]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/radix-tree.c
66c71312c381e8acac14bdaf94ecaff30ae320fb
[mirror_ubuntu-bionic-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/cpu.h>
28 #include <linux/errno.h>
29 #include <linux/export.h>
30 #include <linux/idr.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/kmemleak.h>
34 #include <linux/percpu.h>
35 #include <linux/preempt.h> /* in_interrupt() */
36 #include <linux/radix-tree.h>
37 #include <linux/rcupdate.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40
41
42 /* Number of nodes in fully populated tree of given height */
43 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
45 /*
46 * Radix tree node cache.
47 */
48 static struct kmem_cache *radix_tree_node_cachep;
49
50 /*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
63 /*
64 * The IDR does not have to be as high as the radix tree since it uses
65 * signed integers, not unsigned longs.
66 */
67 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
68 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
69 RADIX_TREE_MAP_SHIFT))
70 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
71
72 /*
73 * The IDA is even shorter since it uses a bitmap at the last level.
74 */
75 #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76 #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
77 RADIX_TREE_MAP_SHIFT))
78 #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
79
80 /*
81 * Per-cpu pool of preloaded nodes
82 */
83 struct radix_tree_preload {
84 unsigned nr;
85 /* nodes->parent points to next preallocated node */
86 struct radix_tree_node *nodes;
87 };
88 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
89
90 static inline struct radix_tree_node *entry_to_node(void *ptr)
91 {
92 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93 }
94
95 static inline void *node_to_entry(void *ptr)
96 {
97 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
98 }
99
100 #define RADIX_TREE_RETRY node_to_entry(NULL)
101
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 /* Sibling slots point directly to another slot in the same node */
104 static inline
105 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
106 {
107 void **ptr = node;
108 return (parent->slots <= ptr) &&
109 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110 }
111 #else
112 static inline
113 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
114 {
115 return false;
116 }
117 #endif
118
119 static inline
120 unsigned long get_slot_offset(const struct radix_tree_node *parent, void **slot)
121 {
122 return slot - parent->slots;
123 }
124
125 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
126 struct radix_tree_node **nodep, unsigned long index)
127 {
128 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
129 void **entry = rcu_dereference_raw(parent->slots[offset]);
130
131 #ifdef CONFIG_RADIX_TREE_MULTIORDER
132 if (radix_tree_is_internal_node(entry)) {
133 if (is_sibling_entry(parent, entry)) {
134 void **sibentry = (void **) entry_to_node(entry);
135 offset = get_slot_offset(parent, sibentry);
136 entry = rcu_dereference_raw(*sibentry);
137 }
138 }
139 #endif
140
141 *nodep = (void *)entry;
142 return offset;
143 }
144
145 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
146 {
147 return root->gfp_mask & __GFP_BITS_MASK;
148 }
149
150 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
151 int offset)
152 {
153 __set_bit(offset, node->tags[tag]);
154 }
155
156 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
157 int offset)
158 {
159 __clear_bit(offset, node->tags[tag]);
160 }
161
162 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
163 int offset)
164 {
165 return test_bit(offset, node->tags[tag]);
166 }
167
168 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
169 {
170 root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
171 }
172
173 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
174 {
175 root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
176 }
177
178 static inline void root_tag_clear_all(struct radix_tree_root *root)
179 {
180 root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
181 }
182
183 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
184 {
185 return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
186 }
187
188 static inline unsigned root_tags_get(const struct radix_tree_root *root)
189 {
190 return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
191 }
192
193 static inline bool is_idr(const struct radix_tree_root *root)
194 {
195 return !!(root->gfp_mask & ROOT_IS_IDR);
196 }
197
198 /*
199 * Returns 1 if any slot in the node has this tag set.
200 * Otherwise returns 0.
201 */
202 static inline int any_tag_set(const struct radix_tree_node *node,
203 unsigned int tag)
204 {
205 unsigned idx;
206 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
207 if (node->tags[tag][idx])
208 return 1;
209 }
210 return 0;
211 }
212
213 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
214 {
215 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
216 }
217
218 /**
219 * radix_tree_find_next_bit - find the next set bit in a memory region
220 *
221 * @addr: The address to base the search on
222 * @size: The bitmap size in bits
223 * @offset: The bitnumber to start searching at
224 *
225 * Unrollable variant of find_next_bit() for constant size arrays.
226 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
227 * Returns next bit offset, or size if nothing found.
228 */
229 static __always_inline unsigned long
230 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
231 unsigned long offset)
232 {
233 const unsigned long *addr = node->tags[tag];
234
235 if (offset < RADIX_TREE_MAP_SIZE) {
236 unsigned long tmp;
237
238 addr += offset / BITS_PER_LONG;
239 tmp = *addr >> (offset % BITS_PER_LONG);
240 if (tmp)
241 return __ffs(tmp) + offset;
242 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
243 while (offset < RADIX_TREE_MAP_SIZE) {
244 tmp = *++addr;
245 if (tmp)
246 return __ffs(tmp) + offset;
247 offset += BITS_PER_LONG;
248 }
249 }
250 return RADIX_TREE_MAP_SIZE;
251 }
252
253 static unsigned int iter_offset(const struct radix_tree_iter *iter)
254 {
255 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
256 }
257
258 /*
259 * The maximum index which can be stored in a radix tree
260 */
261 static inline unsigned long shift_maxindex(unsigned int shift)
262 {
263 return (RADIX_TREE_MAP_SIZE << shift) - 1;
264 }
265
266 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
267 {
268 return shift_maxindex(node->shift);
269 }
270
271 static unsigned long next_index(unsigned long index,
272 const struct radix_tree_node *node,
273 unsigned long offset)
274 {
275 return (index & ~node_maxindex(node)) + (offset << node->shift);
276 }
277
278 #ifndef __KERNEL__
279 static void dump_node(struct radix_tree_node *node, unsigned long index)
280 {
281 unsigned long i;
282
283 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
284 node, node->offset, index, index | node_maxindex(node),
285 node->parent,
286 node->tags[0][0], node->tags[1][0], node->tags[2][0],
287 node->shift, node->count, node->exceptional);
288
289 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
290 unsigned long first = index | (i << node->shift);
291 unsigned long last = first | ((1UL << node->shift) - 1);
292 void *entry = node->slots[i];
293 if (!entry)
294 continue;
295 if (entry == RADIX_TREE_RETRY) {
296 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
297 i, first, last, node);
298 } else if (!radix_tree_is_internal_node(entry)) {
299 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
300 entry, i, first, last, node);
301 } else if (is_sibling_entry(node, entry)) {
302 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
303 entry, i, first, last, node,
304 *(void **)entry_to_node(entry));
305 } else {
306 dump_node(entry_to_node(entry), first);
307 }
308 }
309 }
310
311 /* For debug */
312 static void radix_tree_dump(struct radix_tree_root *root)
313 {
314 pr_debug("radix root: %p rnode %p tags %x\n",
315 root, root->rnode,
316 root->gfp_mask >> ROOT_TAG_SHIFT);
317 if (!radix_tree_is_internal_node(root->rnode))
318 return;
319 dump_node(entry_to_node(root->rnode), 0);
320 }
321
322 static void dump_ida_node(void *entry, unsigned long index)
323 {
324 unsigned long i;
325
326 if (!entry)
327 return;
328
329 if (radix_tree_is_internal_node(entry)) {
330 struct radix_tree_node *node = entry_to_node(entry);
331
332 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
333 node, node->offset, index * IDA_BITMAP_BITS,
334 ((index | node_maxindex(node)) + 1) *
335 IDA_BITMAP_BITS - 1,
336 node->parent, node->tags[0][0], node->shift,
337 node->count);
338 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
339 dump_ida_node(node->slots[i],
340 index | (i << node->shift));
341 } else if (radix_tree_exceptional_entry(entry)) {
342 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
343 entry, (int)(index & RADIX_TREE_MAP_MASK),
344 index * IDA_BITMAP_BITS,
345 index * IDA_BITMAP_BITS + BITS_PER_LONG -
346 RADIX_TREE_EXCEPTIONAL_SHIFT,
347 (unsigned long)entry >>
348 RADIX_TREE_EXCEPTIONAL_SHIFT);
349 } else {
350 struct ida_bitmap *bitmap = entry;
351
352 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
353 (int)(index & RADIX_TREE_MAP_MASK),
354 index * IDA_BITMAP_BITS,
355 (index + 1) * IDA_BITMAP_BITS - 1);
356 for (i = 0; i < IDA_BITMAP_LONGS; i++)
357 pr_cont(" %lx", bitmap->bitmap[i]);
358 pr_cont("\n");
359 }
360 }
361
362 static void ida_dump(struct ida *ida)
363 {
364 struct radix_tree_root *root = &ida->ida_rt;
365 pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
366 root->gfp_mask >> ROOT_TAG_SHIFT);
367 dump_ida_node(root->rnode, 0);
368 }
369 #endif
370
371 /*
372 * This assumes that the caller has performed appropriate preallocation, and
373 * that the caller has pinned this thread of control to the current CPU.
