 #define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4)
686 #define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15)
687 #define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl))
688
689 #ifndef IPPROTO_SCTP
690 #define IPPROTO_SCTP 132
691 #endif
692
693 #ifndef IPPROTO_DCCP
694 #define IPPROTO_DCCP 33
695 #endif
696
697 #ifndef IPPROTO_IGMP
698 #define IPPROTO_IGMP 2
699 #endif
700
701 #ifndef IPPROTO_UDPLITE
702 #define IPPROTO_UDPLITE 136
703 #endif
704
705 /* TOS fields. */
706 #define IP_ECN_NOT_ECT 0x0
707 #define IP_ECN_ECT_1 0x01
708 #define IP_ECN_ECT_0 0x02
709 #define IP_ECN_CE 0x03
710 #define IP_ECN_MASK 0x03
711 #define IP_DSCP_CS6 0xc0
712 #define IP_DSCP_MASK 0xfc
713
714 static inline int
715 IP_ECN_is_ce(uint8_t dsfield)
716 {
717 return (dsfield & IP_ECN_MASK) == IP_ECN_CE;
718 }
719
720 #define IP_VERSION 4
721
722 #define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */
723 #define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */
724 #define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */
725 #define IP_IS_FRAGMENT(ip_frag_off) \
726 ((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK))
727
728 #define IP_HEADER_LEN 20
729 struct ip_header {
730 uint8_t ip_ihl_ver;
731 uint8_t ip_tos;
732 ovs_be16 ip_tot_len;
733 ovs_be16 ip_id;
734 ovs_be16 ip_frag_off;
735 uint8_t ip_ttl;
736 uint8_t ip_proto;
737 ovs_be16 ip_csum;
738 ovs_16aligned_be32 ip_src;
739 ovs_16aligned_be32 ip_dst;
740 };
741 BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header));
742
743 /* ICMPv4 types. */
744 #define ICMP4_ECHO_REPLY 0
745 #define ICMP4_DST_UNREACH 3
746 #define ICMP4_SOURCEQUENCH 4
747 #define ICMP4_REDIRECT 5
748 #define ICMP4_ECHO_REQUEST 8
749 #define ICMP4_TIME_EXCEEDED 11
750 #define ICMP4_PARAM_PROB 12
751 #define ICMP4_TIMESTAMP 13
752 #define ICMP4_TIMESTAMPREPLY 14
753 #define ICMP4_INFOREQUEST 15
754 #define ICMP4_INFOREPLY 16
755
756 #define ICMP_HEADER_LEN 8
757 struct icmp_header {
758 uint8_t icmp_type;
759 uint8_t icmp_code;
760 ovs_be16 icmp_csum;
761 union {
762 struct {
763 ovs_be16 id;
764 ovs_be16 seq;
765 } echo;
766 struct {
767 ovs_be16 empty;
768 ovs_be16 mtu;
769 } frag;
770 ovs_16aligned_be32 gateway;
771 } icmp_fields;
772 };
773 BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header));
774
775 /* ICMPV4 */
776 #define ICMP_ERROR_DATA_L4_LEN 8
777
778 #define IGMP_HEADER_LEN 8
779 struct igmp_header {
780 uint8_t igmp_type;
781 uint8_t igmp_code;
782 ovs_be16 igmp_csum;
783 ovs_16aligned_be32 group;
784 };
785 BUILD_ASSERT_DECL(IGMP_HEADER_LEN == sizeof(struct igmp_header));
786
787 #define IGMPV3_HEADER_LEN 8
788 struct igmpv3_header {
789 uint8_t type;
790 uint8_t rsvr1;
791 ovs_be16 csum;
792 ovs_be16 rsvr2;
793 ovs_be16 ngrp;
794 };
795 BUILD_ASSERT_DECL(IGMPV3_HEADER_LEN == sizeof(struct igmpv3_header));
796
797 #define IGMPV3_QUERY_HEADER_LEN 12
798 struct igmpv3_query_header {
799 uint8_t type;
800 uint8_t max_resp;
801 ovs_be16 csum;
802 ovs_16aligned_be32 group;
803 uint8_t srs_qrv;
804 uint8_t qqic;
805 ovs_be16 nsrcs;
806 };
807 BUILD_ASSERT_DECL(
808 IGMPV3_QUERY_HEADER_LEN == sizeof(struct igmpv3_query_header
809 ));
810
811 #define IGMPV3_RECORD_LEN 8
812 struct igmpv3_record {
813 uint8_t type;
814 uint8_t aux_len;
815 ovs_be16 nsrcs;
816 ovs_16aligned_be32 maddr;
817 };
818 BUILD_ASSERT_DECL(IGMPV3_RECORD_LEN == sizeof(struct igmpv3_record));
819
820 #define IGMP_HOST_MEMBERSHIP_QUERY 0x11 /* From RFC1112 */
821 #define IGMP_HOST_MEMBERSHIP_REPORT 0x12 /* Ditto */
822 #define IGMPV2_HOST_MEMBERSHIP_REPORT 0x16 /* V2 version of 0x12 */
823 #define IGMP_HOST_LEAVE_MESSAGE 0x17
824 #define IGMPV3_HOST_MEMBERSHIP_REPORT 0x22 /* V3 version of 0x12 */
825
826 /*
827 * IGMPv3 and MLDv2 use the same codes.
