]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/radix-tree.c
radix-tree: move rcu_head into a union with private_list
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
44 /*
45 * Radix tree node cache.
46 */
47 static struct kmem_cache *radix_tree_node_cachep;
48
49 /*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
62 /*
63 * Per-cpu pool of preloaded nodes
64 */
65 struct radix_tree_preload {
66 unsigned nr;
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71
72 static inline void *node_to_entry(void *ptr)
73 {
74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76
77 #define RADIX_TREE_RETRY node_to_entry(NULL)
78
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82 {
83 void **ptr = node;
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86 }
87 #else
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89 {
90 return false;
91 }
92 #endif
93
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 void **slot)
96 {
97 return slot - parent->slots;
98 }
99
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
102 {
103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 if (radix_tree_is_internal_node(entry)) {
108 if (is_sibling_entry(parent, entry)) {
109 void **sibentry = (void **) entry_to_node(entry);
110 offset = get_slot_offset(parent, sibentry);
111 entry = rcu_dereference_raw(*sibentry);
112 }
113 }
114 #endif
115
116 *nodep = (void *)entry;
117 return offset;
118 }
119
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 return root->gfp_mask & __GFP_BITS_MASK;
123 }
124
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127 {
128 __set_bit(offset, node->tags[tag]);
129 }
130
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133 {
134 __clear_bit(offset, node->tags[tag]);
135 }
136
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139 {
140 return test_bit(offset, node->tags[tag]);
141 }
142
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
149 {
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 root->gfp_mask &= __GFP_BITS_MASK;
156 }
157
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167
168 /*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 unsigned idx;
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180 }
181
182 /**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196 {
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216 }
217
218 #ifndef __KERNEL__
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
220 {
221 unsigned long i;
222
223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
224 node, node->offset,
225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 node->shift, node->count, node->exceptional, node->parent);
227
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
231 void *entry = node->slots[i];
232 if (!entry)
233 continue;
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 entry, i,
237 *(void **)entry_to_node(entry),
238 first, last);
239 } else if (!radix_tree_is_internal_node(entry)) {
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
242 } else {
243 dump_node(entry_to_node(entry), first);
244 }
245 }
246 }
247
248 /* For debug */
249 static void radix_tree_dump(struct radix_tree_root *root)
250 {
251 pr_debug("radix root: %p rnode %p tags %x\n",
252 root, root->rnode,
253 root->gfp_mask >> __GFP_BITS_SHIFT);
254 if (!radix_tree_is_internal_node(root->rnode))
255 return;
256 dump_node(entry_to_node(root->rnode), 0);
257 }
258 #endif
259
260 /*
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
263 */
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
266 {
267 struct radix_tree_node *ret = NULL;
268 gfp_t gfp_mask = root_gfp_mask(root);
269
270 /*
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
274 */
275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 struct radix_tree_preload *rtp;
277
278 /*
279 * Even if the caller has preloaded, try to allocate from the
280 * cache first for the new node to get accounted to the memory
281 * cgroup.
282 */
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
284 gfp_mask | __GFP_NOWARN);
285 if (ret)
286 goto out;
287
288 /*
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
291 * kmem_cache_alloc)
292 */
293 rtp = this_cpu_ptr(&radix_tree_preloads);
294 if (rtp->nr) {
295 ret = rtp->nodes;
296 rtp->nodes = ret->private_data;
297 ret->private_data = NULL;
298 rtp->nr--;
299 }
300 /*
301 * Update the allocation stack trace as this is more useful
302 * for debugging.
303 */
304 kmemleak_update_trace(ret);
305 goto out;
306 }
307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
308 out:
309 BUG_ON(radix_tree_is_internal_node(ret));
310 return ret;
311 }
312
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
314 {
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
317 int i;
318
319 /*
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
323 */
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
326
327 node->slots[0] = NULL;
328 INIT_LIST_HEAD(&node->private_list);
329
330 kmem_cache_free(radix_tree_node_cachep, node);
331 }
332
333 static inline void
334 radix_tree_node_free(struct radix_tree_node *node)
335 {
336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
337 }
338
339 /*
340 * Load up this CPU's radix_tree_node buffer with sufficient objects to
341 * ensure that the addition of a single element in the tree cannot fail. On
342 * success, return zero, with preemption disabled. On error, return -ENOMEM
343 * with preemption not disabled.
