]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - lib/radix-tree.c
radix-tree: remove restriction on multi-order entries
[mirror_ubuntu-focal-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt.h> /* in_interrupt() */
37
38
39 /*
40 * The height_to_maxindex array needs to be one deeper than the maximum
41 * path as height 0 holds only 1 entry.
42 */
43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
45 /*
46 * Radix tree node cache.
47 */
48 static struct kmem_cache *radix_tree_node_cachep;
49
50 /*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
63 /*
64 * Per-cpu pool of preloaded nodes
65 */
66 struct radix_tree_preload {
67 int nr;
68 /* nodes->private_data points to next preallocated node */
69 struct radix_tree_node *nodes;
70 };
71 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
72
73 static inline void *ptr_to_indirect(void *ptr)
74 {
75 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
76 }
77
78 static inline void *indirect_to_ptr(void *ptr)
79 {
80 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
81 }
82
83 #ifdef CONFIG_RADIX_TREE_MULTIORDER
84 /* Sibling slots point directly to another slot in the same node */
85 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
86 {
87 void **ptr = node;
88 return (parent->slots <= ptr) &&
89 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
90 }
91 #else
92 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
93 {
94 return false;
95 }
96 #endif
97
98 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
99 void **slot)
100 {
101 return slot - parent->slots;
102 }
103
104 static unsigned radix_tree_descend(struct radix_tree_node *parent,
105 struct radix_tree_node **nodep, unsigned offset)
106 {
107 void **entry = rcu_dereference_raw(parent->slots[offset]);
108
109 #ifdef CONFIG_RADIX_TREE_MULTIORDER
110 if (radix_tree_is_indirect_ptr(entry)) {
111 unsigned long siboff = get_slot_offset(parent, entry);
112 if (siboff < RADIX_TREE_MAP_SIZE) {
113 offset = siboff;
114 entry = rcu_dereference_raw(parent->slots[offset]);
115 }
116 }
117 #endif
118
119 *nodep = (void *)entry;
120 return offset;
121 }
122
123 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
124 {
125 return root->gfp_mask & __GFP_BITS_MASK;
126 }
127
128 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
129 int offset)
130 {
131 __set_bit(offset, node->tags[tag]);
132 }
133
134 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
135 int offset)
136 {
137 __clear_bit(offset, node->tags[tag]);
138 }
139
140 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
141 int offset)
142 {
143 return test_bit(offset, node->tags[tag]);
144 }
145
146 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
147 {
148 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
149 }
150
151 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
152 {
153 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
154 }
155
156 static inline void root_tag_clear_all(struct radix_tree_root *root)
157 {
158 root->gfp_mask &= __GFP_BITS_MASK;
159 }
160
161 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
162 {
163 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
164 }
165
166 /*
167 * Returns 1 if any slot in the node has this tag set.
168 * Otherwise returns 0.
169 */
170 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
171 {
172 int idx;
173 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
174 if (node->tags[tag][idx])
175 return 1;
176 }
177 return 0;
178 }
179
180 /**
181 * radix_tree_find_next_bit - find the next set bit in a memory region
182 *
183 * @addr: The address to base the search on
184 * @size: The bitmap size in bits
185 * @offset: The bitnumber to start searching at
186 *
187 * Unrollable variant of find_next_bit() for constant size arrays.
188 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
189 * Returns next bit offset, or size if nothing found.
190 */
191 static __always_inline unsigned long
192 radix_tree_find_next_bit(const unsigned long *addr,
193 unsigned long size, unsigned long offset)
194 {
195 if (!__builtin_constant_p(size))
196 return find_next_bit(addr, size, offset);
197
198 if (offset < size) {
199 unsigned long tmp;
200
201 addr += offset / BITS_PER_LONG;
202 tmp = *addr >> (offset % BITS_PER_LONG);
203 if (tmp)
204 return __ffs(tmp) + offset;
205 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
206 while (offset < size) {
207 tmp = *++addr;
208 if (tmp)
209 return __ffs(tmp) + offset;
210 offset += BITS_PER_LONG;
211 }
212 }
213 return size;
214 }
215
216 #if 0
217 static void dump_node(void *slot, int height, int offset)
218 {
219 struct radix_tree_node *node;
220 int i;
221
222 if (!slot)
223 return;
224
225 if (height == 0) {
226 pr_debug("radix entry %p offset %d\n", slot, offset);
227 return;
228 }
229
230 node = indirect_to_ptr(slot);
231 pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
232 slot, offset, node->tags[0][0], node->tags[1][0],
233 node->tags[2][0], node->path, node->count, node->parent);
234
235 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
236 dump_node(node->slots[i], height - 1, i);
237 }
238
239 /* For debug */
240 static void radix_tree_dump(struct radix_tree_root *root)
241 {
242 pr_debug("radix root: %p height %d rnode %p tags %x\n",
243 root, root->height, root->rnode,
244 root->gfp_mask >> __GFP_BITS_SHIFT);
245 if (!radix_tree_is_indirect_ptr(root->rnode))
246 return;
247 dump_node(root->rnode, root->height, 0);
248 }
249 #endif
250
251 /*
252 * This assumes that the caller has performed appropriate preallocation, and
253 * that the caller has pinned this thread of control to the current CPU.
254 */
255 static struct radix_tree_node *
256 radix_tree_node_alloc(struct radix_tree_root *root)
257 {
258 struct radix_tree_node *ret = NULL;
259 gfp_t gfp_mask = root_gfp_mask(root);
260
261 /*
262 * Preload code isn't irq safe and it doesn't make sence to use
263 * preloading in the interrupt anyway as all the allocations have to
264 * be atomic. So just do normal allocation when in interrupt.
265 */
266 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
267 struct radix_tree_preload *rtp;
268
269 /*
270 * Even if the caller has preloaded, try to allocate from the
271 * cache first for the new node to get accounted.