828 */
829 #define IGMPV3_MODE_IS_INCLUDE 1
830 #define IGMPV3_MODE_IS_EXCLUDE 2
831 #define IGMPV3_CHANGE_TO_INCLUDE_MODE 3
832 #define IGMPV3_CHANGE_TO_EXCLUDE_MODE 4
833 #define IGMPV3_ALLOW_NEW_SOURCES 5
834 #define IGMPV3_BLOCK_OLD_SOURCES 6
835
836 #define SCTP_HEADER_LEN 12
837 struct sctp_header {
838 ovs_be16 sctp_src;
839 ovs_be16 sctp_dst;
840 ovs_16aligned_be32 sctp_vtag;
841 ovs_16aligned_be32 sctp_csum;
842 };
843 BUILD_ASSERT_DECL(SCTP_HEADER_LEN == sizeof(struct sctp_header));
844
845 #define UDP_HEADER_LEN 8
846 struct udp_header {
847 ovs_be16 udp_src;
848 ovs_be16 udp_dst;
849 ovs_be16 udp_len;
850 ovs_be16 udp_csum;
851 };
852 BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header));
853
854 #define ESP_HEADER_LEN 8
855 struct esp_header {
856 ovs_be32 spi;
857 ovs_be32 seq_no;
858 };
859 BUILD_ASSERT_DECL(ESP_HEADER_LEN == sizeof(struct esp_header));
860
861 #define ESP_TRAILER_LEN 2
862 struct esp_trailer {
863 uint8_t pad_len;
864 uint8_t next_hdr;
865 };
866 BUILD_ASSERT_DECL(ESP_TRAILER_LEN == sizeof(struct esp_trailer));
867
868 #define TCP_FIN 0x001
869 #define TCP_SYN 0x002
870 #define TCP_RST 0x004
871 #define TCP_PSH 0x008
872 #define TCP_ACK 0x010
873 #define TCP_URG 0x020
874 #define TCP_ECE 0x040
875 #define TCP_CWR 0x080
876 #define TCP_NS 0x100
877
878 #define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12)))
879 #define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x0fff)
880 #define TCP_FLAGS_BE16(tcp_ctl) ((tcp_ctl) & htons(0x0fff))
881 #define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12)
882
883 #define TCP_HEADER_LEN 20
884 struct tcp_header {
885 ovs_be16 tcp_src;
886 ovs_be16 tcp_dst;
887 ovs_16aligned_be32 tcp_seq;
888 ovs_16aligned_be32 tcp_ack;
889 ovs_be16 tcp_ctl;
890 ovs_be16 tcp_winsz;
891 ovs_be16 tcp_csum;
892 ovs_be16 tcp_urg;
893 };
894 BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header));
895
896 /* Connection states.
897 *
898 * Names like CS_RELATED are bit values, e.g. 1 << 2.
899 * Names like CS_RELATED_BIT are bit indexes, e.g. 2. */
900 #define CS_STATES \
901 CS_STATE(NEW, 0, "new") \
902 CS_STATE(ESTABLISHED, 1, "est") \
903 CS_STATE(RELATED, 2, "rel") \
904 CS_STATE(REPLY_DIR, 3, "rpl") \
905 CS_STATE(INVALID, 4, "inv") \
906 CS_STATE(TRACKED, 5, "trk") \
907 CS_STATE(SRC_NAT, 6, "snat") \
908 CS_STATE(DST_NAT, 7, "dnat")
909
910 enum {
911 #define CS_STATE(ENUM, INDEX, NAME) \
912 CS_##ENUM = 1 << INDEX, \
913 CS_##ENUM##_BIT = INDEX,
914 CS_STATES
915 #undef CS_STATE
916 };
917
918 /* Undefined connection state bits. */
919 enum {
920 #define CS_STATE(ENUM, INDEX, NAME) +CS_##ENUM
921 CS_SUPPORTED_MASK = CS_STATES
922 #undef CS_STATE
923 };
924 #define CS_UNSUPPORTED_MASK (~(uint32_t)CS_SUPPORTED_MASK)
925
926 #define ARP_HRD_ETHERNET 1
927 #define ARP_PRO_IP 0x0800
928 #define ARP_OP_REQUEST 1
929 #define ARP_OP_REPLY 2
930 #define ARP_OP_RARP 3
931
932 #define ARP_ETH_HEADER_LEN 28
933 struct arp_eth_header {
934 /* Generic members. */
935 ovs_be16 ar_hrd; /* Hardware type. */
936 ovs_be16 ar_pro; /* Protocol type. */
937 uint8_t ar_hln; /* Hardware address length. */
938 uint8_t ar_pln; /* Protocol address length. */
939 ovs_be16 ar_op; /* Opcode. */
940
941 /* Ethernet+IPv4 specific members. */
942 struct eth_addr ar_sha; /* Sender hardware address. */
943 ovs_16aligned_be32 ar_spa; /* Sender protocol address. */
944 struct eth_addr ar_tha; /* Target hardware address. */
945 ovs_16aligned_be32 ar_tpa; /* Target protocol address. */
946 };
947 BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header));
948
949 #define IPV6_HEADER_LEN 40
950
951 /* Like struct in6_addr, but whereas that struct requires 32-bit alignment on
952 * most implementations, this one only requires 16-bit alignment. */
953 union ovs_16aligned_in6_addr {
954 ovs_be16 be16[8];
955 ovs_16aligned_be32 be32[4];
956 };
957
958 /* Like struct ip6_hdr, but whereas that struct requires 32-bit alignment, this
959 * one only requires 16-bit alignment. */
960 struct ovs_16aligned_ip6_hdr {
961 union {
962 struct ovs_16aligned_ip6_hdrctl {