344 *
345 * To make use of this facility, the radix tree must be initialised without
346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
347 */
348 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
349 {
350 struct radix_tree_preload *rtp;
351 struct radix_tree_node *node;
352 int ret = -ENOMEM;
353
354 /*
355 * Nodes preloaded by one cgroup can be be used by another cgroup, so
356 * they should never be accounted to any particular memory cgroup.
357 */
358 gfp_mask &= ~__GFP_ACCOUNT;
359
360 preempt_disable();
361 rtp = this_cpu_ptr(&radix_tree_preloads);
362 while (rtp->nr < nr) {
363 preempt_enable();
364 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
365 if (node == NULL)
366 goto out;
367 preempt_disable();
368 rtp = this_cpu_ptr(&radix_tree_preloads);
369 if (rtp->nr < nr) {
370 node->private_data = rtp->nodes;
371 rtp->nodes = node;
372 rtp->nr++;
373 } else {
374 kmem_cache_free(radix_tree_node_cachep, node);
375 }
376 }
377 ret = 0;
378 out:
379 return ret;
380 }
381
382 /*
383 * Load up this CPU's radix_tree_node buffer with sufficient objects to
384 * ensure that the addition of a single element in the tree cannot fail. On
385 * success, return zero, with preemption disabled. On error, return -ENOMEM
386 * with preemption not disabled.
387 *
388 * To make use of this facility, the radix tree must be initialised without
389 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
390 */
391 int radix_tree_preload(gfp_t gfp_mask)
392 {
393 /* Warn on non-sensical use... */
394 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
395 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
396 }
397 EXPORT_SYMBOL(radix_tree_preload);
398
399 /*
400 * The same as above function, except we don't guarantee preloading happens.
401 * We do it, if we decide it helps. On success, return zero with preemption
402 * disabled. On error, return -ENOMEM with preemption not disabled.
403 */
404 int radix_tree_maybe_preload(gfp_t gfp_mask)
405 {
406 if (gfpflags_allow_blocking(gfp_mask))
407 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
408 /* Preloading doesn't help anything with this gfp mask, skip it */
409 preempt_disable();
410 return 0;
411 }
412 EXPORT_SYMBOL(radix_tree_maybe_preload);
413
414 /*
415 * The same as function above, but preload number of nodes required to insert
416 * (1 << order) continuous naturally-aligned elements.
417 */
418 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
419 {
420 unsigned long nr_subtrees;
421 int nr_nodes, subtree_height;
422
423 /* Preloading doesn't help anything with this gfp mask, skip it */
424 if (!gfpflags_allow_blocking(gfp_mask)) {
425 preempt_disable();
426 return 0;
427 }
428
429 /*
430 * Calculate number and height of fully populated subtrees it takes to
431 * store (1 << order) elements.
432 */
433 nr_subtrees = 1 << order;
434 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
435 subtree_height++)
436 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
437
438 /*
439 * The worst case is zero height tree with a single item at index 0 and
440 * then inserting items starting at ULONG_MAX - (1 << order).
441 *
442 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
443 * 0-index item.
444 */
445 nr_nodes = RADIX_TREE_MAX_PATH;
446
447 /* Plus branch to fully populated subtrees. */
448 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
449
450 /* Root node is shared. */
451 nr_nodes--;
452
453 /* Plus nodes required to build subtrees. */
454 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
455
456 return __radix_tree_preload(gfp_mask, nr_nodes);
457 }
458
459 /*
460 * The maximum index which can be stored in a radix tree
461 */
462 static inline unsigned long shift_maxindex(unsigned int shift)
463 {
464 return (RADIX_TREE_MAP_SIZE << shift) - 1;
465 }
466
467 static inline unsigned long node_maxindex(struct radix_tree_node *node)
468 {
469 return shift_maxindex(node->shift);
470 }
471
472 static unsigned radix_tree_load_root(struct radix_tree_root *root,
473 struct radix_tree_node **nodep, unsigned long *maxindex)
474 {
475 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
476
477 *nodep = node;
478
479 if (likely(radix_tree_is_internal_node(node))) {
480 node = entry_to_node(node);
481 *maxindex = node_maxindex(node);
482 return node->shift + RADIX_TREE_MAP_SHIFT;
483 }
484
485 *maxindex = 0;
486 return 0;
487 }
488
489 /*
490 * Extend a radix tree so it can store key @index.