272 */
273 ret = kmem_cache_alloc(radix_tree_node_cachep,
274 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
275 if (ret)
276 goto out;
277
278 /*
279 * Provided the caller has preloaded here, we will always
280 * succeed in getting a node here (and never reach
281 * kmem_cache_alloc)
282 */
283 rtp = this_cpu_ptr(&radix_tree_preloads);
284 if (rtp->nr) {
285 ret = rtp->nodes;
286 rtp->nodes = ret->private_data;
287 ret->private_data = NULL;
288 rtp->nr--;
289 }
290 /*
291 * Update the allocation stack trace as this is more useful
292 * for debugging.
293 */
294 kmemleak_update_trace(ret);
295 goto out;
296 }
297 ret = kmem_cache_alloc(radix_tree_node_cachep,
298 gfp_mask | __GFP_ACCOUNT);
299 out:
300 BUG_ON(radix_tree_is_indirect_ptr(ret));
301 return ret;
302 }
303
304 static void radix_tree_node_rcu_free(struct rcu_head *head)
305 {
306 struct radix_tree_node *node =
307 container_of(head, struct radix_tree_node, rcu_head);
308 int i;
309
310 /*
311 * must only free zeroed nodes into the slab. radix_tree_shrink
312 * can leave us with a non-NULL entry in the first slot, so clear
313 * that here to make sure.
314 */
315 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
316 tag_clear(node, i, 0);
317
318 node->slots[0] = NULL;
319 node->count = 0;
320
321 kmem_cache_free(radix_tree_node_cachep, node);
322 }
323
324 static inline void
325 radix_tree_node_free(struct radix_tree_node *node)
326 {
327 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
328 }
329
330 /*
331 * Load up this CPU's radix_tree_node buffer with sufficient objects to
332 * ensure that the addition of a single element in the tree cannot fail. On
333 * success, return zero, with preemption disabled. On error, return -ENOMEM
334 * with preemption not disabled.
335 *
336 * To make use of this facility, the radix tree must be initialised without
337 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
338 */
339 static int __radix_tree_preload(gfp_t gfp_mask)
340 {
341 struct radix_tree_preload *rtp;
342 struct radix_tree_node *node;
343 int ret = -ENOMEM;
344
345 preempt_disable();
346 rtp = this_cpu_ptr(&radix_tree_preloads);
347 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
348 preempt_enable();
349 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
350 if (node == NULL)
351 goto out;
352 preempt_disable();
353 rtp = this_cpu_ptr(&radix_tree_preloads);
354 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
355 node->private_data = rtp->nodes;
356 rtp->nodes = node;
357 rtp->nr++;
358 } else {
359 kmem_cache_free(radix_tree_node_cachep, node);
360 }
361 }
362 ret = 0;
363 out:
364 return ret;
365 }
366
367 /*
368 * Load up this CPU's radix_tree_node buffer with sufficient objects to
369 * ensure that the addition of a single element in the tree cannot fail. On
370 * success, return zero, with preemption disabled. On error, return -ENOMEM
371 * with preemption not disabled.
372 *
373 * To make use of this facility, the radix tree must be initialised without
374 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
375 */
376 int radix_tree_preload(gfp_t gfp_mask)
377 {
378 /* Warn on non-sensical use... */
379 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
380 return __radix_tree_preload(gfp_mask);
381 }
382 EXPORT_SYMBOL(radix_tree_preload);
383
384 /*
385 * The same as above function, except we don't guarantee preloading happens.
386 * We do it, if we decide it helps. On success, return zero with preemption
387 * disabled. On error, return -ENOMEM with preemption not disabled.
388 */
389 int radix_tree_maybe_preload(gfp_t gfp_mask)
390 {
391 if (gfpflags_allow_blocking(gfp_mask))
392 return __radix_tree_preload(gfp_mask);
393 /* Preloading doesn't help anything with this gfp mask, skip it */
394 preempt_disable();
395 return 0;
396 }
397 EXPORT_SYMBOL(radix_tree_maybe_preload);
398
399 /*
400 * Return the maximum key which can be store into a
401 * radix tree with height HEIGHT.
402 */
403 static inline unsigned long radix_tree_maxindex(unsigned int height)
404 {
405 return height_to_maxindex[height];
406 }
407
408 /*
409 * Extend a radix tree so it can store key @index.
410 */
411 static int radix_tree_extend(struct radix_tree_root *root,
412 unsigned long index, unsigned order)
413 {
414 struct radix_tree_node *node;
415 struct radix_tree_node *slot;
416 unsigned int height;
417 int tag;
418
419 /* Figure out what the height should be. */
420 height = root->height + 1;
421 while (index > radix_tree_maxindex(height))
422 height++;
423
424 if ((root->rnode == NULL) && (order == 0)) {
425 root->height = height;
426 goto out;
427 }
428
429 do {
430 unsigned int newheight;
431 if (!(node = radix_tree_node_alloc(root)))
432 return -ENOMEM;
433
434 /* Propagate the aggregated tag info into the new root */
435 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
436 if (root_tag_get(root, tag))
437 tag_set(node, tag, 0);
438 }
439
440 /* Increase the height. */
441 newheight = root->height+1;
442 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
443 node->path = newheight;
444 node->count = 1;
445 node->parent = NULL;
446 slot = root->rnode;
447 if (radix_tree_is_indirect_ptr(slot) && newheight > 1) {
448 slot = indirect_to_ptr(slot);
449 slot->parent = node;
450 slot = ptr_to_indirect(slot);
451 }
452 node->slots[0] = slot;
453 node = ptr_to_indirect(node);
454 rcu_assign_pointer(root->rnode, node);
455 root->height = newheight;
456 } while (height > root->height);
457 out:
458 return 0;
459 }
460
461 /**
462 * __radix_tree_create - create a slot in a radix tree
463 * @root: radix tree root
464 * @index: index key
465 * @order: index occupies 2^order aligned slots
466 * @nodep: returns node
467 * @slotp: returns slot
468 *
469 * Create, if necessary, and return the node and slot for an item
470 * at position @index in the radix tree @root.