963 ovs_16aligned_be32 ip6_un1_flow;
964 ovs_be16 ip6_un1_plen;
965 uint8_t ip6_un1_nxt;
966 uint8_t ip6_un1_hlim;
967 } ip6_un1;
968 uint8_t ip6_un2_vfc;
969 } ip6_ctlun;
970 union ovs_16aligned_in6_addr ip6_src;
971 union ovs_16aligned_in6_addr ip6_dst;
972 };
973
974 /* Like struct in6_frag, but whereas that struct requires 32-bit alignment,
975 * this one only requires 16-bit alignment. */
976 struct ovs_16aligned_ip6_frag {
977 uint8_t ip6f_nxt;
978 uint8_t ip6f_reserved;
979 ovs_be16 ip6f_offlg;
980 ovs_16aligned_be32 ip6f_ident;
981 };
982
983 #define ICMP6_HEADER_LEN 4
984 struct icmp6_header {
985 uint8_t icmp6_type;
986 uint8_t icmp6_code;
987 ovs_be16 icmp6_cksum;
988 };
989 BUILD_ASSERT_DECL(ICMP6_HEADER_LEN == sizeof(struct icmp6_header));
990
991 #define ICMP6_DATA_HEADER_LEN 8
992 struct icmp6_data_header {
993 struct icmp6_header icmp6_base;
994 union {
995 ovs_16aligned_be32 be32[1];
996 ovs_be16 be16[2];
997 uint8_t u8[4];
998 } icmp6_data;
999 };
1000 BUILD_ASSERT_DECL(ICMP6_DATA_HEADER_LEN == sizeof(struct icmp6_data_header));
1001
1002 uint32_t packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *);
1003 ovs_be16 packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *,
1004 const void *, uint8_t, uint16_t);
1005
1006 /* Neighbor Discovery option field.
1007 * ND options are always a multiple of 8 bytes in size. */
1008 #define ND_LLA_OPT_LEN 8
1009 struct ovs_nd_lla_opt {
1010 uint8_t type; /* One of ND_OPT_*_LINKADDR. */
1011 uint8_t len;
1012 struct eth_addr mac;
1013 };
1014 BUILD_ASSERT_DECL(ND_LLA_OPT_LEN == sizeof(struct ovs_nd_lla_opt));
1015
1016 /* Neighbor Discovery option: Prefix Information. */
1017 #define ND_PREFIX_OPT_LEN 32
1018 struct ovs_nd_prefix_opt {
1019 uint8_t type; /* ND_OPT_PREFIX_INFORMATION. */
1020 uint8_t len; /* Always 4. */
1021 uint8_t prefix_len;
1022 uint8_t la_flags; /* ND_PREFIX_* flags. */
1023 ovs_16aligned_be32 valid_lifetime;
1024 ovs_16aligned_be32 preferred_lifetime;
1025 ovs_16aligned_be32 reserved; /* Always 0. */
1026 union ovs_16aligned_in6_addr prefix;
1027 };
1028 BUILD_ASSERT_DECL(ND_PREFIX_OPT_LEN == sizeof(struct ovs_nd_prefix_opt));
1029
1030 /* Neighbor Discovery option: MTU. */
1031 #define ND_MTU_OPT_LEN 8
1032 #define ND_MTU_DEFAULT 0
1033 struct ovs_nd_mtu_opt {
1034 uint8_t type; /* ND_OPT_MTU */
1035 uint8_t len; /* Always 1. */
1036 ovs_be16 reserved; /* Always 0. */
1037 ovs_16aligned_be32 mtu;
1038 };
1039 BUILD_ASSERT_DECL(ND_MTU_OPT_LEN == sizeof(struct ovs_nd_mtu_opt));
1040
1041 /* Like struct nd_msg (from ndisc.h), but whereas that struct requires 32-bit
1042 * alignment, this one only requires 16-bit alignment. */
1043 #define ND_MSG_LEN 24
1044 struct ovs_nd_msg {
1045 struct icmp6_header icmph;
1046 ovs_16aligned_be32 rso_flags;
1047 union ovs_16aligned_in6_addr target;
1048 struct ovs_nd_lla_opt options[0];
1049 };
1050 BUILD_ASSERT_DECL(ND_MSG_LEN == sizeof(struct ovs_nd_msg));
1051
1052 /* Neighbor Discovery packet flags. */
1053 #define ND_RSO_ROUTER 0x80000000
1054 #define ND_RSO_SOLICITED 0x40000000
1055 #define ND_RSO_OVERRIDE 0x20000000
1056
1057 #define RA_MSG_LEN 16
1058 struct ovs_ra_msg {
1059 struct icmp6_header icmph;
1060 uint8_t cur_hop_limit;
1061 uint8_t mo_flags; /* ND_RA_MANAGED_ADDRESS and ND_RA_OTHER_CONFIG flags. */
1062 ovs_be16 router_lifetime;
1063 ovs_be32 reachable_time;
1064 ovs_be32 retrans_timer;
1065 struct ovs_nd_lla_opt options[0];
1066 };
1067 BUILD_ASSERT_DECL(RA_MSG_LEN == sizeof(struct ovs_ra_msg));
1068
1069 #define ND_RA_MANAGED_ADDRESS 0x80
1070 #define ND_RA_OTHER_CONFIG 0x40
1071
1072 /* Defaults based on MaxRtrInterval and MinRtrInterval from RFC 4861 section
1073 * 6.2.1
1074 */
1075 #define ND_RA_MAX_INTERVAL_DEFAULT 600
1076
1077 static inline int
1078 nd_ra_min_interval_default(int max)
1079 {
1080 return max >= 9 ? max / 3 : max * 3 / 4;
1081 }
1082
1083 /*
1084 * Use the same struct for MLD and MLD2, naming members as the defined fields in
1085 * in the corresponding version of the protocol, though they are reserved in the
1086 * other one.
