]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/prio_tree.c
rbtree: add prio tree and interval tree tests
[mirror_ubuntu-bionic-kernel.git] / lib / prio_tree.c
1 /*
2 * lib/prio_tree.c - priority search tree
3 *
4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5 *
6 * This file is released under the GPL v2.
7 *
8 * Based on the radix priority search tree proposed by Edward M. McCreight
9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10 *
11 * 02Feb2004 Initial version
12 */
13
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/prio_tree.h>
17 #include <linux/export.h>
18
19 /*
20 * A clever mix of heap and radix trees forms a radix priority search tree (PST)
21 * which is useful for storing intervals, e.g, we can consider a vma as a closed
22 * interval of file pages [offset_begin, offset_end], and store all vmas that
23 * map a file in a PST. Then, using the PST, we can answer a stabbing query,
24 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
25 * given input interval X (a set of consecutive file pages), in "O(log n + m)"
26 * time where 'log n' is the height of the PST, and 'm' is the number of stored
27 * intervals (vmas) that overlap (map) with the input interval X (the set of
28 * consecutive file pages).
29 *
30 * In our implementation, we store closed intervals of the form [radix_index,
31 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
32 * is designed for storing intervals with unique radix indices, i.e., each
33 * interval have different radix_index. However, this limitation can be easily
34 * overcome by using the size, i.e., heap_index - radix_index, as part of the
35 * index, so we index the tree using [(radix_index,size), heap_index].
36 *
37 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
38 * machine, the maximum height of a PST can be 64. We can use a balanced version
39 * of the priority search tree to optimize the tree height, but the balanced
40 * tree proposed by McCreight is too complex and memory-hungry for our purpose.
41 */
42
43 /*
44 * The following macros are used for implementing prio_tree for i_mmap
45 */
46
47 #define RADIX_INDEX(vma) ((vma)->vm_pgoff)
48 #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
49 /* avoid overflow */
50 #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
51
52
53 static void get_index(const struct prio_tree_root *root,
54 const struct prio_tree_node *node,
55 unsigned long *radix, unsigned long *heap)
56 {
57 if (root->raw) {
58 struct vm_area_struct *vma = prio_tree_entry(
59 node, struct vm_area_struct, shared.prio_tree_node);
60
61 *radix = RADIX_INDEX(vma);
62 *heap = HEAP_INDEX(vma);
63 }
64 else {
65 *radix = node->start;
66 *heap = node->last;
67 }
68 }
69
70 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
71
72 void __init prio_tree_init(void)
73 {
74 unsigned int i;
75
76 for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
77 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
78 index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
79 }
80
81 /*
82 * Maximum heap_index that can be stored in a PST with index_bits bits
83 */
84 static inline unsigned long prio_tree_maxindex(unsigned int bits)
85 {
86 return index_bits_to_maxindex[bits - 1];
87 }
88
89 static void prio_set_parent(struct prio_tree_node *parent,
90 struct prio_tree_node *child, bool left)
91 {
92 if (left)
93 parent->left = child;
94 else
95 parent->right = child;
96
97 child->parent = parent;
98 }
99
100 /*
101 * Extend a priority search tree so that it can store a node with heap_index
102 * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
103 * However, this function is used rarely and the common case performance is
104 * not bad.
105 */
106 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
107 struct prio_tree_node *node, unsigned long max_heap_index)
108 {
109 struct prio_tree_node *prev;
110
111 if (max_heap_index > prio_tree_maxindex(root->index_bits))
112 root->index_bits++;
113
114 prev = node;
115 INIT_PRIO_TREE_NODE(node);
116
117 while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
118 struct prio_tree_node *tmp = root->prio_tree_node;
119
120 root->index_bits++;
121
122 if (prio_tree_empty(root))
123 continue;
124
125 prio_tree_remove(root, root->prio_tree_node);
126 INIT_PRIO_TREE_NODE(tmp);
127
128 prio_set_parent(prev, tmp, true);
129 prev = tmp;
130 }
131
132 if (!prio_tree_empty(root))
133 prio_set_parent(prev, root->prio_tree_node, true);
134
135 root->prio_tree_node = node;
136 return node;
137 }
138
139 /*
140 * Replace a prio_tree_node with a new node and return the old node
141 */
142 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
143 struct prio_tree_node *old, struct prio_tree_node *node)
144 {
145 INIT_PRIO_TREE_NODE(node);
146
147 if (prio_tree_root(old)) {
148 BUG_ON(root->prio_tree_node != old);
149 /*
150 * We can reduce root->index_bits here. However, it is complex
151 * and does not help much to improve performance (IMO).