374 */
375 static struct radix_tree_node *
376 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
377 unsigned int shift, unsigned int offset,
378 unsigned int count, unsigned int exceptional)
379 {
380 struct radix_tree_node *ret = NULL;
381
382 /*
383 * Preload code isn't irq safe and it doesn't make sense to use
384 * preloading during an interrupt anyway as all the allocations have
385 * to be atomic. So just do normal allocation when in interrupt.
386 */
387 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
388 struct radix_tree_preload *rtp;
389
390 /*
391 * Even if the caller has preloaded, try to allocate from the
392 * cache first for the new node to get accounted to the memory
393 * cgroup.
394 */
395 ret = kmem_cache_alloc(radix_tree_node_cachep,
396 gfp_mask | __GFP_NOWARN);
397 if (ret)
398 goto out;
399
400 /*
401 * Provided the caller has preloaded here, we will always
402 * succeed in getting a node here (and never reach
403 * kmem_cache_alloc)
404 */
405 rtp = this_cpu_ptr(&radix_tree_preloads);
406 if (rtp->nr) {
407 ret = rtp->nodes;
408 rtp->nodes = ret->parent;
409 rtp->nr--;
410 }
411 /*
412 * Update the allocation stack trace as this is more useful
413 * for debugging.
414 */
415 kmemleak_update_trace(ret);
416 goto out;
417 }
418 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
419 out:
420 BUG_ON(radix_tree_is_internal_node(ret));
421 if (ret) {
422 ret->parent = parent;
423 ret->shift = shift;
424 ret->offset = offset;
425 ret->count = count;
426 ret->exceptional = exceptional;
427 }
428 return ret;
429 }
430
431 static void radix_tree_node_rcu_free(struct rcu_head *head)
432 {
433 struct radix_tree_node *node =
434 container_of(head, struct radix_tree_node, rcu_head);
435
436 /*
437 * Must only free zeroed nodes into the slab. We can be left with
438 * non-NULL entries by radix_tree_free_nodes, so clear the entries
439 * and tags here.
440 */
441 memset(node->slots, 0, sizeof(node->slots));
442 memset(node->tags, 0, sizeof(node->tags));
443 INIT_LIST_HEAD(&node->private_list);
444
445 kmem_cache_free(radix_tree_node_cachep, node);
446 }
447
448 static inline void
449 radix_tree_node_free(struct radix_tree_node *node)
450 {
451 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
452 }
453
454 /*
455 * Load up this CPU's radix_tree_node buffer with sufficient objects to
456 * ensure that the addition of a single element in the tree cannot fail. On
457 * success, return zero, with preemption disabled. On error, return -ENOMEM
458 * with preemption not disabled.
459 *
460 * To make use of this facility, the radix tree must be initialised without
461 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
462 */
463 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
464 {
465 struct radix_tree_preload *rtp;
466 struct radix_tree_node *node;
467 int ret = -ENOMEM;
468
469 /*
470 * Nodes preloaded by one cgroup can be be used by another cgroup, so
471 * they should never be accounted to any particular memory cgroup.
472 */
473 gfp_mask &= ~__GFP_ACCOUNT;
474
475 preempt_disable();
476 rtp = this_cpu_ptr(&radix_tree_preloads);
477 while (rtp->nr < nr) {
478 preempt_enable();
479 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
480 if (node == NULL)
481 goto out;
482 preempt_disable();
483 rtp = this_cpu_ptr(&radix_tree_preloads);
484 if (rtp->nr < nr) {
485 node->parent = rtp->nodes;
486 rtp->nodes = node;
487 rtp->nr++;
488 } else {
489 kmem_cache_free(radix_tree_node_cachep, node);
490 }
491 }
492 ret = 0;
493 out:
494 return ret;
495 }
496
497 /*
498 * Load up this CPU's radix_tree_node buffer with sufficient objects to
499 * ensure that the addition of a single element in the tree cannot fail. On
500 * success, return zero, with preemption disabled. On error, return -ENOMEM
501 * with preemption not disabled.
502 *
503 * To make use of this facility, the radix tree must be initialised without
504 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
505 */
506 int radix_tree_preload(gfp_t gfp_mask)
507 {
508 /* Warn on non-sensical use... */
509 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
510 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
511 }
512 EXPORT_SYMBOL(radix_tree_preload);
513
514 /*
515 * The same as above function, except we don't guarantee preloading happens.
516 * We do it, if we decide it helps. On success, return zero with preemption
517 * disabled. On error, return -ENOMEM with preemption not disabled.
518 */
519 int radix_tree_maybe_preload(gfp_t gfp_mask)
520 {
521 if (gfpflags_allow_blocking(gfp_mask))
522 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
523 /* Preloading doesn't help anything with this gfp mask, skip it */
524 preempt_disable();
525 return 0;
526 }
527 EXPORT_SYMBOL(radix_tree_maybe_preload);
528
529 #ifdef CONFIG_RADIX_TREE_MULTIORDER
530 /*
531 * Preload with enough objects to ensure that we can split a single entry
532 * of order @old_order into many entries of size @new_order
533 */
534 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
535 gfp_t gfp_mask)
536 {
537 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
538 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
539 (new_order / RADIX_TREE_MAP_SHIFT);
540 unsigned nr = 0;
541
542 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
543 BUG_ON(new_order >= old_order);
544
545 while (layers--)
546 nr = nr * RADIX_TREE_MAP_SIZE + 1;
547 return __radix_tree_preload(gfp_mask, top * nr);
548 }
549 #endif
550
551 /*
552 * The same as function above, but preload number of nodes required to insert
553 * (1 << order) continuous naturally-aligned elements.
554 */
555 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
556 {
557 unsigned long nr_subtrees;
558 int nr_nodes, subtree_height;
559
560 /* Preloading doesn't help anything with this gfp mask, skip it */
561 if (!gfpflags_allow_blocking(gfp_mask)) {
562 preempt_disable();
563 return 0;
564 }
565
566 /*
567 * Calculate number and height of fully populated subtrees it takes to
568 * store (1 << order) elements.
569 */
570 nr_subtrees = 1 << order;
571 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
572 subtree_height++)
573 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
574
575 /*
576 * The worst case is zero height tree with a single item at index 0 and
577 * then inserting items starting at ULONG_MAX - (1 << order).
578 *
579 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
580 * 0-index item.
581 */
582 nr_nodes = RADIX_TREE_MAX_PATH;
583
584 /* Plus branch to fully populated subtrees. */
585 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
586
587 /* Root node is shared. */
588 nr_nodes--;
589
590 /* Plus nodes required to build subtrees. */
591 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
592
593 return __radix_tree_preload(gfp_mask, nr_nodes);
594 }
595
596 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
597 struct radix_tree_node **nodep, unsigned long *maxindex)
598 {
599 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
600
601 *nodep = node;
602
603 if (likely(radix_tree_is_internal_node(node))) {
604 node = entry_to_node(node);
605 *maxindex = node_maxindex(node);
606 return node->shift + RADIX_TREE_MAP_SHIFT;
607 }
608
609 *maxindex = 0;
610 return 0;
611 }
612
613 /*
614 * Extend a radix tree so it can store key @index.