471 *
472 * Until there is more than one item in the tree, no nodes are
473 * allocated and @root->rnode is used as a direct slot instead of
474 * pointing to a node, in which case *@nodep will be NULL.
475 *
476 * Returns -ENOMEM, or 0 for success.
477 */
478 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
479 unsigned order, struct radix_tree_node **nodep,
480 void ***slotp)
481 {
482 struct radix_tree_node *node = NULL, *slot;
483 unsigned int height, shift, offset;
484 int error;
485
486 /* Make sure the tree is high enough. */
487 if (index > radix_tree_maxindex(root->height)) {
488 error = radix_tree_extend(root, index, order);
489 if (error)
490 return error;
491 }
492
493 slot = root->rnode;
494
495 height = root->height;
496 shift = height * RADIX_TREE_MAP_SHIFT;
497
498 offset = 0; /* uninitialised var warning */
499 while (shift > order) {
500 if (slot == NULL) {
501 /* Have to add a child node. */
502 if (!(slot = radix_tree_node_alloc(root)))
503 return -ENOMEM;
504 slot->path = height;
505 slot->parent = node;
506 if (node) {
507 rcu_assign_pointer(node->slots[offset],
508 ptr_to_indirect(slot));
509 node->count++;
510 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
511 } else
512 rcu_assign_pointer(root->rnode,
513 ptr_to_indirect(slot));
514 } else if (!radix_tree_is_indirect_ptr(slot))
515 break;
516
517 /* Go a level down */
518 height--;
519 shift -= RADIX_TREE_MAP_SHIFT;
520 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
521 node = indirect_to_ptr(slot);
522 slot = node->slots[offset];
523 }
524
525 #ifdef CONFIG_RADIX_TREE_MULTIORDER
526 /* Insert pointers to the canonical entry */
527 if (order > shift) {
528 int i, n = 1 << (order - shift);
529 offset = offset & ~(n - 1);
530 slot = ptr_to_indirect(&node->slots[offset]);
531 for (i = 0; i < n; i++) {
532 if (node->slots[offset + i])
533 return -EEXIST;
534 }
535
536 for (i = 1; i < n; i++) {
537 rcu_assign_pointer(node->slots[offset + i], slot);
538 node->count++;
539 }
540 }
541 #endif
542
543 if (nodep)
544 *nodep = node;
545 if (slotp)
546 *slotp = node ? node->slots + offset : (void **)&root->rnode;
547 return 0;
548 }
549
550 /**
551 * __radix_tree_insert - insert into a radix tree
552 * @root: radix tree root
553 * @index: index key
554 * @order: key covers the 2^order indices around index
555 * @item: item to insert
556 *
557 * Insert an item into the radix tree at position @index.
558 */
559 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
560 unsigned order, void *item)
561 {
562 struct radix_tree_node *node;
563 void **slot;
564 int error;
565
566 BUG_ON(radix_tree_is_indirect_ptr(item));
567
568 error = __radix_tree_create(root, index, order, &node, &slot);
569 if (error)
570 return error;
571 if (*slot != NULL)
572 return -EEXIST;
573 rcu_assign_pointer(*slot, item);
574
575 if (node) {
576 node->count++;
577 BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
578 BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
579 } else {
580 BUG_ON(root_tag_get(root, 0));
581 BUG_ON(root_tag_get(root, 1));
582 }
583
584 return 0;
585 }
586 EXPORT_SYMBOL(__radix_tree_insert);
587
588 /**
589 * __radix_tree_lookup - lookup an item in a radix tree
590 * @root: radix tree root
591 * @index: index key
592 * @nodep: returns node
593 * @slotp: returns slot
594 *
595 * Lookup and return the item at position @index in the radix
596 * tree @root.
597 *
598 * Until there is more than one item in the tree, no nodes are
599 * allocated and @root->rnode is used as a direct slot instead of
600 * pointing to a node, in which case *@nodep will be NULL.
601 */
602 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
603 struct radix_tree_node **nodep, void ***slotp)
604 {
605 struct radix_tree_node *node, *parent;
606 unsigned int height, shift;
607 void **slot;
608
609 node = rcu_dereference_raw(root->rnode);
610 if (node == NULL)
611 return NULL;
612
613 if (!radix_tree_is_indirect_ptr(node)) {
614 if (index > 0)
615 return NULL;
616
617 if (nodep)
618 *nodep = NULL;
619 if (slotp)
620 *slotp = (void **)&root->rnode;
621 return node;
622 }
623 node = indirect_to_ptr(node);
624
625 height = node->path & RADIX_TREE_HEIGHT_MASK;
626 if (index > radix_tree_maxindex(height))
627 return NULL;
628
629 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
630
631 do {
632 parent = node;
633 slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
634 node = rcu_dereference_raw(*slot);
635 if (node == NULL)
636 return NULL;
637 if (!radix_tree_is_indirect_ptr(node))
638 break;
639 node = indirect_to_ptr(node);
640
641 shift -= RADIX_TREE_MAP_SHIFT;
642 height--;
643 } while (height > 0);
644
645 if (nodep)
646 *nodep = parent;
647 if (slotp)
648 *slotp = slot;
649 return node;
650 }
651
652 /**
653 * radix_tree_lookup_slot - lookup a slot in a radix tree
654 * @root: radix tree root
655 * @index: index key
656 *
657 * Returns: the slot corresponding to the position @index in the
658 * radix tree @root. This is useful for update-if-exists operations.
659 *
660 * This function can be called under rcu_read_lock iff the slot is not
661 * modified by radix_tree_replace_slot, otherwise it must be called
662 * exclusive from other writers. Any dereference of the slot must be done
663 * using radix_tree_deref_slot.
664 */
665 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
666 {
667 void **slot;
668
669 if (!__radix_tree_lookup(root, index, NULL, &slot))
670 return NULL;
671 return slot;
672 }
673 EXPORT_SYMBOL(radix_tree_lookup_slot);
674
675 /**
676 * radix_tree_lookup - perform lookup operation on a radix tree
677 * @root: radix tree root
678 * @index: index key
679 *
680 * Lookup the item at the position @index in the radix tree @root.