152 */
153 root->prio_tree_node = node;
154 } else
155 prio_set_parent(old->parent, node, old->parent->left == old);
156
157 if (!prio_tree_left_empty(old))
158 prio_set_parent(node, old->left, true);
159
160 if (!prio_tree_right_empty(old))
161 prio_set_parent(node, old->right, false);
162
163 return old;
164 }
165
166 /*
167 * Insert a prio_tree_node @node into a radix priority search tree @root. The
168 * algorithm typically takes O(log n) time where 'log n' is the number of bits
169 * required to represent the maximum heap_index. In the worst case, the algo
170 * can take O((log n)^2) - check prio_tree_expand.
171 *
172 * If a prior node with same radix_index and heap_index is already found in
173 * the tree, then returns the address of the prior node. Otherwise, inserts
174 * @node into the tree and returns @node.
175 */
176 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
177 struct prio_tree_node *node)
178 {
179 struct prio_tree_node *cur, *res = node;
180 unsigned long radix_index, heap_index;
181 unsigned long r_index, h_index, index, mask;
182 int size_flag = 0;
183
184 get_index(root, node, &radix_index, &heap_index);
185
186 if (prio_tree_empty(root) ||
187 heap_index > prio_tree_maxindex(root->index_bits))
188 return prio_tree_expand(root, node, heap_index);
189
190 cur = root->prio_tree_node;
191 mask = 1UL << (root->index_bits - 1);
192
193 while (mask) {
194 get_index(root, cur, &r_index, &h_index);
195
196 if (r_index == radix_index && h_index == heap_index)
197 return cur;
198
199 if (h_index < heap_index ||
200 (h_index == heap_index && r_index > radix_index)) {
201 struct prio_tree_node *tmp = node;
202 node = prio_tree_replace(root, cur, node);
203 cur = tmp;
204 /* swap indices */
205 index = r_index;
206 r_index = radix_index;
207 radix_index = index;
208 index = h_index;
209 h_index = heap_index;
210 heap_index = index;
211 }
212
213 if (size_flag)
214 index = heap_index - radix_index;
215 else
216 index = radix_index;
217
218 if (index & mask) {
219 if (prio_tree_right_empty(cur)) {
220 INIT_PRIO_TREE_NODE(node);
221 prio_set_parent(cur, node, false);
222 return res;
223 } else
224 cur = cur->right;
225 } else {
226 if (prio_tree_left_empty(cur)) {
227 INIT_PRIO_TREE_NODE(node);
228 prio_set_parent(cur, node, true);
229 return res;
230 } else
231 cur = cur->left;
232 }
233
234 mask >>= 1;
235
236 if (!mask) {
237 mask = 1UL << (BITS_PER_LONG - 1);
238 size_flag = 1;
239 }
240 }
241 /* Should not reach here */
242 BUG();
243 return NULL;
244 }
245 EXPORT_SYMBOL(prio_tree_insert);
246
247 /*
248 * Remove a prio_tree_node @node from a radix priority search tree @root. The
249 * algorithm takes O(log n) time where 'log n' is the number of bits required
250 * to represent the maximum heap_index.
251 */
252 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
253 {
254 struct prio_tree_node *cur;
255 unsigned long r_index, h_index_right, h_index_left;
256
257 cur = node;
258
259 while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
260 if (!prio_tree_left_empty(cur))
261 get_index(root, cur->left, &r_index, &h_index_left);
262 else {
263 cur = cur->right;
264 continue;
265 }
266
267 if (!prio_tree_right_empty(cur))
268 get_index(root, cur->right, &r_index, &h_index_right);
269 else {
270 cur = cur->left;
271 continue;
272 }
273
274 /* both h_index_left and h_index_right cannot be 0 */
275 if (h_index_left >= h_index_right)
276 cur = cur->left;
277 else
278 cur = cur->right;
279 }
280
281 if (prio_tree_root(cur)) {
282 BUG_ON(root->prio_tree_node != cur);
283 __INIT_PRIO_TREE_ROOT(root, root->raw);
284 return;
285 }
286
287 if (cur->parent->right == cur)
288 cur->parent->right = cur->parent;
289 else
290 cur->parent->left = cur->parent;
291
292 while (cur != node)
293 cur = prio_tree_replace(root, cur->parent, cur);
294 }
295 EXPORT_SYMBOL(prio_tree_remove);
296
297 static void iter_walk_down(struct prio_tree_iter *iter)
298 {
299 iter->mask >>= 1;
300 if (iter->mask) {
301 if (iter->size_level)
302 iter->size_level++;
303 return;
304 }
305
306 if (iter->size_level) {
307 BUG_ON(!prio_tree_left_empty(iter->cur));
308 BUG_ON(!prio_tree_right_empty(iter->cur));
309 iter->size_level++;
310 iter->mask = ULONG_MAX;
311 } else {
312 iter->size_level = 1;
313 iter->mask = 1UL << (BITS_PER_LONG - 1);
314 }
315 }
316
317 static void iter_walk_up(struct prio_tree_iter *iter)
318 {
319 if (iter->mask == ULONG_MAX)
320 iter->mask = 1UL;
321 else if (iter->size_level == 1)
322 iter->mask = 1UL;
323 else
324 iter->mask <<= 1;
325 if (iter->size_level)
326 iter->size_level--;
327 if (!iter->size_level && (iter->value & iter->mask))
328 iter->value ^= iter->mask;
329 }
330
331 /*
332 * Following functions help to enumerate all prio_tree_nodes in the tree that
333 * overlap with the input interval X [radix_index, heap_index]. The enumeration
334 * takes O(log n + m) time where 'log n' is the height of the tree (which is
335 * proportional to # of bits required to represent the maximum heap_index) and
336 * 'm' is the number of prio_tree_nodes that overlap the interval X.