1087 */
1088 #define MLD_HEADER_LEN 8
1089 struct mld_header {
1090 uint8_t type;
1091 uint8_t code;
1092 ovs_be16 csum;
1093 ovs_be16 mrd;
1094 ovs_be16 ngrp;
1095 };
1096 BUILD_ASSERT_DECL(MLD_HEADER_LEN == sizeof(struct mld_header));
1097
1098 #define MLD2_RECORD_LEN 20
1099 struct mld2_record {
1100 uint8_t type;
1101 uint8_t aux_len;
1102 ovs_be16 nsrcs;
1103 union ovs_16aligned_in6_addr maddr;
1104 };
1105 BUILD_ASSERT_DECL(MLD2_RECORD_LEN == sizeof(struct mld2_record));
1106
1107 #define MLD_QUERY 130
1108 #define MLD_REPORT 131
1109 #define MLD_DONE 132
1110 #define MLD2_REPORT 143
1111
1112 /* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */
1113 #define IPV6_LABEL_MASK 0x000fffff
1114
1115 /* Example:
1116 *
1117 * char *string = "1 ::1 2";
1118 * char ipv6_s[IPV6_SCAN_LEN + 1];
1119 * struct in6_addr ipv6;
1120 *
1121 * if (ovs_scan(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b)
1122 * && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) {
1123 * ...
1124 * }
1125 */
1126 #define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]"
1127 #define IPV6_SCAN_LEN 46
1128
1129 extern const struct in6_addr in6addr_exact;
1130 #define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \
1131 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } }
1132
1133 extern const struct in6_addr in6addr_all_hosts;
1134 #define IN6ADDR_ALL_HOSTS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \
1135 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 } } }
1136
1137 extern const struct in6_addr in6addr_all_routers;
1138 #define IN6ADDR_ALL_ROUTERS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \
1139 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02 } } }
1140
1141 static inline bool ipv6_addr_equals(const struct in6_addr *a,
1142 const struct in6_addr *b)
1143 {
1144 #ifdef IN6_ARE_ADDR_EQUAL
1145 return IN6_ARE_ADDR_EQUAL(a, b);
1146 #else
1147 return !memcmp(a, b, sizeof(*a));
1148 #endif
1149 }
1150
1151 /* Checks the IPv6 address in 'mask' for all zeroes. */
1152 static inline bool ipv6_mask_is_any(const struct in6_addr *mask) {
1153 return ipv6_addr_equals(mask, &in6addr_any);
1154 }
1155
1156 static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) {
1157 return ipv6_addr_equals(mask, &in6addr_exact);
1158 }
1159
1160 static inline bool ipv6_is_all_hosts(const struct in6_addr *addr) {
1161 return ipv6_addr_equals(addr, &in6addr_all_hosts);
1162 }
1163
1164 static inline bool ipv6_addr_is_set(const struct in6_addr *addr) {
1165 return !ipv6_addr_equals(addr, &in6addr_any);
1166 }
1167
1168 static inline bool ipv6_addr_is_multicast(const struct in6_addr *ip) {
1169 return ip->s6_addr[0] == 0xff;
1170 }
1171
1172 static inline struct in6_addr
1173 in6_addr_mapped_ipv4(ovs_be32 ip4)
1174 {
1175 struct in6_addr ip6;
1176 memset(&ip6, 0, sizeof(ip6));
1177 ip6.s6_addr[10] = 0xff, ip6.s6_addr[11] = 0xff;
1178 memcpy(&ip6.s6_addr[12], &ip4, 4);
1179 return ip6;
1180 }
1181
1182 static inline void
1183 in6_addr_set_mapped_ipv4(struct in6_addr *ip6, ovs_be32 ip4)
1184 {
1185 *ip6 = in6_addr_mapped_ipv4(ip4);
1186 }
1187
1188 static inline ovs_be32
1189 in6_addr_get_mapped_ipv4(const struct in6_addr *addr)
1190 {
1191 union ovs_16aligned_in6_addr *taddr =
1192 (union ovs_16aligned_in6_addr *) addr;
1193 if (IN6_IS_ADDR_V4MAPPED(addr)) {
1194 return get_16aligned_be32(&taddr->be32[3]);
1195 } else {
1196 return INADDR_ANY;
1197 }
1198 }
1199
1200 void in6_addr_solicited_node(struct in6_addr *addr,
1201 const struct in6_addr *ip6);
1202
1203 void in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
1204 struct in6_addr *lla);
1205
1206 void in6_generate_lla(struct eth_addr ea, struct in6_addr *lla);
1207
1208 /* Returns true if 'addr' is a link local address. Otherwise, false. */
1209 bool in6_is_lla(struct in6_addr *addr);
1210