615 */
616 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
617 unsigned long index, unsigned int shift)
618 {
619 struct radix_tree_node *slot;
620 unsigned int maxshift;
621 int tag;
622
623 /* Figure out what the shift should be. */
624 maxshift = shift;
625 while (index > shift_maxindex(maxshift))
626 maxshift += RADIX_TREE_MAP_SHIFT;
627
628 slot = root->rnode;
629 if (!slot && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
630 goto out;
631
632 do {
633 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
634 shift, 0, 1, 0);
635 if (!node)
636 return -ENOMEM;
637
638 if (is_idr(root)) {
639 all_tag_set(node, IDR_FREE);
640 if (!root_tag_get(root, IDR_FREE)) {
641 tag_clear(node, IDR_FREE, 0);
642 root_tag_set(root, IDR_FREE);
643 }
644 } else {
645 /* Propagate the aggregated tag info to the new child */
646 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
647 if (root_tag_get(root, tag))
648 tag_set(node, tag, 0);
649 }
650 }
651
652 BUG_ON(shift > BITS_PER_LONG);
653 if (radix_tree_is_internal_node(slot)) {
654 entry_to_node(slot)->parent = node;
655 } else if (radix_tree_exceptional_entry(slot)) {
656 /* Moving an exceptional root->rnode to a node */
657 node->exceptional = 1;
658 }
659 node->slots[0] = slot;
660 slot = node_to_entry(node);
661 rcu_assign_pointer(root->rnode, slot);
662 shift += RADIX_TREE_MAP_SHIFT;
663 } while (shift <= maxshift);
664 out:
665 return maxshift + RADIX_TREE_MAP_SHIFT;
666 }
667
668 /**
669 * radix_tree_shrink - shrink radix tree to minimum height
670 * @root radix tree root
671 */
672 static inline bool radix_tree_shrink(struct radix_tree_root *root,
673 radix_tree_update_node_t update_node,
674 void *private)
675 {
676 bool shrunk = false;
677
678 for (;;) {
679 struct radix_tree_node *node = root->rnode;
680 struct radix_tree_node *child;
681
682 if (!radix_tree_is_internal_node(node))
683 break;
684 node = entry_to_node(node);
685
686 /*
687 * The candidate node has more than one child, or its child
688 * is not at the leftmost slot, or the child is a multiorder
689 * entry, we cannot shrink.
690 */
691 if (node->count != 1)
692 break;
693 child = node->slots[0];
694 if (!child)
695 break;
696 if (!radix_tree_is_internal_node(child) && node->shift)
697 break;
698
699 if (radix_tree_is_internal_node(child))
700 entry_to_node(child)->parent = NULL;
701
702 /*
703 * We don't need rcu_assign_pointer(), since we are simply
704 * moving the node from one part of the tree to another: if it
705 * was safe to dereference the old pointer to it
706 * (node->slots[0]), it will be safe to dereference the new
707 * one (root->rnode) as far as dependent read barriers go.
708 */
709 root->rnode = child;
710 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
711 root_tag_clear(root, IDR_FREE);
712
713 /*
714 * We have a dilemma here. The node's slot[0] must not be
715 * NULLed in case there are concurrent lookups expecting to
716 * find the item. However if this was a bottom-level node,
717 * then it may be subject to the slot pointer being visible
718 * to callers dereferencing it. If item corresponding to
719 * slot[0] is subsequently deleted, these callers would expect
720 * their slot to become empty sooner or later.
721 *
722 * For example, lockless pagecache will look up a slot, deref
723 * the page pointer, and if the page has 0 refcount it means it
724 * was concurrently deleted from pagecache so try the deref
725 * again. Fortunately there is already a requirement for logic
726 * to retry the entire slot lookup -- the indirect pointer
727 * problem (replacing direct root node with an indirect pointer
728 * also results in a stale slot). So tag the slot as indirect
729 * to force callers to retry.
730 */
731 node->count = 0;
732 if (!radix_tree_is_internal_node(child)) {
733 node->slots[0] = RADIX_TREE_RETRY;
734 if (update_node)
735 update_node(node, private);
736 }
737
738 WARN_ON_ONCE(!list_empty(&node->private_list));
739 radix_tree_node_free(node);
740 shrunk = true;
741 }
742
743 return shrunk;
744 }
745
746 static bool delete_node(struct radix_tree_root *root,
747 struct radix_tree_node *node,
748 radix_tree_update_node_t update_node, void *private)
749 {
750 bool deleted = false;
751
752 do {
753 struct radix_tree_node *parent;
754
755 if (node->count) {
756 if (node == entry_to_node(root->rnode))
757 deleted |= radix_tree_shrink(root, update_node,
758 private);
759 return deleted;
760 }
761
762 parent = node->parent;
763 if (parent) {
764 parent->slots[node->offset] = NULL;
765 parent->count--;
766 } else {
767 /*
768 * Shouldn't the tags already have all been cleared
769 * by the caller?
770 */
771 if (!is_idr(root))
772 root_tag_clear_all(root);
773 root->rnode = NULL;
774 }
775
776 WARN_ON_ONCE(!list_empty(&node->private_list));
777 radix_tree_node_free(node);
778 deleted = true;
779
780 node = parent;
781 } while (node);
782
783 return deleted;
784 }
785
786 /**
787 * __radix_tree_create - create a slot in a radix tree
788 * @root: radix tree root
789 * @index: index key
790 * @order: index occupies 2^order aligned slots
791 * @nodep: returns node
792 * @slotp: returns slot
793 *
794 * Create, if necessary, and return the node and slot for an item
795 * at position @index in the radix tree @root.
796 *
797 * Until there is more than one item in the tree, no nodes are
798 * allocated and @root->rnode is used as a direct slot instead of
799 * pointing to a node, in which case *@nodep will be NULL.
800 *
801 * Returns -ENOMEM, or 0 for success.
802 */
803 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
804 unsigned order, struct radix_tree_node **nodep,
805 void ***slotp)
806 {
807 struct radix_tree_node *node = NULL, *child;
808 void **slot = (void **)&root->rnode;
809 unsigned long maxindex;
810 unsigned int shift, offset = 0;
811 unsigned long max = index | ((1UL << order) - 1);
812 gfp_t gfp = root_gfp_mask(root);
813
814 shift = radix_tree_load_root(root, &child, &maxindex);
815
816 /* Make sure the tree is high enough. */
817 if (order > 0 && max == ((1UL << order) - 1))
818 max++;
819 if (max > maxindex) {
820 int error = radix_tree_extend(root, gfp, max, shift);
821 if (error < 0)
822 return error;
823 shift = error;
824 child = root->rnode;
825 }
826
827 while (shift > order) {
828 shift -= RADIX_TREE_MAP_SHIFT;
829 if (child == NULL) {
830 /* Have to add a child node. */
831 child = radix_tree_node_alloc(gfp, node, shift,
832 offset, 0, 0);
833 if (!child)
834 return -ENOMEM;
835 rcu_assign_pointer(*slot, node_to_entry(child));
836 if (node)
837 node->count++;
838 } else if (!radix_tree_is_internal_node(child))
839 break;
840
841 /* Go a level down */
842 node = entry_to_node(child);
843 offset = radix_tree_descend(node, &child, index);
844 slot = &node->slots[offset];
845 }
846
847 if (nodep)
848 *nodep = node;
849 if (slotp)
850 *slotp = slot;
851 return 0;
852 }
853
854 /*
855 * Free any nodes below this node. The tree is presumed to not need
856 * shrinking, and any user data in the tree is presumed to not need a
857 * destructor called on it. If we need to add a destructor, we can
858 * add that functionality later. Note that we may not clear tags or
859 * slots from the tree as an RCU walker may still have a pointer into
860 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
861 * but we'll still have to clear those in rcu_free.
862 */
863 static void radix_tree_free_nodes(struct radix_tree_node *node)
864 {
865 unsigned offset = 0;
866 struct radix_tree_node *child = entry_to_node(node);
867
868 for (;;) {
869 void *entry = child->slots[offset];
870 if (radix_tree_is_internal_node(entry) &&
871 !is_sibling_entry(child, entry)) {
872 child = entry_to_node(entry);
873 offset = 0;
874 continue;
875 }
876 offset++;
877 while (offset == RADIX_TREE_MAP_SIZE) {
878 struct radix_tree_node *old = child;
879 offset = child->offset + 1;
880 child = child->parent;
881 WARN_ON_ONCE(!list_empty(&old->private_list));
882 radix_tree_node_free(old);
883 if (old == entry_to_node(node))
884 return;
885 }
886 }
887 }
888
889 #ifdef CONFIG_RADIX_TREE_MULTIORDER
890 static inline int insert_entries(struct radix_tree_node *node, void **slot,
891 void *item, unsigned order, bool replace)
892 {
893 struct radix_tree_node *child;
894 unsigned i, n, tag, offset, tags = 0;
895
896 if (node) {
897 if (order > node->shift)
898 n = 1 << (order - node->shift);
899 else
900 n = 1;
901 offset = get_slot_offset(node, slot);
902 } else {
903 n = 1;
904 offset = 0;
905 }
906
907 if (n > 1) {
908 offset = offset & ~(n - 1);
909 slot = &node->slots[offset];
910 }
911 child = node_to_entry(slot);
912
913 for (i = 0; i < n; i++) {
914 if (slot[i]) {
915 if (replace) {
916 node->count--;
917 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
918 if (tag_get(node, tag, offset + i))
919 tags |= 1 << tag;
920 } else
921 return -EEXIST;
922 }
923 }
924
925 for (i = 0; i < n; i++) {
926 struct radix_tree_node *old = slot[i];
927 if (i) {
928 rcu_assign_pointer(slot[i], child);
929 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
930 if (tags & (1 << tag))
931 tag_clear(node, tag, offset + i);
932 } else {
933 rcu_assign_pointer(slot[i], item);
934 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
935 if (tags & (1 << tag))
936 tag_set(node, tag, offset);
937 }
938 if (radix_tree_is_internal_node(old) &&
939 !is_sibling_entry(node, old) &&
940 (old != RADIX_TREE_RETRY))
941 radix_tree_free_nodes(old);
942 if (radix_tree_exceptional_entry(old))
943 node->exceptional--;
944 }
945 if (node) {
946 node->count += n;
947 if (radix_tree_exceptional_entry(item))
948 node->exceptional += n;
949 }
950 return n;
951 }
952 #else
953 static inline int insert_entries(struct radix_tree_node *node, void **slot,
954 void *item, unsigned order, bool replace)
955 {
956 if (*slot)
957 return -EEXIST;
958 rcu_assign_pointer(*slot, item);
959 if (node) {
960 node->count++;
961 if (radix_tree_exceptional_entry(item))
962 node->exceptional++;
963 }
964 return 1;
965 }
966 #endif
967
968 /**
969 * __radix_tree_insert - insert into a radix tree
970 * @root: radix tree root
971 * @index: index key
972 * @order: key covers the 2^order indices around index
973 * @item: item to insert
974 *
975 * Insert an item into the radix tree at position @index.