337 */
338
339 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
340 unsigned long *r_index, unsigned long *h_index)
341 {
342 if (prio_tree_left_empty(iter->cur))
343 return NULL;
344
345 get_index(iter->root, iter->cur->left, r_index, h_index);
346
347 if (iter->r_index <= *h_index) {
348 iter->cur = iter->cur->left;
349 iter_walk_down(iter);
350 return iter->cur;
351 }
352
353 return NULL;
354 }
355
356 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
357 unsigned long *r_index, unsigned long *h_index)
358 {
359 unsigned long value;
360
361 if (prio_tree_right_empty(iter->cur))
362 return NULL;
363
364 if (iter->size_level)
365 value = iter->value;
366 else
367 value = iter->value | iter->mask;
368
369 if (iter->h_index < value)
370 return NULL;
371
372 get_index(iter->root, iter->cur->right, r_index, h_index);
373
374 if (iter->r_index <= *h_index) {
375 iter->cur = iter->cur->right;
376 iter_walk_down(iter);
377 return iter->cur;
378 }
379
380 return NULL;
381 }
382
383 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
384 {
385 iter->cur = iter->cur->parent;
386 iter_walk_up(iter);
387 return iter->cur;
388 }
389
390 static inline int overlap(struct prio_tree_iter *iter,
391 unsigned long r_index, unsigned long h_index)
392 {
393 return iter->h_index >= r_index && iter->r_index <= h_index;
394 }
395
396 /*
397 * prio_tree_first:
398 *
399 * Get the first prio_tree_node that overlaps with the interval [radix_index,
400 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
401 * traversal of the tree.
402 */
403 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
404 {
405 struct prio_tree_root *root;
406 unsigned long r_index, h_index;
407
408 INIT_PRIO_TREE_ITER(iter);
409
410 root = iter->root;
411 if (prio_tree_empty(root))
412 return NULL;
413
414 get_index(root, root->prio_tree_node, &r_index, &h_index);
415
416 if (iter->r_index > h_index)
417 return NULL;
418
419 iter->mask = 1UL << (root->index_bits - 1);
420 iter->cur = root->prio_tree_node;
421
422 while (1) {
423 if (overlap(iter, r_index, h_index))
424 return iter->cur;
425
426 if (prio_tree_left(iter, &r_index, &h_index))
427 continue;
428
429 if (prio_tree_right(iter, &r_index, &h_index))
430 continue;
431
432 break;
433 }
434 return NULL;
435 }
436
437 /*
438 * prio_tree_next:
439 *
440 * Get the next prio_tree_node that overlaps with the input interval in iter
441 */
442 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
443 {
444 unsigned long r_index, h_index;
445
446 if (iter->cur == NULL)
447 return prio_tree_first(iter);
448
449 repeat:
450 while (prio_tree_left(iter, &r_index, &h_index))
451 if (overlap(iter, r_index, h_index))
452 return iter->cur;
453
454 while (!prio_tree_right(iter, &r_index, &h_index)) {
455 while (!prio_tree_root(iter->cur) &&
456 iter->cur->parent->right == iter->cur)
457 prio_tree_parent(iter);
458
459 if (prio_tree_root(iter->cur))
460 return NULL;
461
462 prio_tree_parent(iter);
463 }
464
465 if (overlap(iter, r_index, h_index))
466 return iter->cur;
467
468 goto repeat;
469 }
470 EXPORT_SYMBOL(prio_tree_next);