1211 void ipv6_multicast_to_ethernet(struct eth_addr *eth,
1212 const struct in6_addr *ip6);
1213
1214 static inline bool dl_type_is_ip_any(ovs_be16 dl_type)
1215 {
1216 return dl_type == htons(ETH_TYPE_IP)
1217 || dl_type == htons(ETH_TYPE_IPV6);
1218 }
1219
1220 /* Tunnel header */
1221
1222 /* GRE protocol header */
1223 struct gre_base_hdr {
1224 ovs_be16 flags;
1225 ovs_be16 protocol;
1226 };
1227
1228 #define GRE_CSUM 0x8000
1229 #define GRE_ROUTING 0x4000
1230 #define GRE_KEY 0x2000
1231 #define GRE_SEQ 0x1000
1232 #define GRE_STRICT 0x0800
1233 #define GRE_REC 0x0700
1234 #define GRE_FLAGS 0x00F8
1235 #define GRE_VERSION 0x0007
1236
1237 /*
1238 * ERSPAN protocol header and metadata
1239 *
1240 * Version 1 (Type II) header (8 octets [42:49])
1241 * 0 1 2 3
1242 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1243 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1244 * | Ver | VLAN | COS | En|T| Session ID |
1245 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1246 * | Reserved | Index |
1247 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1248 *
1249 *
1250 * ERSPAN Version 2 (Type III) header (12 octets [42:49])
1251 * 0 1 2 3
1252 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1253 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1254 * | Ver | VLAN | COS |BSO|T| Session ID |
1255 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1256 * | Timestamp |
1257 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1258 * | SGT |P| FT | Hw ID |D|Gra|O|
1259 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1260 *
1261 */
1262
1263 /* ERSPAN has fixed 8-byte GRE header */
1264 #define ERSPAN_GREHDR_LEN 8
1265 #define ERSPAN_HDR(gre_base_hdr) \
1266 ((struct erspan_base_hdr *)((char *)gre_base_hdr + ERSPAN_GREHDR_LEN))
1267
1268 #define ERSPAN_V1_MDSIZE 4
1269 #define ERSPAN_V2_MDSIZE 8
1270
1271 #define ERSPAN_SID_MASK 0x03ff /* 10-bit Session ID. */
1272 #define ERSPAN_IDX_MASK 0xfffff /* v1 Index */
1273 #define ERSPAN_HWID_MASK 0x03f0
1274 #define ERSPAN_DIR_MASK 0x0008
1275
1276 struct erspan_base_hdr {
1277 #ifdef WORDS_BIGENDIAN
1278 uint8_t ver:4,
1279 vlan_upper:4;
1280 uint8_t vlan:8;
1281 uint8_t cos:3,
1282 en:2,
1283 t:1,
1284 session_id_upper:2;
1285 uint8_t session_id:8;
1286 #else
1287 uint8_t vlan_upper:4,
1288 ver:4;
1289 uint8_t vlan:8;
1290 uint8_t session_id_upper:2,
1291 t:1,
1292 en:2,
1293 cos:3;
1294 uint8_t session_id:8;
1295 #endif
1296 };
1297
1298 struct erspan_md2 {
1299 ovs_16aligned_be32 timestamp;
1300 ovs_be16 sgt;
1301 #ifdef WORDS_BIGENDIAN
1302 uint8_t p:1,
1303 ft:5,
1304 hwid_upper:2;
1305 uint8_t hwid:4,
1306 dir:1,
1307 gra:2,
1308 o:1;
1309 #else
1310 uint8_t hwid_upper:2,
1311 ft:5,
1312 p:1;
1313 uint8_t o:1,
1314 gra:2,
1315 dir:1,
1316 hwid:4;
1317 #endif
1318 };
1319
1320 struct erspan_metadata {
1321 int version;
1322 union {
1323 ovs_be32 index; /* Version 1 (type II)*/
1324 struct erspan_md2 md2; /* Version 2 (type III) */
1325 } u;
1326 };
1327
1328 static inline uint16_t get_sid(const struct erspan_base_hdr *ershdr)
1329 {
1330 return (ershdr->session_id_upper << 8) + ershdr->session_id;
1331 }
1332
1333 static inline void set_sid(struct erspan_base_hdr *ershdr, uint16_t id)
1334 {
1335 ershdr->session_id = id & 0xff;
1336 ershdr->session_id_upper = (id >> 8) &0x3;
1337 }
1338
1339 static inline uint8_t get_hwid(const struct erspan_md2 *md2)
1340 {
1341 return (md2->hwid_upper << 4) + md2->hwid;
1342 }
1343
1344 static inline void set_hwid(struct erspan_md2 *md2, uint8_t hwid)
1345 {
1346 md2->hwid = hwid & 0xf;
1347 md2->hwid_upper = (hwid >> 4) & 0x3;
1348 }
1349
1350 /* ERSPAN timestamp granularity
1351 * 00b --> granularity = 100 microseconds
1352 * 01b --> granularity = 100 nanoseconds
1353 * 10b --> granularity = IEEE 1588
1354 * Here we only support 100 microseconds.