681 *
682 * This function can be called under rcu_read_lock, however the caller
683 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
684 * them safely). No RCU barriers are required to access or modify the
685 * returned item, however.
686 */
687 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
688 {
689 return __radix_tree_lookup(root, index, NULL, NULL);
690 }
691 EXPORT_SYMBOL(radix_tree_lookup);
692
693 /**
694 * radix_tree_tag_set - set a tag on a radix tree node
695 * @root: radix tree root
696 * @index: index key
697 * @tag: tag index
698 *
699 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
700 * corresponding to @index in the radix tree. From
701 * the root all the way down to the leaf node.
702 *
703 * Returns the address of the tagged item. Setting a tag on a not-present
704 * item is a bug.
705 */
706 void *radix_tree_tag_set(struct radix_tree_root *root,
707 unsigned long index, unsigned int tag)
708 {
709 unsigned int height, shift;
710 struct radix_tree_node *slot;
711
712 height = root->height;
713 BUG_ON(index > radix_tree_maxindex(height));
714
715 slot = indirect_to_ptr(root->rnode);
716 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
717
718 while (height > 0) {
719 int offset;
720
721 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
722 if (!tag_get(slot, tag, offset))
723 tag_set(slot, tag, offset);
724 slot = slot->slots[offset];
725 BUG_ON(slot == NULL);
726 if (!radix_tree_is_indirect_ptr(slot))
727 break;
728 slot = indirect_to_ptr(slot);
729 shift -= RADIX_TREE_MAP_SHIFT;
730 height--;
731 }
732
733 /* set the root's tag bit */
734 if (slot && !root_tag_get(root, tag))
735 root_tag_set(root, tag);
736
737 return slot;
738 }
739 EXPORT_SYMBOL(radix_tree_tag_set);
740
741 /**
742 * radix_tree_tag_clear - clear a tag on a radix tree node
743 * @root: radix tree root
744 * @index: index key
745 * @tag: tag index
746 *
747 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
748 * corresponding to @index in the radix tree. If
749 * this causes the leaf node to have no tags set then clear the tag in the
750 * next-to-leaf node, etc.
751 *
752 * Returns the address of the tagged item on success, else NULL. ie:
753 * has the same return value and semantics as radix_tree_lookup().
754 */
755 void *radix_tree_tag_clear(struct radix_tree_root *root,
756 unsigned long index, unsigned int tag)
757 {
758 struct radix_tree_node *node = NULL;
759 struct radix_tree_node *slot = NULL;
760 unsigned int height, shift;
761 int uninitialized_var(offset);
762
763 height = root->height;
764 if (index > radix_tree_maxindex(height))
765 goto out;
766
767 shift = height * RADIX_TREE_MAP_SHIFT;
768 slot = root->rnode;
769
770 while (shift) {
771 if (slot == NULL)
772 goto out;
773 if (!radix_tree_is_indirect_ptr(slot))
774 break;
775 slot = indirect_to_ptr(slot);
776
777 shift -= RADIX_TREE_MAP_SHIFT;
778 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
779 node = slot;
780 slot = slot->slots[offset];
781 }
782
783 if (slot == NULL)
784 goto out;
785
786 while (node) {
787 if (!tag_get(node, tag, offset))
788 goto out;
789 tag_clear(node, tag, offset);
790 if (any_tag_set(node, tag))
791 goto out;
792
793 index >>= RADIX_TREE_MAP_SHIFT;
794 offset = index & RADIX_TREE_MAP_MASK;
795 node = node->parent;
796 }
797
798 /* clear the root's tag bit */
799 if (root_tag_get(root, tag))
800 root_tag_clear(root, tag);
801
802 out:
803 return slot;
804 }
805 EXPORT_SYMBOL(radix_tree_tag_clear);
806
807 /**
808 * radix_tree_tag_get - get a tag on a radix tree node
809 * @root: radix tree root
810 * @index: index key
811 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
812 *
813 * Return values:
814 *
815 * 0: tag not present or not set
816 * 1: tag set
817 *
818 * Note that the return value of this function may not be relied on, even if
819 * the RCU lock is held, unless tag modification and node deletion are excluded
820 * from concurrency.
821 */
822 int radix_tree_tag_get(struct radix_tree_root *root,
823 unsigned long index, unsigned int tag)
824 {
825 unsigned int height, shift;
826 struct radix_tree_node *node;
827
828 /* check the root's tag bit */
829 if (!root_tag_get(root, tag))
830 return 0;
831
832 node = rcu_dereference_raw(root->rnode);
833 if (node == NULL)
834 return 0;
835
836 if (!radix_tree_is_indirect_ptr(node))
837 return (index == 0);
838 node = indirect_to_ptr(node);
839
840 height = node->path & RADIX_TREE_HEIGHT_MASK;
841 if (index > radix_tree_maxindex(height))
842 return 0;
843
844 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
845
846 for ( ; ; ) {
847 int offset;
848
849 if (node == NULL)
850 return 0;
851 node = indirect_to_ptr(node);
852
853 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
854 if (!tag_get(node, tag, offset))
855 return 0;
856 if (height == 1)
857 return 1;
858 node = rcu_dereference_raw(node->slots[offset]);
859 if (!radix_tree_is_indirect_ptr(node))
860 return 1;
861 shift -= RADIX_TREE_MAP_SHIFT;
862 height--;
863 }
864 }
865 EXPORT_SYMBOL(radix_tree_tag_get);
866
867 /**
868 * radix_tree_next_chunk - find next chunk of slots for iteration
869 *
870 * @root: radix tree root
871 * @iter: iterator state
872 * @flags: RADIX_TREE_ITER_* flags and tag index
873 * Returns: pointer to chunk first slot, or NULL if iteration is over
874 */
875 void **radix_tree_next_chunk(struct radix_tree_root *root,
876 struct radix_tree_iter *iter, unsigned flags)
877 {
878 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
879 struct radix_tree_node *rnode, *node;
880 unsigned long index, offset, height;
881
882 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
883 return NULL;
884
885 /*
886 * Catch next_index overflow after ~0UL. iter->index never overflows
887 * during iterating; it can be zero only at the beginning.