976 */
977 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
978 unsigned order, void *item)
979 {
980 struct radix_tree_node *node;
981 void **slot;
982 int error;
983
984 BUG_ON(radix_tree_is_internal_node(item));
985
986 error = __radix_tree_create(root, index, order, &node, &slot);
987 if (error)
988 return error;
989
990 error = insert_entries(node, slot, item, order, false);
991 if (error < 0)
992 return error;
993
994 if (node) {
995 unsigned offset = get_slot_offset(node, slot);
996 BUG_ON(tag_get(node, 0, offset));
997 BUG_ON(tag_get(node, 1, offset));
998 BUG_ON(tag_get(node, 2, offset));
999 } else {
1000 BUG_ON(root_tags_get(root));
1001 }
1002
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(__radix_tree_insert);
1006
1007 /**
1008 * __radix_tree_lookup - lookup an item in a radix tree
1009 * @root: radix tree root
1010 * @index: index key
1011 * @nodep: returns node
1012 * @slotp: returns slot
1013 *
1014 * Lookup and return the item at position @index in the radix
1015 * tree @root.
1016 *
1017 * Until there is more than one item in the tree, no nodes are
1018 * allocated and @root->rnode is used as a direct slot instead of
1019 * pointing to a node, in which case *@nodep will be NULL.
1020 */
1021 void *__radix_tree_lookup(const struct radix_tree_root *root,
1022 unsigned long index, struct radix_tree_node **nodep,
1023 void ***slotp)
1024 {
1025 struct radix_tree_node *node, *parent;
1026 unsigned long maxindex;
1027 void **slot;
1028
1029 restart:
1030 parent = NULL;
1031 slot = (void **)&root->rnode;
1032 radix_tree_load_root(root, &node, &maxindex);
1033 if (index > maxindex)
1034 return NULL;
1035
1036 while (radix_tree_is_internal_node(node)) {
1037 unsigned offset;
1038
1039 if (node == RADIX_TREE_RETRY)
1040 goto restart;
1041 parent = entry_to_node(node);
1042 offset = radix_tree_descend(parent, &node, index);
1043 slot = parent->slots + offset;
1044 }
1045
1046 if (nodep)
1047 *nodep = parent;
1048 if (slotp)
1049 *slotp = slot;
1050 return node;
1051 }
1052
1053 /**
1054 * radix_tree_lookup_slot - lookup a slot in a radix tree
1055 * @root: radix tree root
1056 * @index: index key
1057 *
1058 * Returns: the slot corresponding to the position @index in the
1059 * radix tree @root. This is useful for update-if-exists operations.
1060 *
1061 * This function can be called under rcu_read_lock iff the slot is not
1062 * modified by radix_tree_replace_slot, otherwise it must be called
1063 * exclusive from other writers. Any dereference of the slot must be done
1064 * using radix_tree_deref_slot.
1065 */
1066 void **radix_tree_lookup_slot(const struct radix_tree_root *root,
1067 unsigned long index)
1068 {
1069 void **slot;
1070
1071 if (!__radix_tree_lookup(root, index, NULL, &slot))
1072 return NULL;
1073 return slot;
1074 }
1075 EXPORT_SYMBOL(radix_tree_lookup_slot);
1076
1077 /**
1078 * radix_tree_lookup - perform lookup operation on a radix tree
1079 * @root: radix tree root
1080 * @index: index key
1081 *
1082 * Lookup the item at the position @index in the radix tree @root.
1083 *
1084 * This function can be called under rcu_read_lock, however the caller
1085 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1086 * them safely). No RCU barriers are required to access or modify the
1087 * returned item, however.
1088 */
1089 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1090 {
1091 return __radix_tree_lookup(root, index, NULL, NULL);
1092 }
1093 EXPORT_SYMBOL(radix_tree_lookup);
1094
1095 static inline void replace_sibling_entries(struct radix_tree_node *node,
1096 void **slot, int count, int exceptional)
1097 {
1098 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1099 void *ptr = node_to_entry(slot);
1100 unsigned offset = get_slot_offset(node, slot) + 1;
1101
1102 while (offset < RADIX_TREE_MAP_SIZE) {
1103 if (node->slots[offset] != ptr)
1104 break;
1105 if (count < 0) {
1106 node->slots[offset] = NULL;
1107 node->count--;
1108 }
1109 node->exceptional += exceptional;
1110 offset++;
1111 }
1112 #endif
1113 }
1114
1115 static void replace_slot(void **slot, void *item, struct radix_tree_node *node,
1116 int count, int exceptional)
1117 {
1118 if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1119 return;
1120
1121 if (node && (count || exceptional)) {
1122 node->count += count;
1123 node->exceptional += exceptional;
1124 replace_sibling_entries(node, slot, count, exceptional);
1125 }
1126
1127 rcu_assign_pointer(*slot, item);
1128 }
1129
1130 static bool node_tag_get(const struct radix_tree_root *root,
1131 const struct radix_tree_node *node,
1132 unsigned int tag, unsigned int offset)
1133 {
1134 if (node)
1135 return tag_get(node, tag, offset);
1136 return root_tag_get(root, tag);
1137 }
1138
1139 /*
1140 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1141 * free, don't adjust the count, even if it's transitioning between NULL and
1142 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1143 * have empty bits, but it only stores NULL in slots when they're being
1144 * deleted.
1145 */
1146 static int calculate_count(struct radix_tree_root *root,
1147 struct radix_tree_node *node, void **slot,
1148 void *item, void *old)
1149 {
1150 if (is_idr(root)) {
1151 unsigned offset = get_slot_offset(node, slot);
1152 bool free = node_tag_get(root, node, IDR_FREE, offset);
1153 if (!free)
1154 return 0;
1155 if (!old)
1156 return 1;
1157 }
1158 return !!item - !!old;
1159 }
1160
1161 /**
1162 * __radix_tree_replace - replace item in a slot
1163 * @root: radix tree root
1164 * @node: pointer to tree node
1165 * @slot: pointer to slot in @node
1166 * @item: new item to store in the slot.
1167 * @update_node: callback for changing leaf nodes
1168 * @private: private data to pass to @update_node
1169 *
1170 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1171 * across slot lookup and replacement.
1172 */
1173 void __radix_tree_replace(struct radix_tree_root *root,
1174 struct radix_tree_node *node,
1175 void **slot, void *item,
1176 radix_tree_update_node_t update_node, void *private)
1177 {
1178 void *old = rcu_dereference_raw(*slot);
1179 int exceptional = !!radix_tree_exceptional_entry(item) -
1180 !!radix_tree_exceptional_entry(old);
1181 int count = calculate_count(root, node, slot, item, old);
1182
1183 /*
1184 * This function supports replacing exceptional entries and
1185 * deleting entries, but that needs accounting against the
1186 * node unless the slot is root->rnode.