1355 */
1356 enum erspan_ts_gra {
1357 ERSPAN_100US,
1358 ERSPAN_100NS,
1359 ERSPAN_IEEE1588,
1360 };
1361
1362 static inline ovs_be32 get_erspan_ts(enum erspan_ts_gra gra)
1363 {
1364 ovs_be32 ts = 0;
1365
1366 switch (gra) {
1367 case ERSPAN_100US:
1368 ts = htonl((uint32_t)(time_wall_usec() / 100));
1369 break;
1370 case ERSPAN_100NS:
1371 /* fall back */
1372 case ERSPAN_IEEE1588:
1373 /* fall back */
1374 default:
1375 OVS_NOT_REACHED();
1376 break;
1377 }
1378 return ts;
1379 }
1380
1381 /*
1382 * GTP-U protocol header and metadata
1383 * See:
1384 * User Plane Protocol and Architectural Analysis on 3GPP 5G System
1385 * draft-hmm-dmm-5g-uplane-analysis-00
1386 *
1387 * 0 1 2 3
1388 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1389 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1390 * | Ver |P|R|E|S|N| Message Type| Length |
1391 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1392 * | Tunnel Endpoint Identifier |
1393 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1394 * | Sequence Number | N-PDU Number | Next-Ext-Hdr |
1395 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1396 *
1397 * GTP-U Flags:
1398 * P: Protocol Type (Set to '1')
1399 * R: Reserved Bit (Set to '0')
1400 * E: Extension Header Flag (Set to '1' if extension header exists)
1401 * S: Sequence Number Flag (Set to '1' if sequence number exists)
1402 * N: N-PDU Number Flag (Set to '1' if N-PDU number exists)
1403 *
1404 * GTP-U Message Type:
1405 * Indicates the type of GTP-U message.
1406 *
1407 * GTP-U Length:
1408 * Indicates the length in octets of the payload.
1409 *
1410 * User payload is transmitted in G-PDU packets.
1411 */
1412
1413 #define GTPU_VER_MASK 0xe0
1414 #define GTPU_P_MASK 0x10
1415 #define GTPU_E_MASK 0x04
1416 #define GTPU_S_MASK 0x02
1417
1418 /* GTP-U UDP port. */
1419 #define GTPU_DST_PORT 2152
1420
1421 /* Default GTP-U flags: Ver = 1 and P = 1. */
1422 #define GTPU_FLAGS_DEFAULT 0x30
1423
1424 /* GTP-U message type for normal user plane PDU. */
1425 #define GTPU_MSGTYPE_REQ 1 /* Echo Request. */
1426 #define GTPU_MSGTYPE_REPL 2 /* Echo Reply. */
1427 #define GTPU_MSGTYPE_GPDU 255 /* User Payload. */
1428
1429 struct gtpu_metadata {
1430 uint8_t flags;
1431 uint8_t msgtype;
1432 };
1433 BUILD_ASSERT_DECL(sizeof(struct gtpu_metadata) == 2);
1434
1435 struct gtpuhdr {
1436 struct gtpu_metadata md;
1437 ovs_be16 len;
1438 ovs_16aligned_be32 teid;
1439 };
1440 BUILD_ASSERT_DECL(sizeof(struct gtpuhdr) == 8);
1441
1442 struct gtpuhdr_opt {
1443 ovs_be16 seqno;
1444 uint8_t pdu_number;
1445 uint8_t next_ext_type;
1446 };
1447 BUILD_ASSERT_DECL(sizeof(struct gtpuhdr_opt) == 4);
1448
1449 /* VXLAN protocol header */
1450 struct vxlanhdr {
1451 union {
1452 ovs_16aligned_be32 vx_flags; /* VXLAN flags. */
1453 struct {
1454 uint8_t flags; /* VXLAN GPE flags. */
1455 uint8_t reserved[2]; /* 16 bits reserved. */
1456 uint8_t next_protocol; /* Next Protocol field for VXLAN GPE. */
1457 } vx_gpe;
1458 };
1459 ovs_16aligned_be32 vx_vni;
1460 };
1461 BUILD_ASSERT_DECL(sizeof(struct vxlanhdr) == 8);
1462
1463 #define VXLAN_FLAGS 0x08000000 /* struct vxlanhdr.vx_flags required value. */
1464
1465 /*
1466 * VXLAN Generic Protocol Extension (VXLAN_F_GPE):
1467 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1468 * |R|R|Ver|I|P|R|O| Reserved |Next Protocol |
1469 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1470 * | VXLAN Network Identifier (VNI) | Reserved |
1471 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1472 *
1473 * Ver = Version. Indicates VXLAN GPE protocol version.