491 */
492 static int radix_tree_extend(struct radix_tree_root *root,
493 unsigned long index, unsigned int shift)
494 {
495 struct radix_tree_node *slot;
496 unsigned int maxshift;
497 int tag;
498
499 /* Figure out what the shift should be. */
500 maxshift = shift;
501 while (index > shift_maxindex(maxshift))
502 maxshift += RADIX_TREE_MAP_SHIFT;
503
504 slot = root->rnode;
505 if (!slot)
506 goto out;
507
508 do {
509 struct radix_tree_node *node = radix_tree_node_alloc(root);
510
511 if (!node)
512 return -ENOMEM;
513
514 /* Propagate the aggregated tag info into the new root */
515 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
516 if (root_tag_get(root, tag))
517 tag_set(node, tag, 0);
518 }
519
520 BUG_ON(shift > BITS_PER_LONG);
521 node->shift = shift;
522 node->offset = 0;
523 node->count = 1;
524 node->parent = NULL;
525 if (radix_tree_is_internal_node(slot)) {
526 entry_to_node(slot)->parent = node;
527 } else {
528 /* Moving an exceptional root->rnode to a node */
529 if (radix_tree_exceptional_entry(slot))
530 node->exceptional = 1;
531 }
532 node->slots[0] = slot;
533 slot = node_to_entry(node);
534 rcu_assign_pointer(root->rnode, slot);
535 shift += RADIX_TREE_MAP_SHIFT;
536 } while (shift <= maxshift);
537 out:
538 return maxshift + RADIX_TREE_MAP_SHIFT;
539 }
540
541 /**
542 * radix_tree_shrink - shrink radix tree to minimum height
543 * @root radix tree root
544 */
545 static inline void radix_tree_shrink(struct radix_tree_root *root,
546 radix_tree_update_node_t update_node,
547 void *private)
548 {
549 for (;;) {
550 struct radix_tree_node *node = root->rnode;
551 struct radix_tree_node *child;
552
553 if (!radix_tree_is_internal_node(node))
554 break;
555 node = entry_to_node(node);
556
557 /*
558 * The candidate node has more than one child, or its child
559 * is not at the leftmost slot, or the child is a multiorder
560 * entry, we cannot shrink.
561 */
562 if (node->count != 1)
563 break;
564 child = node->slots[0];
565 if (!child)
566 break;
567 if (!radix_tree_is_internal_node(child) && node->shift)
568 break;
569
570 if (radix_tree_is_internal_node(child))
571 entry_to_node(child)->parent = NULL;
572
573 /*
574 * We don't need rcu_assign_pointer(), since we are simply
575 * moving the node from one part of the tree to another: if it
576 * was safe to dereference the old pointer to it
577 * (node->slots[0]), it will be safe to dereference the new
578 * one (root->rnode) as far as dependent read barriers go.
579 */
580 root->rnode = child;
581
582 /*
583 * We have a dilemma here. The node's slot[0] must not be
584 * NULLed in case there are concurrent lookups expecting to
585 * find the item. However if this was a bottom-level node,
586 * then it may be subject to the slot pointer being visible
587 * to callers dereferencing it. If item corresponding to
588 * slot[0] is subsequently deleted, these callers would expect
589 * their slot to become empty sooner or later.
590 *
591 * For example, lockless pagecache will look up a slot, deref
592 * the page pointer, and if the page has 0 refcount it means it
593 * was concurrently deleted from pagecache so try the deref
594 * again. Fortunately there is already a requirement for logic
595 * to retry the entire slot lookup -- the indirect pointer
596 * problem (replacing direct root node with an indirect pointer
597 * also results in a stale slot). So tag the slot as indirect
598 * to force callers to retry.
599 */
600 node->count = 0;
601 if (!radix_tree_is_internal_node(child)) {
602 node->slots[0] = RADIX_TREE_RETRY;
603 if (update_node)
604 update_node(node, private);
605 }
606
607 radix_tree_node_free(node);
608 }
609 }
610
611 static void delete_node(struct radix_tree_root *root,
612 struct radix_tree_node *node,
613 radix_tree_update_node_t update_node, void *private)
614 {
615 do {
616 struct radix_tree_node *parent;
617
618 if (node->count) {
619 if (node == entry_to_node(root->rnode))
620 radix_tree_shrink(root, update_node, private);
621 return;
622 }
623
624 parent = node->parent;
625 if (parent) {
626 parent->slots[node->offset] = NULL;
627 parent->count--;
628 } else {
629 root_tag_clear_all(root);
630 root->rnode = NULL;
631 }
632
633 radix_tree_node_free(node);
634
635 node = parent;
636 } while (node);
637 }
638
639 /**
640 * __radix_tree_create - create a slot in a radix tree
641 * @root: radix tree root
642 * @index: index key
643 * @order: index occupies 2^order aligned slots
644 * @nodep: returns node
645 * @slotp: returns slot
646 *
647 * Create, if necessary, and return the node and slot for an item
648 * at position @index in the radix tree @root.
