]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/percpu-refcount.c
percpu_ref: reorganize __percpu_ref_switch_to_atomic() and relocate percpu_ref_switch...
[mirror_ubuntu-bionic-kernel.git] / lib / percpu-refcount.c
1 #define pr_fmt(fmt) "%s: " fmt "\n", __func__
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/wait.h>
6 #include <linux/percpu-refcount.h>
7
8 /*
9 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
10 * don't try to detect the ref hitting 0 - which means that get/put can just
11 * increment or decrement the local counter. Note that the counter on a
12 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
13 * percpu counters will all sum to the correct value
14 *
15 * (More precisely: because modular arithmetic is commutative the sum of all the
16 * percpu_count vars will be equal to what it would have been if all the gets
17 * and puts were done to a single integer, even if some of the percpu integers
18 * overflow or underflow).
19 *
20 * The real trick to implementing percpu refcounts is shutdown. We can't detect
21 * the ref hitting 0 on every put - this would require global synchronization
22 * and defeat the whole purpose of using percpu refs.
23 *
24 * What we do is require the user to keep track of the initial refcount; we know
25 * the ref can't hit 0 before the user drops the initial ref, so as long as we
26 * convert to non percpu mode before the initial ref is dropped everything
27 * works.
28 *
29 * Converting to non percpu mode is done with some RCUish stuff in
30 * percpu_ref_kill. Additionally, we need a bias value so that the
31 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
32 */
33
34 #define PERCPU_COUNT_BIAS (1LU << (BITS_PER_LONG - 1))
35
36 static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
37
38 static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
39 {
40 return (unsigned long __percpu *)
41 (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
42 }
43
44 /**
45 * percpu_ref_init - initialize a percpu refcount
46 * @ref: percpu_ref to initialize
47 * @release: function which will be called when refcount hits 0
48 * @flags: PERCPU_REF_INIT_* flags
49 * @gfp: allocation mask to use
50 *
51 * Initializes @ref. If @flags is zero, @ref starts in percpu mode with a
52 * refcount of 1; analagous to atomic_long_set(ref, 1). See the
53 * definitions of PERCPU_REF_INIT_* flags for flag behaviors.
54 *
55 * Note that @release must not sleep - it may potentially be called from RCU
56 * callback context by percpu_ref_kill().
57 */
58 int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
59 unsigned int flags, gfp_t gfp)
60 {
61 size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
62 __alignof__(unsigned long));
63 unsigned long start_count = 0;
64
65 ref->percpu_count_ptr = (unsigned long)
66 __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
67 if (!ref->percpu_count_ptr)
68 return -ENOMEM;
69
70 ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
71
72 if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD))
73 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
74 else
75 start_count += PERCPU_COUNT_BIAS;
76
77 if (flags & PERCPU_REF_INIT_DEAD)
78 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
79 else
80 start_count++;
81
82 atomic_long_set(&ref->count, start_count);
83
84 ref->release = release;
85 return 0;
86 }
87 EXPORT_SYMBOL_GPL(percpu_ref_init);
88
89 /**
90 * percpu_ref_exit - undo percpu_ref_init()
91 * @ref: percpu_ref to exit
92 *
93 * This function exits @ref. The caller is responsible for ensuring that
94 * @ref is no longer in active use. The usual places to invoke this
95 * function from are the @ref->release() callback or in init failure path
96 * where percpu_ref_init() succeeded but other parts of the initialization
97 * of the embedding object failed.
98 */
99 void percpu_ref_exit(struct percpu_ref *ref)
100 {
101 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
102
103 if (percpu_count) {
104 free_percpu(percpu_count);
105 ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
106 }
107 }
108 EXPORT_SYMBOL_GPL(percpu_ref_exit);
109
110 static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
111 {
112 struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
113
114 ref->confirm_switch(ref);
115 ref->confirm_switch = NULL;
116 wake_up_all(&percpu_ref_switch_waitq);
117
118 /* drop ref from percpu_ref_switch_to_atomic() */
119 percpu_ref_put(ref);
120 }
121
122 static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
123 {
124 struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
125 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
126 unsigned long count = 0;
127 int cpu;
128
129 for_each_possible_cpu(cpu)
130 count += *per_cpu_ptr(percpu_count, cpu);
131
132 pr_debug("global %ld percpu %ld",
133 atomic_long_read(&ref->count), (long)count);
134
135 /*
136 * It's crucial that we sum the percpu counters _before_ adding the sum
137 * to &ref->count; since gets could be happening on one cpu while puts
138 * happen on another, adding a single cpu's count could cause
139 * @ref->count to hit 0 before we've got a consistent value - but the
140 * sum of all the counts will be consistent and correct.
141 *
142 * Subtracting the bias value then has to happen _after_ adding count to
143 * &ref->count; we need the bias value to prevent &ref->count from
144 * reaching 0 before we add the percpu counts. But doing it at the same
145 * time is equivalent and saves us atomic operations:
146 */
147 atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
148
149 WARN_ONCE(atomic_long_read(&ref->count) <= 0,
150 "percpu ref (%pf) <= 0 (%ld) after switching to atomic",
151 ref->release, atomic_long_read(&ref->count));
152
153 /* @ref is viewed as dead on all CPUs, send out switch confirmation */
154 percpu_ref_call_confirm_rcu(rcu);
155 }
156
157 static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
158 {
159 }
160
161 static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
162 percpu_ref_func_t *confirm_switch)
163 {
164 if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
165 if (confirm_switch) {
166 /*
167 * Somebody else already set ATOMIC. Wait for its
168 * completion and invoke @confirm_switch() directly.