1187 */
1188 WARN_ON_ONCE(!node && (slot != (void **)&root->rnode) &&
1189 (count || exceptional));
1190 replace_slot(slot, item, node, count, exceptional);
1191
1192 if (!node)
1193 return;
1194
1195 if (update_node)
1196 update_node(node, private);
1197
1198 delete_node(root, node, update_node, private);
1199 }
1200
1201 /**
1202 * radix_tree_replace_slot - replace item in a slot
1203 * @root: radix tree root
1204 * @slot: pointer to slot
1205 * @item: new item to store in the slot.
1206 *
1207 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1208 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1209 * across slot lookup and replacement.
1210 *
1211 * NOTE: This cannot be used to switch between non-entries (empty slots),
1212 * regular entries, and exceptional entries, as that requires accounting
1213 * inside the radix tree node. When switching from one type of entry or
1214 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1215 * radix_tree_iter_replace().
1216 */
1217 void radix_tree_replace_slot(struct radix_tree_root *root,
1218 void **slot, void *item)
1219 {
1220 __radix_tree_replace(root, NULL, slot, item, NULL, NULL);
1221 }
1222
1223 /**
1224 * radix_tree_iter_replace - replace item in a slot
1225 * @root: radix tree root
1226 * @slot: pointer to slot
1227 * @item: new item to store in the slot.
1228 *
1229 * For use with radix_tree_split() and radix_tree_for_each_slot().
1230 * Caller must hold tree write locked across split and replacement.
1231 */
1232 void radix_tree_iter_replace(struct radix_tree_root *root,
1233 const struct radix_tree_iter *iter, void **slot, void *item)
1234 {
1235 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1236 }
1237
1238 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1239 /**
1240 * radix_tree_join - replace multiple entries with one multiorder entry
1241 * @root: radix tree root
1242 * @index: an index inside the new entry
1243 * @order: order of the new entry
1244 * @item: new entry
1245 *
1246 * Call this function to replace several entries with one larger entry.
1247 * The existing entries are presumed to not need freeing as a result of
1248 * this call.
1249 *
1250 * The replacement entry will have all the tags set on it that were set
1251 * on any of the entries it is replacing.
1252 */
1253 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1254 unsigned order, void *item)
1255 {
1256 struct radix_tree_node *node;
1257 void **slot;
1258 int error;
1259
1260 BUG_ON(radix_tree_is_internal_node(item));
1261
1262 error = __radix_tree_create(root, index, order, &node, &slot);
1263 if (!error)
1264 error = insert_entries(node, slot, item, order, true);
1265 if (error > 0)
1266 error = 0;
1267
1268 return error;
1269 }
1270
1271 /**
1272 * radix_tree_split - Split an entry into smaller entries
1273 * @root: radix tree root
1274 * @index: An index within the large entry
1275 * @order: Order of new entries
1276 *
1277 * Call this function as the first step in replacing a multiorder entry
1278 * with several entries of lower order. After this function returns,
1279 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1280 * and call radix_tree_iter_replace() to set up each new entry.
1281 *
1282 * The tags from this entry are replicated to all the new entries.
1283 *
1284 * The radix tree should be locked against modification during the entire
1285 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1286 * should prompt RCU walkers to restart the lookup from the root.
1287 */
1288 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1289 unsigned order)
1290 {
1291 struct radix_tree_node *parent, *node, *child;
1292 void **slot;
1293 unsigned int offset, end;
1294 unsigned n, tag, tags = 0;
1295 gfp_t gfp = root_gfp_mask(root);
1296
1297 if (!__radix_tree_lookup(root, index, &parent, &slot))
1298 return -ENOENT;
1299 if (!parent)
1300 return -ENOENT;
1301
1302 offset = get_slot_offset(parent, slot);
1303
1304 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1305 if (tag_get(parent, tag, offset))
1306 tags |= 1 << tag;
1307
1308 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1309 if (!is_sibling_entry(parent, parent->slots[end]))
1310 break;
1311 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1312 if (tags & (1 << tag))
1313 tag_set(parent, tag, end);
1314 /* rcu_assign_pointer ensures tags are set before RETRY */
1315 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1316 }
1317 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1318 parent->exceptional -= (end - offset);
1319
1320 if (order == parent->shift)
1321 return 0;
1322 if (order > parent->shift) {
1323 while (offset < end)
1324 offset += insert_entries(parent, &parent->slots[offset],
1325 RADIX_TREE_RETRY, order, true);
1326 return 0;
1327 }
1328
1329 node = parent;
1330
1331 for (;;) {
1332 if (node->shift > order) {
1333 child = radix_tree_node_alloc(gfp, node,
1334 node->shift - RADIX_TREE_MAP_SHIFT,
1335 offset, 0, 0);
1336 if (!child)
1337 goto nomem;
1338 if (node != parent) {
1339 node->count++;
1340 node->slots[offset] = node_to_entry(child);
1341 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1342 if (tags & (1 << tag))
1343 tag_set(node, tag, offset);
1344 }
1345
1346 node = child;
1347 offset = 0;
1348 continue;
1349 }
1350
1351 n = insert_entries(node, &node->slots[offset],
1352 RADIX_TREE_RETRY, order, false);
1353 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1354
1355 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1356 if (tags & (1 << tag))
1357 tag_set(node, tag, offset);
1358 offset += n;
1359
1360 while (offset == RADIX_TREE_MAP_SIZE) {
1361 if (node == parent)
1362 break;
1363 offset = node->offset;
1364 child = node;
1365 node = node->parent;
1366 rcu_assign_pointer(node->slots[offset],
1367 node_to_entry(child));
1368 offset++;
1369 }
1370 if ((node == parent) && (offset == end))
1371 return 0;
1372 }
1373
1374 nomem:
1375 /* Shouldn't happen; did user forget to preload? */
1376 /* TODO: free all the allocated nodes */
1377 WARN_ON(1);
1378 return -ENOMEM;
1379 }
1380 #endif
1381
1382 static void node_tag_set(struct radix_tree_root *root,
1383 struct radix_tree_node *node,
1384 unsigned int tag, unsigned int offset)
1385 {
1386 while (node) {
1387 if (tag_get(node, tag, offset))
1388 return;
1389 tag_set(node, tag, offset);
1390 offset = node->offset;
1391 node = node->parent;
1392 }
1393
1394 if (!root_tag_get(root, tag))
1395 root_tag_set(root, tag);
1396 }
1397
1398 /**
1399 * radix_tree_tag_set - set a tag on a radix tree node
1400 * @root: radix tree root
1401 * @index: index key
1402 * @tag: tag index
1403 *
1404 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1405 * corresponding to @index in the radix tree. From
1406 * the root all the way down to the leaf node.
1407 *
1408 * Returns the address of the tagged item. Setting a tag on a not-present
1409 * item is a bug.
1410 */
1411 void *radix_tree_tag_set(struct radix_tree_root *root,
1412 unsigned long index, unsigned int tag)
1413 {
1414 struct radix_tree_node *node, *parent;
1415 unsigned long maxindex;
1416
1417 radix_tree_load_root(root, &node, &maxindex);
1418 BUG_ON(index > maxindex);
1419
1420 while (radix_tree_is_internal_node(node)) {
1421 unsigned offset;
1422
1423 parent = entry_to_node(node);
1424 offset = radix_tree_descend(parent, &node, index);
1425 BUG_ON(!node);
1426
1427 if (!tag_get(parent, tag, offset))
1428 tag_set(parent, tag, offset);
1429 }
1430
1431 /* set the root's tag bit */
1432 if (!root_tag_get(root, tag))
1433 root_tag_set(root, tag);
1434
1435 return node;
1436 }
1437 EXPORT_SYMBOL(radix_tree_tag_set);
1438
1439 /**
1440 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1441 * @root: radix tree root
1442 * @iter: iterator state
1443 * @tag: tag to set
1444 */
1445 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1446 const struct radix_tree_iter *iter, unsigned int tag)
1447 {
1448 node_tag_set(root, iter->node, tag, iter_offset(iter));
1449 }
1450
1451 static void node_tag_clear(struct radix_tree_root *root,
1452 struct radix_tree_node *node,
1453 unsigned int tag, unsigned int offset)
1454 {
1455 while (node) {
1456 if (!tag_get(node, tag, offset))
1457 return;
1458 tag_clear(node, tag, offset);
1459 if (any_tag_set(node, tag))
1460 return;
1461
1462 offset = node->offset;
1463 node = node->parent;
1464 }
1465
1466 /* clear the root's tag bit */
1467 if (root_tag_get(root, tag))
1468 root_tag_clear(root, tag);
1469 }
1470
1471 /**
1472 * radix_tree_tag_clear - clear a tag on a radix tree node
1473 * @root: radix tree root
1474 * @index: index key
1475 * @tag: tag index
1476 *
1477 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1478 * corresponding to @index in the radix tree. If this causes
1479 * the leaf node to have no tags set then clear the tag in the
1480 * next-to-leaf node, etc.