649 *
650 * Until there is more than one item in the tree, no nodes are
651 * allocated and @root->rnode is used as a direct slot instead of
652 * pointing to a node, in which case *@nodep will be NULL.
653 *
654 * Returns -ENOMEM, or 0 for success.
655 */
656 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
657 unsigned order, struct radix_tree_node **nodep,
658 void ***slotp)
659 {
660 struct radix_tree_node *node = NULL, *child;
661 void **slot = (void **)&root->rnode;
662 unsigned long maxindex;
663 unsigned int shift, offset = 0;
664 unsigned long max = index | ((1UL << order) - 1);
665
666 shift = radix_tree_load_root(root, &child, &maxindex);
667
668 /* Make sure the tree is high enough. */
669 if (max > maxindex) {
670 int error = radix_tree_extend(root, max, shift);
671 if (error < 0)
672 return error;
673 shift = error;
674 child = root->rnode;
675 if (order == shift)
676 shift += RADIX_TREE_MAP_SHIFT;
677 }
678
679 while (shift > order) {
680 shift -= RADIX_TREE_MAP_SHIFT;
681 if (child == NULL) {
682 /* Have to add a child node. */
683 child = radix_tree_node_alloc(root);
684 if (!child)
685 return -ENOMEM;
686 child->shift = shift;
687 child->offset = offset;
688 child->parent = node;
689 rcu_assign_pointer(*slot, node_to_entry(child));
690 if (node)
691 node->count++;
692 } else if (!radix_tree_is_internal_node(child))
693 break;
694
695 /* Go a level down */
696 node = entry_to_node(child);
697 offset = radix_tree_descend(node, &child, index);
698 slot = &node->slots[offset];
699 }
700
701 #ifdef CONFIG_RADIX_TREE_MULTIORDER
702 /* Insert pointers to the canonical entry */
703 if (order > shift) {
704 unsigned i, n = 1 << (order - shift);
705 offset = offset & ~(n - 1);
706 slot = &node->slots[offset];
707 child = node_to_entry(slot);
708 for (i = 0; i < n; i++) {
709 if (slot[i])
710 return -EEXIST;
711 }
712
713 for (i = 1; i < n; i++) {
714 rcu_assign_pointer(slot[i], child);
715 node->count++;
716 }
717 }
718 #endif
719
720 if (nodep)
721 *nodep = node;
722 if (slotp)
723 *slotp = slot;
724 return 0;
725 }
726
727 /**
728 * __radix_tree_insert - insert into a radix tree
729 * @root: radix tree root
730 * @index: index key
731 * @order: key covers the 2^order indices around index
732 * @item: item to insert
733 *
734 * Insert an item into the radix tree at position @index.
735 */
736 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
737 unsigned order, void *item)
738 {
739 struct radix_tree_node *node;
740 void **slot;
741 int error;
742
743 BUG_ON(radix_tree_is_internal_node(item));
744
745 error = __radix_tree_create(root, index, order, &node, &slot);
746 if (error)
747 return error;
748 if (*slot != NULL)
749 return -EEXIST;
750 rcu_assign_pointer(*slot, item);
751
752 if (node) {
753 unsigned offset = get_slot_offset(node, slot);
754 node->count++;
755 if (radix_tree_exceptional_entry(item))
756 node->exceptional++;
757 BUG_ON(tag_get(node, 0, offset));
758 BUG_ON(tag_get(node, 1, offset));
759 BUG_ON(tag_get(node, 2, offset));
760 } else {
761 BUG_ON(root_tags_get(root));
762 }
763
764 return 0;
765 }
766 EXPORT_SYMBOL(__radix_tree_insert);
767
768 /**
769 * __radix_tree_lookup - lookup an item in a radix tree
770 * @root: radix tree root
771 * @index: index key
772 * @nodep: returns node
773 * @slotp: returns slot
774 *
775 * Lookup and return the item at position @index in the radix
776 * tree @root.
777 *
778 * Until there is more than one item in the tree, no nodes are
779 * allocated and @root->rnode is used as a direct slot instead of
780 * pointing to a node, in which case *@nodep will be NULL.