1474 *
1475 * P = Next Protocol Bit. The P bit is set to indicate that the
1476 * Next Protocol field is present.
1477 *
1478 * O = OAM Flag Bit. The O bit is set to indicate that the packet
1479 * is an OAM packet.
1480 *
1481 * Next Protocol = This 8 bit field indicates the protocol header
1482 * immediately following the VXLAN GPE header.
1483 *
1484 * https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-01
1485 */
1486
1487 /* Fields in struct vxlanhdr.vx_gpe.flags */
1488 #define VXLAN_GPE_FLAGS_VER 0x30 /* Version. */
1489 #define VLXAN_GPE_FLAGS_P 0x04 /* Next Protocol Bit. */
1490 #define VXLAN_GPE_FLAGS_O 0x01 /* OAM Bit. */
1491
1492 /* VXLAN-GPE header flags. */
1493 #define VXLAN_HF_VER ((1U <<29) | (1U <<28))
1494 #define VXLAN_HF_NP (1U <<26)
1495 #define VXLAN_HF_OAM (1U <<24)
1496
1497 #define VXLAN_GPE_USED_BITS (VXLAN_HF_VER | VXLAN_HF_NP | VXLAN_HF_OAM | \
1498 0xff)
1499
1500 /* VXLAN-GPE header Next Protocol. */
1501 #define VXLAN_GPE_NP_IPV4 0x01
1502 #define VXLAN_GPE_NP_IPV6 0x02
1503 #define VXLAN_GPE_NP_ETHERNET 0x03
1504 #define VXLAN_GPE_NP_NSH 0x04
1505
1506 #define VXLAN_F_GPE 0x4000
1507 #define VXLAN_HF_GPE 0x04000000
1508
1509 /* Input values for PACKET_TYPE macros have to be in host byte order.
1510 * The _BE postfix indicates result is in network byte order. Otherwise result
1511 * is in host byte order. */
1512 #define PACKET_TYPE(NS, NS_TYPE) ((uint32_t) ((NS) << 16 | (NS_TYPE)))
1513 #define PACKET_TYPE_BE(NS, NS_TYPE) (htonl((NS) << 16 | (NS_TYPE)))
1514
1515 /* Returns the host byte ordered namespace of 'packet type'. */
1516 static inline uint16_t
1517 pt_ns(ovs_be32 packet_type)
1518 {
1519 return ntohl(packet_type) >> 16;
1520 }
1521
1522 /* Returns the network byte ordered namespace type of 'packet type'. */
1523 static inline ovs_be16
1524 pt_ns_type_be(ovs_be32 packet_type)
1525 {
1526 return be32_to_be16(packet_type);
1527 }
1528
1529 /* Returns the host byte ordered namespace type of 'packet type'. */
1530 static inline uint16_t
1531 pt_ns_type(ovs_be32 packet_type)
1532 {
1533 return ntohs(pt_ns_type_be(packet_type));
1534 }
1535
1536 /* Well-known packet_type field values. */
1537 enum packet_type {
1538 PT_ETH = PACKET_TYPE(OFPHTN_ONF, 0x0000), /* Default PT: Ethernet */
1539 PT_USE_NEXT_PROTO = PACKET_TYPE(OFPHTN_ONF, 0xfffe), /* Pseudo PT for decap. */
1540 PT_IPV4 = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_IP),
1541 PT_IPV6 = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_IPV6),
1542 PT_MPLS = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_MPLS),
1543 PT_MPLS_MC = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_MPLS_MCAST),
1544 PT_NSH = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_NSH),
1545 PT_UNKNOWN = PACKET_TYPE(0xffff, 0xffff), /* Unknown packet type. */
1546 };
1547
1548
1549 void ipv6_format_addr(const struct in6_addr *addr, struct ds *);
1550 void ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *,
1551 bool bracket);
1552 void ipv6_format_mapped(const struct in6_addr *addr, struct ds *);
1553 void ipv6_format_masked(const struct in6_addr *addr,
1554 const struct in6_addr *mask, struct ds *);
1555 const char * ipv6_string_mapped(char *addr_str, const struct in6_addr *addr);
1556 struct in6_addr ipv6_addr_bitand(const struct in6_addr *src,
1557 const struct in6_addr *mask);
1558 struct in6_addr ipv6_addr_bitxor(const struct in6_addr *a,
1559 const struct in6_addr *b);
1560 bool ipv6_is_zero(const struct in6_addr *a);
1561 struct in6_addr ipv6_create_mask(int mask);
1562 int ipv6_count_cidr_bits(const struct in6_addr *netmask);
1563 bool ipv6_is_cidr(const struct in6_addr *netmask);
1564
1565 bool ipv6_parse(const char *s, struct in6_addr *ip);
1566 char *ipv6_parse_masked(const char *s, struct in6_addr *ipv6,
1567 struct in6_addr *mask);
1568 char *ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
1569 OVS_WARN_UNUSED_RESULT;
1570 char *ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ipv6,
1571 struct in6_addr *mask);
1572 char *ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