888 * And we cannot overflow iter->next_index in a single step,
889 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
890 *
891 * This condition also used by radix_tree_next_slot() to stop
892 * contiguous iterating, and forbid swithing to the next chunk.
893 */
894 index = iter->next_index;
895 if (!index && iter->index)
896 return NULL;
897
898 rnode = rcu_dereference_raw(root->rnode);
899 if (radix_tree_is_indirect_ptr(rnode)) {
900 rnode = indirect_to_ptr(rnode);
901 } else if (rnode && !index) {
902 /* Single-slot tree */
903 iter->index = 0;
904 iter->next_index = 1;
905 iter->tags = 1;
906 return (void **)&root->rnode;
907 } else
908 return NULL;
909
910 restart:
911 height = rnode->path & RADIX_TREE_HEIGHT_MASK;
912 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
913 offset = index >> shift;
914
915 /* Index outside of the tree */
916 if (offset >= RADIX_TREE_MAP_SIZE)
917 return NULL;
918
919 node = rnode;
920 while (1) {
921 struct radix_tree_node *slot;
922 if ((flags & RADIX_TREE_ITER_TAGGED) ?
923 !test_bit(offset, node->tags[tag]) :
924 !node->slots[offset]) {
925 /* Hole detected */
926 if (flags & RADIX_TREE_ITER_CONTIG)
927 return NULL;
928
929 if (flags & RADIX_TREE_ITER_TAGGED)
930 offset = radix_tree_find_next_bit(
931 node->tags[tag],
932 RADIX_TREE_MAP_SIZE,
933 offset + 1);
934 else
935 while (++offset < RADIX_TREE_MAP_SIZE) {
936 if (node->slots[offset])
937 break;
938 }
939 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
940 index += offset << shift;
941 /* Overflow after ~0UL */
942 if (!index)
943 return NULL;
944 if (offset == RADIX_TREE_MAP_SIZE)
945 goto restart;
946 }
947
948 /* This is leaf-node */
949 if (!shift)
950 break;
951
952 slot = rcu_dereference_raw(node->slots[offset]);
953 if (slot == NULL)
954 goto restart;
955 if (!radix_tree_is_indirect_ptr(slot))
956 break;
957 node = indirect_to_ptr(slot);
958 shift -= RADIX_TREE_MAP_SHIFT;
959 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
960 }
961
962 /* Update the iterator state */
963 iter->index = index;
964 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
965
966 /* Construct iter->tags bit-mask from node->tags[tag] array */
967 if (flags & RADIX_TREE_ITER_TAGGED) {
968 unsigned tag_long, tag_bit;
969
970 tag_long = offset / BITS_PER_LONG;
971 tag_bit = offset % BITS_PER_LONG;
972 iter->tags = node->tags[tag][tag_long] >> tag_bit;
973 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
974 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
975 /* Pick tags from next element */
976 if (tag_bit)
977 iter->tags |= node->tags[tag][tag_long + 1] <<
978 (BITS_PER_LONG - tag_bit);
979 /* Clip chunk size, here only BITS_PER_LONG tags */
980 iter->next_index = index + BITS_PER_LONG;
981 }
982 }
983
984 return node->slots + offset;
985 }
986 EXPORT_SYMBOL(radix_tree_next_chunk);
987
988 /**
989 * radix_tree_range_tag_if_tagged - for each item in given range set given
990 * tag if item has another tag set
991 * @root: radix tree root
992 * @first_indexp: pointer to a starting index of a range to scan
993 * @last_index: last index of a range to scan
994 * @nr_to_tag: maximum number items to tag
995 * @iftag: tag index to test
996 * @settag: tag index to set if tested tag is set
997 *
998 * This function scans range of radix tree from first_index to last_index
999 * (inclusive). For each item in the range if iftag is set, the function sets
1000 * also settag. The function stops either after tagging nr_to_tag items or
1001 * after reaching last_index.
1002 *
1003 * The tags must be set from the leaf level only and propagated back up the
1004 * path to the root. We must do this so that we resolve the full path before
1005 * setting any tags on intermediate nodes. If we set tags as we descend, then
1006 * we can get to the leaf node and find that the index that has the iftag
1007 * set is outside the range we are scanning. This reults in dangling tags and
1008 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1009 *
1010 * The function returns number of leaves where the tag was set and sets
1011 * *first_indexp to the first unscanned index.
1012 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1013 * be prepared to handle that.
1014 */
1015 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1016 unsigned long *first_indexp, unsigned long last_index,
1017 unsigned long nr_to_tag,
1018 unsigned int iftag, unsigned int settag)
1019 {
1020 unsigned int height = root->height;
1021 struct radix_tree_node *node = NULL;
1022 struct radix_tree_node *slot;
1023 unsigned int shift;
1024 unsigned long tagged = 0;
1025 unsigned long index = *first_indexp;
1026
1027 last_index = min(last_index, radix_tree_maxindex(height));
1028 if (index > last_index)
1029 return 0;
1030 if (!nr_to_tag)
1031 return 0;
1032 if (!root_tag_get(root, iftag)) {
1033 *first_indexp = last_index + 1;
1034 return 0;
1035 }
1036 if (height == 0) {
1037 *first_indexp = last_index + 1;
1038 root_tag_set(root, settag);
1039 return 1;
1040 }
1041
1042 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1043 slot = indirect_to_ptr(root->rnode);
1044
1045 for (;;) {
1046 unsigned long upindex;
1047 int offset;
1048
1049 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1050 if (!slot->slots[offset])
1051 goto next;
1052 if (!tag_get(slot, iftag, offset))
1053 goto next;
1054 if (shift) {
1055 node = slot;
1056 slot = slot->slots[offset];
1057 if (radix_tree_is_indirect_ptr(slot)) {
1058 slot = indirect_to_ptr(slot);
1059 shift -= RADIX_TREE_MAP_SHIFT;
1060 continue;
1061 } else {
1062 slot = node;
1063 node = node->parent;
1064 }
1065 }
1066
1067 /* tag the leaf */
1068 tagged += 1 << shift;
1069 tag_set(slot, settag, offset);
1070
1071 /* walk back up the path tagging interior nodes */
1072 upindex = index;
1073 while (node) {
1074 upindex >>= RADIX_TREE_MAP_SHIFT;
1075 offset = upindex & RADIX_TREE_MAP_MASK;
1076
1077 /* stop if we find a node with the tag already set */
1078 if (tag_get(node, settag, offset))
1079 break;
1080 tag_set(node, settag, offset);
1081 node = node->parent;
1082 }
1083
1084 /*
1085 * Small optimization: now clear that node pointer.