781 */
782 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
783 struct radix_tree_node **nodep, void ***slotp)
784 {
785 struct radix_tree_node *node, *parent;
786 unsigned long maxindex;
787 void **slot;
788
789 restart:
790 parent = NULL;
791 slot = (void **)&root->rnode;
792 radix_tree_load_root(root, &node, &maxindex);
793 if (index > maxindex)
794 return NULL;
795
796 while (radix_tree_is_internal_node(node)) {
797 unsigned offset;
798
799 if (node == RADIX_TREE_RETRY)
800 goto restart;
801 parent = entry_to_node(node);
802 offset = radix_tree_descend(parent, &node, index);
803 slot = parent->slots + offset;
804 }
805
806 if (nodep)
807 *nodep = parent;
808 if (slotp)
809 *slotp = slot;
810 return node;
811 }
812
813 /**
814 * radix_tree_lookup_slot - lookup a slot in a radix tree
815 * @root: radix tree root
816 * @index: index key
817 *
818 * Returns: the slot corresponding to the position @index in the
819 * radix tree @root. This is useful for update-if-exists operations.
820 *
821 * This function can be called under rcu_read_lock iff the slot is not
822 * modified by radix_tree_replace_slot, otherwise it must be called
823 * exclusive from other writers. Any dereference of the slot must be done
824 * using radix_tree_deref_slot.
825 */
826 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
827 {
828 void **slot;
829
830 if (!__radix_tree_lookup(root, index, NULL, &slot))
831 return NULL;
832 return slot;
833 }
834 EXPORT_SYMBOL(radix_tree_lookup_slot);
835
836 /**
837 * radix_tree_lookup - perform lookup operation on a radix tree
838 * @root: radix tree root
839 * @index: index key
840 *
841 * Lookup the item at the position @index in the radix tree @root.
842 *
843 * This function can be called under rcu_read_lock, however the caller
844 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
845 * them safely). No RCU barriers are required to access or modify the
846 * returned item, however.
847 */
848 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
849 {
850 return __radix_tree_lookup(root, index, NULL, NULL);
851 }
852 EXPORT_SYMBOL(radix_tree_lookup);
853
854 static void replace_slot(struct radix_tree_root *root,
855 struct radix_tree_node *node,
856 void **slot, void *item,
857 bool warn_typeswitch)
858 {
859 void *old = rcu_dereference_raw(*slot);
860 int count, exceptional;
861
862 WARN_ON_ONCE(radix_tree_is_internal_node(item));
863
864 count = !!item - !!old;
865 exceptional = !!radix_tree_exceptional_entry(item) -
866 !!radix_tree_exceptional_entry(old);
867
868 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
869
870 if (node) {
871 node->count += count;
872 node->exceptional += exceptional;
873 }
874
875 rcu_assign_pointer(*slot, item);
876 }
877
878 /**
879 * __radix_tree_replace - replace item in a slot
880 * @root: radix tree root
881 * @node: pointer to tree node
882 * @slot: pointer to slot in @node
883 * @item: new item to store in the slot.
884 * @update_node: callback for changing leaf nodes
885 * @private: private data to pass to @update_node
886 *
887 * For use with __radix_tree_lookup(). Caller must hold tree write locked
888 * across slot lookup and replacement.
889 */
890 void __radix_tree_replace(struct radix_tree_root *root,
891 struct radix_tree_node *node,
892 void **slot, void *item,
893 radix_tree_update_node_t update_node, void *private)
894 {
895 /*
896 * This function supports replacing exceptional entries and
897 * deleting entries, but that needs accounting against the
898 * node unless the slot is root->rnode.
899 */
900 replace_slot(root, node, slot, item,
901 !node && slot != (void **)&root->rnode);
902
903 if (!node)
904 return;
905
906 if (update_node)
907 update_node(node, private);
908
909 delete_node(root, node, update_node, private);
910 }
911
912 /**
913 * radix_tree_replace_slot - replace item in a slot
914 * @root: radix tree root
915 * @slot: pointer to slot
916 * @item: new item to store in the slot.
917 *
918 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
919 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
920 * across slot lookup and replacement.
921 *
922 * NOTE: This cannot be used to switch between non-entries (empty slots),
923 * regular entries, and exceptional entries, as that requires accounting
924 * inside the radix tree node. When switching from one type of entry or
925 * deleting, use __radix_tree_lookup() and __radix_tree_replace().