1573 unsigned int *plen)
1574 OVS_WARN_UNUSED_RESULT;
1575
1576 void *eth_compose(struct dp_packet *, const struct eth_addr eth_dst,
1577 const struct eth_addr eth_src, uint16_t eth_type,
1578 size_t size);
1579 void *snap_compose(struct dp_packet *, const struct eth_addr eth_dst,
1580 const struct eth_addr eth_src,
1581 unsigned int oui, uint16_t snap_type, size_t size);
1582 void packet_set_ipv4(struct dp_packet *, ovs_be32 src, ovs_be32 dst, uint8_t tos,
1583 uint8_t ttl);
1584 void packet_set_ipv4_addr(struct dp_packet *packet, ovs_16aligned_be32 *addr,
1585 ovs_be32 new_addr);
1586 void packet_set_ipv6(struct dp_packet *, const struct in6_addr *src,
1587 const struct in6_addr *dst, uint8_t tc,
1588 ovs_be32 fl, uint8_t hlmit);
1589 void packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
1590 ovs_16aligned_be32 addr[4],
1591 const struct in6_addr *new_addr,
1592 bool recalculate_csum);
1593 void packet_set_tcp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
1594 void packet_set_udp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
1595 void packet_set_sctp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
1596 void packet_set_icmp(struct dp_packet *, uint8_t type, uint8_t code);
1597 void packet_set_nd(struct dp_packet *, const struct in6_addr *target,
1598 const struct eth_addr sll, const struct eth_addr tll);
1599 void packet_set_nd_ext(struct dp_packet *packet,
1600 const ovs_16aligned_be32 rso_flags,
1601 const uint8_t opt_type);
1602 void packet_set_igmp3_query(struct dp_packet *, uint8_t max_resp,
1603 ovs_be32 group, bool srs, uint8_t qrv,
1604 uint8_t qqic);
1605 void packet_format_tcp_flags(struct ds *, uint16_t);
1606 const char *packet_tcp_flag_to_string(uint32_t flag);
1607 void *compose_ipv6(struct dp_packet *packet, uint8_t proto,
1608 const struct in6_addr *src, const struct in6_addr *dst,
1609 uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size);
1610 void compose_arp__(struct dp_packet *);
1611 void compose_arp(struct dp_packet *, uint16_t arp_op,
1612 const struct eth_addr arp_sha,
1613 const struct eth_addr arp_tha, bool broadcast,
1614 ovs_be32 arp_spa, ovs_be32 arp_tpa);
1615 void compose_nd_ns(struct dp_packet *, const struct eth_addr eth_src,
1616 const struct in6_addr *ipv6_src,
1617 const struct in6_addr *ipv6_dst);
1618 void compose_nd_na(struct dp_packet *, const struct eth_addr eth_src,
1619 const struct eth_addr eth_dst,
1620 const struct in6_addr *ipv6_src,
1621 const struct in6_addr *ipv6_dst,
1622 ovs_be32 rso_flags);
1623 void compose_nd_ra(struct dp_packet *,
1624 const struct eth_addr eth_src,
1625 const struct eth_addr eth_dst,
1626 const struct in6_addr *ipv6_src,
1627 const struct in6_addr *ipv6_dst,
1628 uint8_t cur_hop_limit, uint8_t mo_flags,
1629 ovs_be16 router_lt, ovs_be32 reachable_time,
1630 ovs_be32 retrans_timer, uint32_t mtu);
1631 void packet_put_ra_prefix_opt(struct dp_packet *,
1632 uint8_t plen, uint8_t la_flags,
1633 ovs_be32 valid_lifetime,
1634 ovs_be32 preferred_lifetime,
1635 const ovs_be128 router_prefix);
1636 uint32_t packet_csum_pseudoheader(const struct ip_header *);
1637 void IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6);
1638
1639 #define DNS_HEADER_LEN 12
1640 struct dns_header {
1641 ovs_be16 id;
1642 uint8_t lo_flag; /* QR (1), OPCODE (4), AA (1), TC (1) and RD (1) */
1643 uint8_t hi_flag; /* RA (1), Z (3) and RCODE (4) */
1644 ovs_be16 qdcount; /* Num of entries in the question section. */
1645 ovs_be16 ancount; /* Num of resource records in the answer section. */
1646
1647 /* Num of name server records in the authority record section. */
1648 ovs_be16 nscount;
1649
1650 /* Num of resource records in the additional records section. */
1651 ovs_be16 arcount;
1652 };
1653
1654 BUILD_ASSERT_DECL(DNS_HEADER_LEN == sizeof(struct dns_header));
1655
1656 #define DNS_QUERY_TYPE_A 0x01
1657 #define DNS_QUERY_TYPE_AAAA 0x1c
1658 #define DNS_QUERY_TYPE_ANY 0xff
1659
1660 #define DNS_CLASS_IN 0x01
1661 #define DNS_DEFAULT_RR_TTL 3600
1662
1663 #endif /* packets.h */