1481 *
1482 * Returns the address of the tagged item on success, else NULL. ie:
1483 * has the same return value and semantics as radix_tree_lookup().
1484 */
1485 void *radix_tree_tag_clear(struct radix_tree_root *root,
1486 unsigned long index, unsigned int tag)
1487 {
1488 struct radix_tree_node *node, *parent;
1489 unsigned long maxindex;
1490 int uninitialized_var(offset);
1491
1492 radix_tree_load_root(root, &node, &maxindex);
1493 if (index > maxindex)
1494 return NULL;
1495
1496 parent = NULL;
1497
1498 while (radix_tree_is_internal_node(node)) {
1499 parent = entry_to_node(node);
1500 offset = radix_tree_descend(parent, &node, index);
1501 }
1502
1503 if (node)
1504 node_tag_clear(root, parent, tag, offset);
1505
1506 return node;
1507 }
1508 EXPORT_SYMBOL(radix_tree_tag_clear);
1509
1510 /**
1511 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1512 * @root: radix tree root
1513 * @iter: iterator state
1514 * @tag: tag to clear
1515 */
1516 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1517 const struct radix_tree_iter *iter, unsigned int tag)
1518 {
1519 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1520 }
1521
1522 /**
1523 * radix_tree_tag_get - get a tag on a radix tree node
1524 * @root: radix tree root
1525 * @index: index key
1526 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1527 *
1528 * Return values:
1529 *
1530 * 0: tag not present or not set
1531 * 1: tag set
1532 *
1533 * Note that the return value of this function may not be relied on, even if
1534 * the RCU lock is held, unless tag modification and node deletion are excluded
1535 * from concurrency.
1536 */
1537 int radix_tree_tag_get(const struct radix_tree_root *root,
1538 unsigned long index, unsigned int tag)
1539 {
1540 struct radix_tree_node *node, *parent;
1541 unsigned long maxindex;
1542
1543 if (!root_tag_get(root, tag))
1544 return 0;
1545
1546 radix_tree_load_root(root, &node, &maxindex);
1547 if (index > maxindex)
1548 return 0;
1549
1550 while (radix_tree_is_internal_node(node)) {
1551 unsigned offset;
1552
1553 parent = entry_to_node(node);
1554 offset = radix_tree_descend(parent, &node, index);
1555
1556 if (!tag_get(parent, tag, offset))
1557 return 0;
1558 if (node == RADIX_TREE_RETRY)
1559 break;
1560 }
1561
1562 return 1;
1563 }
1564 EXPORT_SYMBOL(radix_tree_tag_get);
1565
1566 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1567 unsigned int shift)
1568 {
1569 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1570 iter->shift = shift;
1571 #endif
1572 }
1573
1574 /* Construct iter->tags bit-mask from node->tags[tag] array */
1575 static void set_iter_tags(struct radix_tree_iter *iter,
1576 struct radix_tree_node *node, unsigned offset,
1577 unsigned tag)
1578 {
1579 unsigned tag_long = offset / BITS_PER_LONG;
1580 unsigned tag_bit = offset % BITS_PER_LONG;
1581
1582 if (!node) {
1583 iter->tags = 1;
1584 return;
1585 }
1586
1587 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1588
1589 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1590 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1591 /* Pick tags from next element */
1592 if (tag_bit)
1593 iter->tags |= node->tags[tag][tag_long + 1] <<
1594 (BITS_PER_LONG - tag_bit);
1595 /* Clip chunk size, here only BITS_PER_LONG tags */
1596 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1597 }
1598 }
1599
1600 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1601 static void **skip_siblings(struct radix_tree_node **nodep,
1602 void **slot, struct radix_tree_iter *iter)
1603 {
1604 void *sib = node_to_entry(slot - 1);
1605
1606 while (iter->index < iter->next_index) {
1607 *nodep = rcu_dereference_raw(*slot);
1608 if (*nodep && *nodep != sib)
1609 return slot;
1610 slot++;
1611 iter->index = __radix_tree_iter_add(iter, 1);
1612 iter->tags >>= 1;
1613 }
1614
1615 *nodep = NULL;
1616 return NULL;
1617 }
1618
1619 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1620 unsigned flags)
1621 {
1622 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1623 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1624
1625 slot = skip_siblings(&node, slot, iter);
1626
1627 while (radix_tree_is_internal_node(node)) {
1628 unsigned offset;
1629 unsigned long next_index;
1630
1631 if (node == RADIX_TREE_RETRY)
1632 return slot;
1633 node = entry_to_node(node);
1634 iter->node = node;
1635 iter->shift = node->shift;
1636
1637 if (flags & RADIX_TREE_ITER_TAGGED) {
1638 offset = radix_tree_find_next_bit(node, tag, 0);
1639 if (offset == RADIX_TREE_MAP_SIZE)
1640 return NULL;
1641 slot = &node->slots[offset];
1642 iter->index = __radix_tree_iter_add(iter, offset);
1643 set_iter_tags(iter, node, offset, tag);
1644 node = rcu_dereference_raw(*slot);
1645 } else {
1646 offset = 0;
1647 slot = &node->slots[0];
1648 for (;;) {
1649 node = rcu_dereference_raw(*slot);
1650 if (node)
1651 break;
1652 slot++;
1653 offset++;
1654 if (offset == RADIX_TREE_MAP_SIZE)
1655 return NULL;
1656 }
1657 iter->index = __radix_tree_iter_add(iter, offset);
1658 }
1659 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1660 goto none;
1661 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1662 if (next_index < iter->next_index)
1663 iter->next_index = next_index;
1664 }
1665
1666 return slot;
1667 none:
1668 iter->next_index = 0;
1669 return NULL;
1670 }
1671 EXPORT_SYMBOL(__radix_tree_next_slot);
1672 #else
1673 static void **skip_siblings(struct radix_tree_node **nodep,
1674 void **slot, struct radix_tree_iter *iter)
1675 {
1676 return slot;
1677 }
1678 #endif
1679
1680 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1681 {
1682 struct radix_tree_node *node;
1683
1684 slot++;
1685 iter->index = __radix_tree_iter_add(iter, 1);
1686 node = rcu_dereference_raw(*slot);
1687 skip_siblings(&node, slot, iter);
1688 iter->next_index = iter->index;
1689 iter->tags = 0;
1690 return NULL;
1691 }
1692 EXPORT_SYMBOL(radix_tree_iter_resume);
1693
1694 /**
1695 * radix_tree_next_chunk - find next chunk of slots for iteration
1696 *
1697 * @root: radix tree root
1698 * @iter: iterator state
1699 * @flags: RADIX_TREE_ITER_* flags and tag index
1700 * Returns: pointer to chunk first slot, or NULL if iteration is over
1701 */
1702 void **radix_tree_next_chunk(const struct radix_tree_root *root,
1703 struct radix_tree_iter *iter, unsigned flags)
1704 {
1705 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1706 struct radix_tree_node *node, *child;
1707 unsigned long index, offset, maxindex;
1708
1709 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1710 return NULL;
1711
1712 /*
1713 * Catch next_index overflow after ~0UL. iter->index never overflows
1714 * during iterating; it can be zero only at the beginning.
1715 * And we cannot overflow iter->next_index in a single step,
1716 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1717 *
1718 * This condition also used by radix_tree_next_slot() to stop
1719 * contiguous iterating, and forbid switching to the next chunk.