926 */
927 void radix_tree_replace_slot(struct radix_tree_root *root,
928 void **slot, void *item)
929 {
930 replace_slot(root, NULL, slot, item, true);
931 }
932
933 /**
934 * radix_tree_tag_set - set a tag on a radix tree node
935 * @root: radix tree root
936 * @index: index key
937 * @tag: tag index
938 *
939 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
940 * corresponding to @index in the radix tree. From
941 * the root all the way down to the leaf node.
942 *
943 * Returns the address of the tagged item. Setting a tag on a not-present
944 * item is a bug.
945 */
946 void *radix_tree_tag_set(struct radix_tree_root *root,
947 unsigned long index, unsigned int tag)
948 {
949 struct radix_tree_node *node, *parent;
950 unsigned long maxindex;
951
952 radix_tree_load_root(root, &node, &maxindex);
953 BUG_ON(index > maxindex);
954
955 while (radix_tree_is_internal_node(node)) {
956 unsigned offset;
957
958 parent = entry_to_node(node);
959 offset = radix_tree_descend(parent, &node, index);
960 BUG_ON(!node);
961
962 if (!tag_get(parent, tag, offset))
963 tag_set(parent, tag, offset);
964 }
965
966 /* set the root's tag bit */
967 if (!root_tag_get(root, tag))
968 root_tag_set(root, tag);
969
970 return node;
971 }
972 EXPORT_SYMBOL(radix_tree_tag_set);
973
974 static void node_tag_clear(struct radix_tree_root *root,
975 struct radix_tree_node *node,
976 unsigned int tag, unsigned int offset)
977 {
978 while (node) {
979 if (!tag_get(node, tag, offset))
980 return;
981 tag_clear(node, tag, offset);
982 if (any_tag_set(node, tag))
983 return;
984
985 offset = node->offset;
986 node = node->parent;
987 }
988
989 /* clear the root's tag bit */
990 if (root_tag_get(root, tag))
991 root_tag_clear(root, tag);
992 }
993
994 /**
995 * radix_tree_tag_clear - clear a tag on a radix tree node
996 * @root: radix tree root
997 * @index: index key
998 * @tag: tag index
999 *
1000 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1001 * corresponding to @index in the radix tree. If this causes
1002 * the leaf node to have no tags set then clear the tag in the
1003 * next-to-leaf node, etc.
1004 *
1005 * Returns the address of the tagged item on success, else NULL. ie:
1006 * has the same return value and semantics as radix_tree_lookup().
1007 */
1008 void *radix_tree_tag_clear(struct radix_tree_root *root,
1009 unsigned long index, unsigned int tag)
1010 {
1011 struct radix_tree_node *node, *parent;
1012 unsigned long maxindex;
1013 int uninitialized_var(offset);
1014
1015 radix_tree_load_root(root, &node, &maxindex);
1016 if (index > maxindex)
1017 return NULL;
1018
1019 parent = NULL;
1020
1021 while (radix_tree_is_internal_node(node)) {
1022 parent = entry_to_node(node);
1023 offset = radix_tree_descend(parent, &node, index);
1024 }
1025
1026 if (node)
1027 node_tag_clear(root, parent, tag, offset);
1028
1029 return node;
1030 }
1031 EXPORT_SYMBOL(radix_tree_tag_clear);
1032
1033 /**
1034 * radix_tree_tag_get - get a tag on a radix tree node
1035 * @root: radix tree root
1036 * @index: index key
1037 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1038 *
1039 * Return values:
1040 *
1041 * 0: tag not present or not set
1042 * 1: tag set
1043 *
1044 * Note that the return value of this function may not be relied on, even if
1045 * the RCU lock is held, unless tag modification and node deletion are excluded
1046 * from concurrency.