1086 * Since all of this slot's ancestors now have the tag set
1087 * from setting it above, we have no further need to walk
1088 * back up the tree setting tags, until we update slot to
1089 * point to another radix_tree_node.
1090 */
1091 node = NULL;
1092
1093 next:
1094 /* Go to next item at level determined by 'shift' */
1095 index = ((index >> shift) + 1) << shift;
1096 /* Overflow can happen when last_index is ~0UL... */
1097 if (index > last_index || !index)
1098 break;
1099 if (tagged >= nr_to_tag)
1100 break;
1101 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
1102 /*
1103 * We've fully scanned this node. Go up. Because
1104 * last_index is guaranteed to be in the tree, what
1105 * we do below cannot wander astray.
1106 */
1107 slot = slot->parent;
1108 shift += RADIX_TREE_MAP_SHIFT;
1109 }
1110 }
1111 /*
1112 * We need not to tag the root tag if there is no tag which is set with
1113 * settag within the range from *first_indexp to last_index.
1114 */
1115 if (tagged > 0)
1116 root_tag_set(root, settag);
1117 *first_indexp = index;
1118
1119 return tagged;
1120 }
1121 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1122
1123 /**
1124 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1125 * @root: radix tree root
1126 * @results: where the results of the lookup are placed
1127 * @first_index: start the lookup from this key
1128 * @max_items: place up to this many items at *results
1129 *
1130 * Performs an index-ascending scan of the tree for present items. Places
1131 * them at *@results and returns the number of items which were placed at
1132 * *@results.
1133 *
1134 * The implementation is naive.
1135 *
1136 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1137 * rcu_read_lock. In this case, rather than the returned results being
1138 * an atomic snapshot of the tree at a single point in time, the semantics
1139 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1140 * have been issued in individual locks, and results stored in 'results'.
1141 */
1142 unsigned int
1143 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1144 unsigned long first_index, unsigned int max_items)
1145 {
1146 struct radix_tree_iter iter;
1147 void **slot;
1148 unsigned int ret = 0;
1149
1150 if (unlikely(!max_items))
1151 return 0;
1152
1153 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1154 results[ret] = rcu_dereference_raw(*slot);
1155 if (!results[ret])
1156 continue;
1157 if (radix_tree_is_indirect_ptr(results[ret])) {
1158 slot = radix_tree_iter_retry(&iter);
1159 continue;
1160 }
1161 if (++ret == max_items)
1162 break;
1163 }
1164
1165 return ret;
1166 }
1167 EXPORT_SYMBOL(radix_tree_gang_lookup);
1168
1169 /**
1170 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1171 * @root: radix tree root
1172 * @results: where the results of the lookup are placed
1173 * @indices: where their indices should be placed (but usually NULL)
1174 * @first_index: start the lookup from this key
1175 * @max_items: place up to this many items at *results
1176 *
1177 * Performs an index-ascending scan of the tree for present items. Places
1178 * their slots at *@results and returns the number of items which were
1179 * placed at *@results.
1180 *
1181 * The implementation is naive.
1182 *
1183 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1184 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1185 * protection, radix_tree_deref_slot may fail requiring a retry.
1186 */
1187 unsigned int
1188 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1189 void ***results, unsigned long *indices,
1190 unsigned long first_index, unsigned int max_items)
1191 {
1192 struct radix_tree_iter iter;
1193 void **slot;
1194 unsigned int ret = 0;
1195
1196 if (unlikely(!max_items))
1197 return 0;
1198
1199 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1200 results[ret] = slot;
1201 if (indices)
1202 indices[ret] = iter.index;
1203 if (++ret == max_items)
1204 break;
1205 }
1206
1207 return ret;
1208 }
1209 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1210
1211 /**
1212 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1213 * based on a tag
1214 * @root: radix tree root
1215 * @results: where the results of the lookup are placed
1216 * @first_index: start the lookup from this key
1217 * @max_items: place up to this many items at *results
1218 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1219 *
1220 * Performs an index-ascending scan of the tree for present items which
1221 * have the tag indexed by @tag set. Places the items at *@results and
1222 * returns the number of items which were placed at *@results.
1223 */
1224 unsigned int
1225 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1226 unsigned long first_index, unsigned int max_items,
1227 unsigned int tag)
1228 {
1229 struct radix_tree_iter iter;
1230 void **slot;
1231 unsigned int ret = 0;
1232
1233 if (unlikely(!max_items))
1234 return 0;
1235
1236 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1237 results[ret] = rcu_dereference_raw(*slot);
1238 if (!results[ret])
1239 continue;
1240 if (radix_tree_is_indirect_ptr(results[ret])) {
1241 slot = radix_tree_iter_retry(&iter);
1242 continue;
1243 }
1244 if (++ret == max_items)
1245 break;
1246 }
1247
1248 return ret;
1249 }
1250 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1251
1252 /**
1253 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1254 * radix tree based on a tag
1255 * @root: radix tree root
1256 * @results: where the results of the lookup are placed
1257 * @first_index: start the lookup from this key
1258 * @max_items: place up to this many items at *results
1259 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1260 *
1261 * Performs an index-ascending scan of the tree for present items which
1262 * have the tag indexed by @tag set. Places the slots at *@results and
1263 * returns the number of slots which were placed at *@results.