1720 */
1721 index = iter->next_index;
1722 if (!index && iter->index)
1723 return NULL;
1724
1725 restart:
1726 radix_tree_load_root(root, &child, &maxindex);
1727 if (index > maxindex)
1728 return NULL;
1729 if (!child)
1730 return NULL;
1731
1732 if (!radix_tree_is_internal_node(child)) {
1733 /* Single-slot tree */
1734 iter->index = index;
1735 iter->next_index = maxindex + 1;
1736 iter->tags = 1;
1737 iter->node = NULL;
1738 __set_iter_shift(iter, 0);
1739 return (void **)&root->rnode;
1740 }
1741
1742 do {
1743 node = entry_to_node(child);
1744 offset = radix_tree_descend(node, &child, index);
1745
1746 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1747 !tag_get(node, tag, offset) : !child) {
1748 /* Hole detected */
1749 if (flags & RADIX_TREE_ITER_CONTIG)
1750 return NULL;
1751
1752 if (flags & RADIX_TREE_ITER_TAGGED)
1753 offset = radix_tree_find_next_bit(node, tag,
1754 offset + 1);
1755 else
1756 while (++offset < RADIX_TREE_MAP_SIZE) {
1757 void *slot = node->slots[offset];
1758 if (is_sibling_entry(node, slot))
1759 continue;
1760 if (slot)
1761 break;
1762 }
1763 index &= ~node_maxindex(node);
1764 index += offset << node->shift;
1765 /* Overflow after ~0UL */
1766 if (!index)
1767 return NULL;
1768 if (offset == RADIX_TREE_MAP_SIZE)
1769 goto restart;
1770 child = rcu_dereference_raw(node->slots[offset]);
1771 }
1772
1773 if (!child)
1774 goto restart;
1775 if (child == RADIX_TREE_RETRY)
1776 break;
1777 } while (radix_tree_is_internal_node(child));
1778
1779 /* Update the iterator state */
1780 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1781 iter->next_index = (index | node_maxindex(node)) + 1;
1782 iter->node = node;
1783 __set_iter_shift(iter, node->shift);
1784
1785 if (flags & RADIX_TREE_ITER_TAGGED)
1786 set_iter_tags(iter, node, offset, tag);
1787
1788 return node->slots + offset;
1789 }
1790 EXPORT_SYMBOL(radix_tree_next_chunk);
1791
1792 /**
1793 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1794 * @root: radix tree root
1795 * @results: where the results of the lookup are placed
1796 * @first_index: start the lookup from this key
1797 * @max_items: place up to this many items at *results
1798 *
1799 * Performs an index-ascending scan of the tree for present items. Places
1800 * them at *@results and returns the number of items which were placed at
1801 * *@results.
1802 *
1803 * The implementation is naive.
1804 *
1805 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1806 * rcu_read_lock. In this case, rather than the returned results being
1807 * an atomic snapshot of the tree at a single point in time, the
1808 * semantics of an RCU protected gang lookup are as though multiple
1809 * radix_tree_lookups have been issued in individual locks, and results
1810 * stored in 'results'.
1811 */
1812 unsigned int
1813 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1814 unsigned long first_index, unsigned int max_items)
1815 {
1816 struct radix_tree_iter iter;
1817 void **slot;
1818 unsigned int ret = 0;
1819
1820 if (unlikely(!max_items))
1821 return 0;
1822
1823 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1824 results[ret] = rcu_dereference_raw(*slot);
1825 if (!results[ret])
1826 continue;
1827 if (radix_tree_is_internal_node(results[ret])) {
1828 slot = radix_tree_iter_retry(&iter);
1829 continue;
1830 }
1831 if (++ret == max_items)
1832 break;
1833 }
1834
1835 return ret;
1836 }
1837 EXPORT_SYMBOL(radix_tree_gang_lookup);
1838
1839 /**
1840 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1841 * @root: radix tree root
1842 * @results: where the results of the lookup are placed
1843 * @indices: where their indices should be placed (but usually NULL)
1844 * @first_index: start the lookup from this key
1845 * @max_items: place up to this many items at *results
1846 *
1847 * Performs an index-ascending scan of the tree for present items. Places
1848 * their slots at *@results and returns the number of items which were
1849 * placed at *@results.
1850 *
1851 * The implementation is naive.
1852 *
1853 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1854 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1855 * protection, radix_tree_deref_slot may fail requiring a retry.
1856 */
1857 unsigned int
1858 radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1859 void ***results, unsigned long *indices,
1860 unsigned long first_index, unsigned int max_items)
1861 {
1862 struct radix_tree_iter iter;
1863 void **slot;
1864 unsigned int ret = 0;
1865
1866 if (unlikely(!max_items))
1867 return 0;
1868
1869 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1870 results[ret] = slot;
1871 if (indices)
1872 indices[ret] = iter.index;
1873 if (++ret == max_items)
1874 break;
1875 }
1876
1877 return ret;
1878 }
1879 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1880
1881 /**
1882 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1883 * based on a tag
1884 * @root: radix tree root
1885 * @results: where the results of the lookup are placed
1886 * @first_index: start the lookup from this key
1887 * @max_items: place up to this many items at *results
1888 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1889 *
1890 * Performs an index-ascending scan of the tree for present items which
1891 * have the tag indexed by @tag set. Places the items at *@results and
1892 * returns the number of items which were placed at *@results.
1893 */
1894 unsigned int
1895 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1896 unsigned long first_index, unsigned int max_items,
1897 unsigned int tag)
1898 {
1899 struct radix_tree_iter iter;
1900 void **slot;
1901 unsigned int ret = 0;
1902
1903 if (unlikely(!max_items))
1904 return 0;
1905
1906 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1907 results[ret] = rcu_dereference_raw(*slot);
1908 if (!results[ret])
1909 continue;
1910 if (radix_tree_is_internal_node(results[ret])) {
1911 slot = radix_tree_iter_retry(&iter);
1912 continue;
1913 }
1914 if (++ret == max_items)
1915 break;
1916 }
1917
1918 return ret;
1919 }
1920 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1921
1922 /**
1923 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1924 * radix tree based on a tag
1925 * @root: radix tree root
1926 * @results: where the results of the lookup are placed
1927 * @first_index: start the lookup from this key
1928 * @max_items: place up to this many items at *results
1929 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1930 *
1931 * Performs an index-ascending scan of the tree for present items which
1932 * have the tag indexed by @tag set. Places the slots at *@results and
1933 * returns the number of slots which were placed at *@results.
1934 */
1935 unsigned int
1936 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1937 void ***results, unsigned long first_index,
1938 unsigned int max_items, unsigned int tag)
1939 {
1940 struct radix_tree_iter iter;
1941 void **slot;
1942 unsigned int ret = 0;
1943
1944 if (unlikely(!max_items))
1945 return 0;
1946
1947 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1948 results[ret] = slot;
1949 if (++ret == max_items)
1950 break;
1951 }
1952
1953 return ret;
1954 }
1955 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1956
1957 /**
1958 * __radix_tree_delete_node - try to free node after clearing a slot
1959 * @root: radix tree root
1960 * @node: node containing @index
1961 * @update_node: callback for changing leaf nodes
1962 * @private: private data to pass to @update_node
1963 *
1964 * After clearing the slot at @index in @node from radix tree
1965 * rooted at @root, call this function to attempt freeing the
1966 * node and shrinking the tree.
1967 */
1968 void __radix_tree_delete_node(struct radix_tree_root *root,
1969 struct radix_tree_node *node,
1970 radix_tree_update_node_t update_node,
1971 void *private)
1972 {
1973 delete_node(root, node, update_node, private);
1974 }
1975
1976 static bool __radix_tree_delete(struct radix_tree_root *root,
1977 struct radix_tree_node *node, void **slot)
1978 {
1979 void *old = rcu_dereference_raw(*slot);
1980 int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1981 unsigned offset = get_slot_offset(node, slot);
1982 int tag;
1983
1984 if (is_idr(root))
1985 node_tag_set(root, node, IDR_FREE, offset);
1986 else
1987 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1988 node_tag_clear(root, node, tag, offset);
1989
1990 replace_slot(slot, NULL, node, -1, exceptional);
1991 return node && delete_node(root, node, NULL, NULL);
1992 }
1993
1994 /**
1995 * radix_tree_iter_delete - delete the entry at this iterator position
1996 * @root: radix tree root
1997 * @iter: iterator state
1998 * @slot: pointer to slot
1999 *
2000 * Delete the entry at the position currently pointed to by the iterator.
2001 * This may result in the current node being freed; if it is, the iterator
2002 * is advanced so that it will not reference the freed memory. This
2003 * function may be called without any locking if there are no other threads
2004 * which can access this tree.
2005 */
2006 void radix_tree_iter_delete(struct radix_tree_root *root,
2007 struct radix_tree_iter *iter, void **slot)
2008 {
2009 if (__radix_tree_delete(root, iter->node, slot))
2010 iter->index = iter->next_index;
2011 }
2012
2013 /**
2014 * radix_tree_delete_item - delete an item from a radix tree
2015 * @root: radix tree root
2016 * @index: index key
2017 * @item: expected item
2018 *
2019 * Remove @item at @index from the radix tree rooted at @root.
2020 *
2021 * Return: the deleted entry, or %NULL if it was not present
2022 * or the entry at the given @index was not @item.