1047 */
1048 int radix_tree_tag_get(struct radix_tree_root *root,
1049 unsigned long index, unsigned int tag)
1050 {
1051 struct radix_tree_node *node, *parent;
1052 unsigned long maxindex;
1053
1054 if (!root_tag_get(root, tag))
1055 return 0;
1056
1057 radix_tree_load_root(root, &node, &maxindex);
1058 if (index > maxindex)
1059 return 0;
1060 if (node == NULL)
1061 return 0;
1062
1063 while (radix_tree_is_internal_node(node)) {
1064 unsigned offset;
1065
1066 parent = entry_to_node(node);
1067 offset = radix_tree_descend(parent, &node, index);
1068
1069 if (!node)
1070 return 0;
1071 if (!tag_get(parent, tag, offset))
1072 return 0;
1073 if (node == RADIX_TREE_RETRY)
1074 break;
1075 }
1076
1077 return 1;
1078 }
1079 EXPORT_SYMBOL(radix_tree_tag_get);
1080
1081 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1082 unsigned int shift)
1083 {
1084 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1085 iter->shift = shift;
1086 #endif
1087 }
1088
1089 /**
1090 * radix_tree_next_chunk - find next chunk of slots for iteration
1091 *
1092 * @root: radix tree root
1093 * @iter: iterator state
1094 * @flags: RADIX_TREE_ITER_* flags and tag index
1095 * Returns: pointer to chunk first slot, or NULL if iteration is over
1096 */
1097 void **radix_tree_next_chunk(struct radix_tree_root *root,
1098 struct radix_tree_iter *iter, unsigned flags)
1099 {
1100 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1101 struct radix_tree_node *node, *child;
1102 unsigned long index, offset, maxindex;
1103
1104 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1105 return NULL;
1106
1107 /*
1108 * Catch next_index overflow after ~0UL. iter->index never overflows
1109 * during iterating; it can be zero only at the beginning.
1110 * And we cannot overflow iter->next_index in a single step,
1111 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1112 *
1113 * This condition also used by radix_tree_next_slot() to stop
1114 * contiguous iterating, and forbid switching to the next chunk.
1115 */
1116 index = iter->next_index;
1117 if (!index && iter->index)
1118 return NULL;
1119
1120 restart:
1121 radix_tree_load_root(root, &child, &maxindex);
1122 if (index > maxindex)
1123 return NULL;
1124 if (!child)
1125 return NULL;
1126
1127 if (!radix_tree_is_internal_node(child)) {
1128 /* Single-slot tree */
1129 iter->index = index;
1130 iter->next_index = maxindex + 1;
1131 iter->tags = 1;
1132 __set_iter_shift(iter, 0);
1133 return (void **)&root->rnode;
1134 }
1135
1136 do {
1137 node = entry_to_node(child);
1138 offset = radix_tree_descend(node, &child, index);
1139
1140 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1141 !tag_get(node, tag, offset) : !child) {
1142 /* Hole detected */
1143 if (flags & RADIX_TREE_ITER_CONTIG)
1144 return NULL;
1145
1146 if (flags & RADIX_TREE_ITER_TAGGED)
1147 offset = radix_tree_find_next_bit(
1148 node->tags[tag],
1149 RADIX_TREE_MAP_SIZE,
1150 offset + 1);
1151 else
1152 while (++offset < RADIX_TREE_MAP_SIZE) {
1153 void *slot = node->slots[offset];
1154 if (is_sibling_entry(node, slot))
1155 continue;
1156 if (slot)
1157 break;
1158 }
1159 index &= ~node_maxindex(node);
1160 index += offset << node->shift;
1161 /* Overflow after ~0UL */
1162 if (!index)
1163 return NULL;
1164 if (offset == RADIX_TREE_MAP_SIZE)
1165 goto restart;
1166 child = rcu_dereference_raw(node->slots[offset]);
1167 }
1168
1169 if ((child == NULL) || (child == RADIX_TREE_RETRY))
1170 goto restart;
1171 } while (radix_tree_is_internal_node(child));
1172
1173 /* Update the iterator state */
1174 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1175 iter->next_index = (index | node_maxindex(node)) + 1;
1176 __set_iter_shift(iter, node->shift);
1177
1178 /* Construct iter->tags bit-mask from node->tags[tag] array */
1179 if (flags & RADIX_TREE_ITER_TAGGED) {
1180 unsigned tag_long, tag_bit;
1181
1182 tag_long = offset / BITS_PER_LONG;
1183 tag_bit = offset % BITS_PER_LONG;
1184 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1185 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1186 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1187 /* Pick tags from next element */
1188 if (tag_bit)
1189 iter->tags |= node->tags[tag][tag_long + 1] <<
1190 (BITS_PER_LONG - tag_bit);
1191 /* Clip chunk size, here only BITS_PER_LONG tags */
1192 iter->next_index = index + BITS_PER_LONG;
1193 }
1194 }
1195
1196 return node->slots + offset;
1197 }
1198 EXPORT_SYMBOL(radix_tree_next_chunk);
1199
1200 /**
1201 * radix_tree_range_tag_if_tagged - for each item in given range set given
1202 * tag if item has another tag set
1203 * @root: radix tree root
1204 * @first_indexp: pointer to a starting index of a range to scan
1205 * @last_index: last index of a range to scan
1206 * @nr_to_tag: maximum number items to tag
1207 * @iftag: tag index to test
1208 * @settag: tag index to set if tested tag is set
1209 *
1210 * This function scans range of radix tree from first_index to last_index
1211 * (inclusive). For each item in the range if iftag is set, the function sets
1212 * also settag. The function stops either after tagging nr_to_tag items or
1213 * after reaching last_index.