1264 */
1265 unsigned int
1266 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1267 unsigned long first_index, unsigned int max_items,
1268 unsigned int tag)
1269 {
1270 struct radix_tree_iter iter;
1271 void **slot;
1272 unsigned int ret = 0;
1273
1274 if (unlikely(!max_items))
1275 return 0;
1276
1277 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1278 results[ret] = slot;
1279 if (++ret == max_items)
1280 break;
1281 }
1282
1283 return ret;
1284 }
1285 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1286
1287 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1288 #include <linux/sched.h> /* for cond_resched() */
1289
1290 /*
1291 * This linear search is at present only useful to shmem_unuse_inode().
1292 */
1293 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1294 unsigned long index, unsigned long *found_index)
1295 {
1296 unsigned int shift, height;
1297 unsigned long i;
1298
1299 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1300 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1301
1302 for ( ; height > 1; height--) {
1303 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1304 for (;;) {
1305 if (slot->slots[i] != NULL)
1306 break;
1307 index &= ~((1UL << shift) - 1);
1308 index += 1UL << shift;
1309 if (index == 0)
1310 goto out; /* 32-bit wraparound */
1311 i++;
1312 if (i == RADIX_TREE_MAP_SIZE)
1313 goto out;
1314 }
1315
1316 slot = rcu_dereference_raw(slot->slots[i]);
1317 if (slot == NULL)
1318 goto out;
1319 if (!radix_tree_is_indirect_ptr(slot)) {
1320 if (slot == item) {
1321 *found_index = index + i;
1322 index = 0;
1323 } else {
1324 index += shift;
1325 }
1326 goto out;
1327 }
1328 slot = indirect_to_ptr(slot);
1329 shift -= RADIX_TREE_MAP_SHIFT;
1330 }
1331
1332 /* Bottom level: check items */
1333 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1334 if (slot->slots[i] == item) {
1335 *found_index = index + i;
1336 index = 0;
1337 goto out;
1338 }
1339 }
1340 index += RADIX_TREE_MAP_SIZE;
1341 out:
1342 return index;
1343 }
1344
1345 /**
1346 * radix_tree_locate_item - search through radix tree for item
1347 * @root: radix tree root
1348 * @item: item to be found
1349 *
1350 * Returns index where item was found, or -1 if not found.
1351 * Caller must hold no lock (since this time-consuming function needs
1352 * to be preemptible), and must check afterwards if item is still there.
1353 */
1354 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1355 {
1356 struct radix_tree_node *node;
1357 unsigned long max_index;
1358 unsigned long cur_index = 0;
1359 unsigned long found_index = -1;
1360
1361 do {
1362 rcu_read_lock();
1363 node = rcu_dereference_raw(root->rnode);
1364 if (!radix_tree_is_indirect_ptr(node)) {
1365 rcu_read_unlock();
1366 if (node == item)
1367 found_index = 0;
1368 break;
1369 }
1370
1371 node = indirect_to_ptr(node);
1372 max_index = radix_tree_maxindex(node->path &
1373 RADIX_TREE_HEIGHT_MASK);
1374 if (cur_index > max_index) {
1375 rcu_read_unlock();
1376 break;
1377 }
1378
1379 cur_index = __locate(node, item, cur_index, &found_index);
1380 rcu_read_unlock();
1381 cond_resched();
1382 } while (cur_index != 0 && cur_index <= max_index);
1383
1384 return found_index;
1385 }
1386 #else
1387 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1388 {
1389 return -1;
1390 }
1391 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1392
1393 /**
1394 * radix_tree_shrink - shrink height of a radix tree to minimal
1395 * @root radix tree root
1396 */
1397 static inline void radix_tree_shrink(struct radix_tree_root *root)
1398 {
1399 /* try to shrink tree height */
1400 while (root->height > 0) {
1401 struct radix_tree_node *to_free = root->rnode;
1402 struct radix_tree_node *slot;
1403
1404 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1405 to_free = indirect_to_ptr(to_free);
1406
1407 /*
1408 * The candidate node has more than one child, or its child
1409 * is not at the leftmost slot, or it is a multiorder entry,
1410 * we cannot shrink.
1411 */
1412 if (to_free->count != 1)
1413 break;
1414 slot = to_free->slots[0];
1415 if (!slot)
1416 break;
1417
1418 /*
1419 * We don't need rcu_assign_pointer(), since we are simply
1420 * moving the node from one part of the tree to another: if it
1421 * was safe to dereference the old pointer to it
1422 * (to_free->slots[0]), it will be safe to dereference the new
1423 * one (root->rnode) as far as dependent read barriers go.
1424 */
1425 if (root->height > 1) {
1426 if (!radix_tree_is_indirect_ptr(slot))
1427 break;
1428
1429 slot = indirect_to_ptr(slot);
1430 slot->parent = NULL;
1431 slot = ptr_to_indirect(slot);
1432 }
1433 root->rnode = slot;
1434 root->height--;
1435
1436 /*
1437 * We have a dilemma here. The node's slot[0] must not be
1438 * NULLed in case there are concurrent lookups expecting to
1439 * find the item. However if this was a bottom-level node,
1440 * then it may be subject to the slot pointer being visible
1441 * to callers dereferencing it. If item corresponding to
1442 * slot[0] is subsequently deleted, these callers would expect
1443 * their slot to become empty sooner or later.
1444 *
1445 * For example, lockless pagecache will look up a slot, deref
1446 * the page pointer, and if the page is 0 refcount it means it
1447 * was concurrently deleted from pagecache so try the deref
1448 * again. Fortunately there is already a requirement for logic
1449 * to retry the entire slot lookup -- the indirect pointer
1450 * problem (replacing direct root node with an indirect pointer
1451 * also results in a stale slot). So tag the slot as indirect
1452 * to force callers to retry.