2023 */
2024 void *radix_tree_delete_item(struct radix_tree_root *root,
2025 unsigned long index, void *item)
2026 {
2027 struct radix_tree_node *node = NULL;
2028 void **slot;
2029 void *entry;
2030
2031 entry = __radix_tree_lookup(root, index, &node, &slot);
2032 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2033 get_slot_offset(node, slot))))
2034 return NULL;
2035
2036 if (item && entry != item)
2037 return NULL;
2038
2039 __radix_tree_delete(root, node, slot);
2040
2041 return entry;
2042 }
2043 EXPORT_SYMBOL(radix_tree_delete_item);
2044
2045 /**
2046 * radix_tree_delete - delete an entry from a radix tree
2047 * @root: radix tree root
2048 * @index: index key
2049 *
2050 * Remove the entry at @index from the radix tree rooted at @root.
2051 *
2052 * Return: The deleted entry, or %NULL if it was not present.
2053 */
2054 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2055 {
2056 return radix_tree_delete_item(root, index, NULL);
2057 }
2058 EXPORT_SYMBOL(radix_tree_delete);
2059
2060 void radix_tree_clear_tags(struct radix_tree_root *root,
2061 struct radix_tree_node *node,
2062 void **slot)
2063 {
2064 if (node) {
2065 unsigned int tag, offset = get_slot_offset(node, slot);
2066 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2067 node_tag_clear(root, node, tag, offset);
2068 } else {
2069 root_tag_clear_all(root);
2070 }
2071 }
2072
2073 /**
2074 * radix_tree_tagged - test whether any items in the tree are tagged
2075 * @root: radix tree root
2076 * @tag: tag to test
2077 */
2078 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2079 {
2080 return root_tag_get(root, tag);
2081 }
2082 EXPORT_SYMBOL(radix_tree_tagged);
2083
2084 /**
2085 * idr_preload - preload for idr_alloc()
2086 * @gfp_mask: allocation mask to use for preloading
2087 *
2088 * Preallocate memory to use for the next call to idr_alloc(). This function
2089 * returns with preemption disabled. It will be enabled by idr_preload_end().
2090 */
2091 void idr_preload(gfp_t gfp_mask)
2092 {
2093 __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
2094 }
2095 EXPORT_SYMBOL(idr_preload);
2096
2097 /**
2098 * ida_pre_get - reserve resources for ida allocation
2099 * @ida: ida handle
2100 * @gfp: memory allocation flags
2101 *
2102 * This function should be called before calling ida_get_new_above(). If it
2103 * is unable to allocate memory, it will return %0. On success, it returns %1.
2104 */
2105 int ida_pre_get(struct ida *ida, gfp_t gfp)
2106 {
2107 __radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
2108 /*
2109 * The IDA API has no preload_end() equivalent. Instead,
2110 * ida_get_new() can return -EAGAIN, prompting the caller
2111 * to return to the ida_pre_get() step.
2112 */
2113 preempt_enable();
2114
2115 if (!this_cpu_read(ida_bitmap)) {
2116 struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2117 if (!bitmap)
2118 return 0;
2119 bitmap = this_cpu_cmpxchg(ida_bitmap, NULL, bitmap);
2120 kfree(bitmap);
2121 }
2122
2123 return 1;
2124 }
2125 EXPORT_SYMBOL(ida_pre_get);
2126
2127 void **idr_get_free(struct radix_tree_root *root,
2128 struct radix_tree_iter *iter, gfp_t gfp, int end)
2129 {
2130 struct radix_tree_node *node = NULL, *child;
2131 void **slot = (void **)&root->rnode;
2132 unsigned long maxindex, start = iter->next_index;
2133 unsigned long max = end > 0 ? end - 1 : INT_MAX;
2134 unsigned int shift, offset = 0;
2135
2136 grow:
2137 shift = radix_tree_load_root(root, &child, &maxindex);
2138 if (!radix_tree_tagged(root, IDR_FREE))
2139 start = max(start, maxindex + 1);
2140 if (start > max)
2141 return ERR_PTR(-ENOSPC);
2142
2143 if (start > maxindex) {
2144 int error = radix_tree_extend(root, gfp, start, shift);
2145 if (error < 0)
2146 return ERR_PTR(error);
2147 shift = error;
2148 child = rcu_dereference_raw(root->rnode);
2149 }
2150
2151 while (shift) {
2152 shift -= RADIX_TREE_MAP_SHIFT;
2153 if (child == NULL) {
2154 /* Have to add a child node. */
2155 child = radix_tree_node_alloc(gfp, node, shift, offset,
2156 0, 0);
2157 if (!child)
2158 return ERR_PTR(-ENOMEM);
2159 all_tag_set(child, IDR_FREE);
2160 rcu_assign_pointer(*slot, node_to_entry(child));
2161 if (node)
2162 node->count++;
2163 } else if (!radix_tree_is_internal_node(child))
2164 break;
2165
2166 node = entry_to_node(child);
2167 offset = radix_tree_descend(node, &child, start);
2168 if (!tag_get(node, IDR_FREE, offset)) {
2169 offset = radix_tree_find_next_bit(node, IDR_FREE,
2170 offset + 1);
2171 start = next_index(start, node, offset);
2172 if (start > max)
2173 return ERR_PTR(-ENOSPC);
2174 while (offset == RADIX_TREE_MAP_SIZE) {
2175 offset = node->offset + 1;
2176 node = node->parent;
2177 if (!node)
2178 goto grow;
2179 shift = node->shift;
2180 }
2181 child = rcu_dereference_raw(node->slots[offset]);
2182 }
2183 slot = &node->slots[offset];
2184 }
2185
2186 iter->index = start;
2187 if (node)
2188 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2189 else
2190 iter->next_index = 1;
2191 iter->node = node;
2192 __set_iter_shift(iter, shift);
2193 set_iter_tags(iter, node, offset, IDR_FREE);
2194
2195 return slot;
2196 }
2197
2198 /**
2199 * idr_destroy - release all internal memory from an IDR
2200 * @idr: idr handle
2201 *
2202 * After this function is called, the IDR is empty, and may be reused or
2203 * the data structure containing it may be freed.
2204 *
2205 * A typical clean-up sequence for objects stored in an idr tree will use
2206 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2207 * free the memory used to keep track of those objects.
2208 */
2209 void idr_destroy(struct idr *idr)
2210 {
2211 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2212 if (radix_tree_is_internal_node(node))
2213 radix_tree_free_nodes(node);
2214 idr->idr_rt.rnode = NULL;
2215 root_tag_set(&idr->idr_rt, IDR_FREE);
2216 }
2217 EXPORT_SYMBOL(idr_destroy);
2218
2219 static void
2220 radix_tree_node_ctor(void *arg)
2221 {
2222 struct radix_tree_node *node = arg;
2223
2224 memset(node, 0, sizeof(*node));
2225 INIT_LIST_HEAD(&node->private_list);
2226 }
2227
2228 static __init unsigned long __maxindex(unsigned int height)
2229 {
2230 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2231 int shift = RADIX_TREE_INDEX_BITS - width;
2232
2233 if (shift < 0)
2234 return ~0UL;
2235 if (shift >= BITS_PER_LONG)
2236 return 0UL;
2237 return ~0UL >> shift;
2238 }
2239
2240 static __init void radix_tree_init_maxnodes(void)
2241 {
2242 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2243 unsigned int i, j;
2244
2245 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2246 height_to_maxindex[i] = __maxindex(i);
2247 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2248 for (j = i; j > 0; j--)
2249 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2250 }
2251 }
2252
2253 static int radix_tree_cpu_dead(unsigned int cpu)
2254 {
2255 struct radix_tree_preload *rtp;
2256 struct radix_tree_node *node;
2257
2258 /* Free per-cpu pool of preloaded nodes */
2259 rtp = &per_cpu(radix_tree_preloads, cpu);
2260 while (rtp->nr) {
2261 node = rtp->nodes;
2262 rtp->nodes = node->parent;
2263 kmem_cache_free(radix_tree_node_cachep, node);
2264 rtp->nr--;
2265 }
2266 kfree(per_cpu(ida_bitmap, cpu));
2267 per_cpu(ida_bitmap, cpu) = NULL;
2268 return 0;
2269 }
2270
2271 void __init radix_tree_init(void)
2272 {
2273 int ret;
2274 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2275 sizeof(struct radix_tree_node), 0,
2276 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2277 radix_tree_node_ctor);
2278 radix_tree_init_maxnodes();
2279 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2280 NULL, radix_tree_cpu_dead);
2281 WARN_ON(ret < 0);
2282 }