169 */
170 wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
171 confirm_switch(ref);
172 }
173 return;
174 }
175
176 /* switching from percpu to atomic */
177 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
178
179 /*
180 * Non-NULL ->confirm_switch is used to indicate that switching is
181 * in progress. Use noop one if unspecified.
182 */
183 WARN_ON_ONCE(ref->confirm_switch);
184 ref->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch;
185
186 percpu_ref_get(ref); /* put after confirmation */
187 call_rcu_sched(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
188 }
189
190 static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
191 {
192 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
193 int cpu;
194
195 BUG_ON(!percpu_count);
196
197 if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
198 return;
199
200 wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
201
202 atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
203
204 /*
205 * Restore per-cpu operation. smp_store_release() is paired with
206 * smp_read_barrier_depends() in __ref_is_percpu() and guarantees
207 * that the zeroing is visible to all percpu accesses which can see
208 * the following __PERCPU_REF_ATOMIC clearing.
209 */
210 for_each_possible_cpu(cpu)
211 *per_cpu_ptr(percpu_count, cpu) = 0;
212
213 smp_store_release(&ref->percpu_count_ptr,
214 ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
215 }
216
217 /**
218 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
219 * @ref: percpu_ref to switch to atomic mode
220 * @confirm_switch: optional confirmation callback
221 *
222 * There's no reason to use this function for the usual reference counting.
223 * Use percpu_ref_kill[_and_confirm]().
224 *
225 * Schedule switching of @ref to atomic mode. All its percpu counts will
226 * be collected to the main atomic counter. On completion, when all CPUs
227 * are guaraneed to be in atomic mode, @confirm_switch, which may not
228 * block, is invoked. This function may be invoked concurrently with all
229 * the get/put operations and can safely be mixed with kill and reinit
230 * operations. Note that @ref will stay in atomic mode across kill/reinit
231 * cycles until percpu_ref_switch_to_percpu() is called.
232 *
233 * This function normally doesn't block and can be called from any context
234 * but it may block if @confirm_kill is specified and @ref is already in
235 * the process of switching to atomic mode. In such cases, @confirm_switch
236 * will be invoked after the switching is complete.
237 */
238 void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
239 percpu_ref_func_t *confirm_switch)
240 {
241 ref->force_atomic = true;
242 __percpu_ref_switch_to_atomic(ref, confirm_switch);
243 }
244
245 /**
246 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
247 * @ref: percpu_ref to switch to percpu mode
248 *
249 * There's no reason to use this function for the usual reference counting.
250 * To re-use an expired ref, use percpu_ref_reinit().
251 *
252 * Switch @ref to percpu mode. This function may be invoked concurrently
253 * with all the get/put operations and can safely be mixed with kill and
254 * reinit operations. This function reverses the sticky atomic state set
255 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic(). If @ref is
256 * dying or dead, the actual switching takes place on the following
257 * percpu_ref_reinit().
258 *
259 * This function normally doesn't block and can be called from any context
260 * but it may block if @ref is in the process of switching to atomic mode
261 * by percpu_ref_switch_atomic().
262 */
263 void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
264 {
265 ref->force_atomic = false;
266
267 /* a dying or dead ref can't be switched to percpu mode w/o reinit */
268 if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD))
269 __percpu_ref_switch_to_percpu(ref);
270 }
271
272 /**
273 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
274 * @ref: percpu_ref to kill
275 * @confirm_kill: optional confirmation callback
276 *
277 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
278 * @confirm_kill is not NULL. @confirm_kill, which may not block, will be
279 * called after @ref is seen as dead from all CPUs at which point all
280 * further invocations of percpu_ref_tryget_live() will fail. See
281 * percpu_ref_tryget_live() for details.
282 *
283 * This function normally doesn't block and can be called from any context
284 * but it may block if @confirm_kill is specified and @ref is in the
285 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
286 */
287 void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
288 percpu_ref_func_t *confirm_kill)
289 {
290 WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
291 "%s called more than once on %pf!", __func__, ref->release);
292
293 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
294 __percpu_ref_switch_to_atomic(ref, confirm_kill);
295 percpu_ref_put(ref);
296 }
297 EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
298
299 /**
300 * percpu_ref_reinit - re-initialize a percpu refcount
301 * @ref: perpcu_ref to re-initialize
302 *
303 * Re-initialize @ref so that it's in the same state as when it finished
304 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD. @ref must have been
305 * initialized successfully and reached 0 but not exited.
306 *
307 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
308 * this function is in progress.
309 */
310 void percpu_ref_reinit(struct percpu_ref *ref)
311 {
312 WARN_ON_ONCE(!percpu_ref_is_zero(ref));
313
314 ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
315 percpu_ref_get(ref);
316 if (!ref->force_atomic)
317 __percpu_ref_switch_to_percpu(ref);
318 }
319 EXPORT_SYMBOL_GPL(percpu_ref_reinit);