1453 */
1454 if (root->height == 0)
1455 *((unsigned long *)&to_free->slots[0]) |=
1456 RADIX_TREE_INDIRECT_PTR;
1457
1458 radix_tree_node_free(to_free);
1459 }
1460 }
1461
1462 /**
1463 * __radix_tree_delete_node - try to free node after clearing a slot
1464 * @root: radix tree root
1465 * @node: node containing @index
1466 *
1467 * After clearing the slot at @index in @node from radix tree
1468 * rooted at @root, call this function to attempt freeing the
1469 * node and shrinking the tree.
1470 *
1471 * Returns %true if @node was freed, %false otherwise.
1472 */
1473 bool __radix_tree_delete_node(struct radix_tree_root *root,
1474 struct radix_tree_node *node)
1475 {
1476 bool deleted = false;
1477
1478 do {
1479 struct radix_tree_node *parent;
1480
1481 if (node->count) {
1482 if (node == indirect_to_ptr(root->rnode)) {
1483 radix_tree_shrink(root);
1484 if (root->height == 0)
1485 deleted = true;
1486 }
1487 return deleted;
1488 }
1489
1490 parent = node->parent;
1491 if (parent) {
1492 unsigned int offset;
1493
1494 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1495 parent->slots[offset] = NULL;
1496 parent->count--;
1497 } else {
1498 root_tag_clear_all(root);
1499 root->height = 0;
1500 root->rnode = NULL;
1501 }
1502
1503 radix_tree_node_free(node);
1504 deleted = true;
1505
1506 node = parent;
1507 } while (node);
1508
1509 return deleted;
1510 }
1511
1512 static inline void delete_sibling_entries(struct radix_tree_node *node,
1513 void *ptr, unsigned offset)
1514 {
1515 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1516 int i;
1517 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1518 if (node->slots[offset + i] != ptr)
1519 break;
1520 node->slots[offset + i] = NULL;
1521 node->count--;
1522 }
1523 #endif
1524 }
1525
1526 /**
1527 * radix_tree_delete_item - delete an item from a radix tree
1528 * @root: radix tree root
1529 * @index: index key
1530 * @item: expected item
1531 *
1532 * Remove @item at @index from the radix tree rooted at @root.
1533 *
1534 * Returns the address of the deleted item, or NULL if it was not present
1535 * or the entry at the given @index was not @item.
1536 */
1537 void *radix_tree_delete_item(struct radix_tree_root *root,
1538 unsigned long index, void *item)
1539 {
1540 struct radix_tree_node *node;
1541 unsigned int offset;
1542 void **slot;
1543 void *entry;
1544 int tag;
1545
1546 entry = __radix_tree_lookup(root, index, &node, &slot);
1547 if (!entry)
1548 return NULL;
1549
1550 if (item && entry != item)
1551 return NULL;
1552
1553 if (!node) {
1554 root_tag_clear_all(root);
1555 root->rnode = NULL;
1556 return entry;
1557 }
1558
1559 offset = get_slot_offset(node, slot);
1560
1561 /*
1562 * Clear all tags associated with the item to be deleted.
1563 * This way of doing it would be inefficient, but seldom is any set.
1564 */
1565 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1566 if (tag_get(node, tag, offset))
1567 radix_tree_tag_clear(root, index, tag);
1568 }
1569
1570 delete_sibling_entries(node, ptr_to_indirect(slot), offset);
1571 node->slots[offset] = NULL;
1572 node->count--;
1573
1574 __radix_tree_delete_node(root, node);
1575
1576 return entry;
1577 }
1578 EXPORT_SYMBOL(radix_tree_delete_item);
1579
1580 /**
1581 * radix_tree_delete - delete an item from a radix tree
1582 * @root: radix tree root
1583 * @index: index key
1584 *
1585 * Remove the item at @index from the radix tree rooted at @root.
1586 *
1587 * Returns the address of the deleted item, or NULL if it was not present.
1588 */
1589 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1590 {
1591 return radix_tree_delete_item(root, index, NULL);
1592 }
1593 EXPORT_SYMBOL(radix_tree_delete);
1594
1595 /**
1596 * radix_tree_tagged - test whether any items in the tree are tagged
1597 * @root: radix tree root
1598 * @tag: tag to test
1599 */
1600 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1601 {
1602 return root_tag_get(root, tag);
1603 }
1604 EXPORT_SYMBOL(radix_tree_tagged);
1605
1606 static void
1607 radix_tree_node_ctor(void *arg)
1608 {
1609 struct radix_tree_node *node = arg;
1610
1611 memset(node, 0, sizeof(*node));
1612 INIT_LIST_HEAD(&node->private_list);
1613 }
1614
1615 static __init unsigned long __maxindex(unsigned int height)
1616 {
1617 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1618 int shift = RADIX_TREE_INDEX_BITS - width;
1619
1620 if (shift < 0)
1621 return ~0UL;
1622 if (shift >= BITS_PER_LONG)
1623 return 0UL;
1624 return ~0UL >> shift;
1625 }
1626
1627 static __init void radix_tree_init_maxindex(void)
1628 {
1629 unsigned int i;
1630
1631 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1632 height_to_maxindex[i] = __maxindex(i);
1633 }
1634
1635 static int radix_tree_callback(struct notifier_block *nfb,
1636 unsigned long action,
1637 void *hcpu)
1638 {
1639 int cpu = (long)hcpu;
1640 struct radix_tree_preload *rtp;
1641 struct radix_tree_node *node;
1642
1643 /* Free per-cpu pool of perloaded nodes */
1644 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1645 rtp = &per_cpu(radix_tree_preloads, cpu);
1646 while (rtp->nr) {
1647 node = rtp->nodes;
1648 rtp->nodes = node->private_data;
1649 kmem_cache_free(radix_tree_node_cachep, node);
1650 rtp->nr--;
1651 }
1652 }
1653 return NOTIFY_OK;
1654 }
1655
1656 void __init radix_tree_init(void)
1657 {
1658 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1659 sizeof(struct radix_tree_node), 0,
1660 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1661 radix_tree_node_ctor);
1662 radix_tree_init_maxindex();
1663 hotcpu_notifier(radix_tree_callback, 0);
1664 }