1214 *
1215 * The tags must be set from the leaf level only and propagated back up the
1216 * path to the root. We must do this so that we resolve the full path before
1217 * setting any tags on intermediate nodes. If we set tags as we descend, then
1218 * we can get to the leaf node and find that the index that has the iftag
1219 * set is outside the range we are scanning. This reults in dangling tags and
1220 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1221 *
1222 * The function returns the number of leaves where the tag was set and sets
1223 * *first_indexp to the first unscanned index.
1224 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1225 * be prepared to handle that.
1226 */
1227 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1228 unsigned long *first_indexp, unsigned long last_index,
1229 unsigned long nr_to_tag,
1230 unsigned int iftag, unsigned int settag)
1231 {
1232 struct radix_tree_node *parent, *node, *child;
1233 unsigned long maxindex;
1234 unsigned long tagged = 0;
1235 unsigned long index = *first_indexp;
1236
1237 radix_tree_load_root(root, &child, &maxindex);
1238 last_index = min(last_index, maxindex);
1239 if (index > last_index)
1240 return 0;
1241 if (!nr_to_tag)
1242 return 0;
1243 if (!root_tag_get(root, iftag)) {
1244 *first_indexp = last_index + 1;
1245 return 0;
1246 }
1247 if (!radix_tree_is_internal_node(child)) {
1248 *first_indexp = last_index + 1;
1249 root_tag_set(root, settag);
1250 return 1;
1251 }
1252
1253 node = entry_to_node(child);
1254
1255 for (;;) {
1256 unsigned offset = radix_tree_descend(node, &child, index);
1257 if (!child)
1258 goto next;
1259 if (!tag_get(node, iftag, offset))
1260 goto next;
1261 /* Sibling slots never have tags set on them */
1262 if (radix_tree_is_internal_node(child)) {
1263 node = entry_to_node(child);
1264 continue;
1265 }
1266
1267 /* tag the leaf */
1268 tagged++;
1269 tag_set(node, settag, offset);
1270
1271 /* walk back up the path tagging interior nodes */
1272 parent = node;
1273 for (;;) {
1274 offset = parent->offset;
1275 parent = parent->parent;
1276 if (!parent)
1277 break;
1278 /* stop if we find a node with the tag already set */
1279 if (tag_get(parent, settag, offset))
1280 break;
1281 tag_set(parent, settag, offset);
1282 }
1283 next:
1284 /* Go to next entry in node */
1285 index = ((index >> node->shift) + 1) << node->shift;
1286 /* Overflow can happen when last_index is ~0UL... */
1287 if (index > last_index || !index)
1288 break;
1289 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1290 while (offset == 0) {
1291 /*
1292 * We've fully scanned this node. Go up. Because
1293 * last_index is guaranteed to be in the tree, what
1294 * we do below cannot wander astray.
1295 */
1296 node = node->parent;
1297 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1298 }
1299 if (is_sibling_entry(node, node->slots[offset]))
1300 goto next;
1301 if (tagged >= nr_to_tag)
1302 break;
1303 }
1304 /*
1305 * We need not to tag the root tag if there is no tag which is set with
1306 * settag within the range from *first_indexp to last_index.
1307 */
1308 if (tagged > 0)
1309 root_tag_set(root, settag);
1310 *first_indexp = index;
1311
1312 return tagged;
1313 }
1314 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1315
1316 /**
1317 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1318 * @root: radix tree root
1319 * @results: where the results of the lookup are placed
1320 * @first_index: start the lookup from this key
1321 * @max_items: place up to this many items at *results
1322 *
1323 * Performs an index-ascending scan of the tree for present items. Places
1324 * them at *@results and returns the number of items which were placed at
1325 * *@results.
1326 *
1327 * The implementation is naive.
1328 *
1329 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1330 * rcu_read_lock. In this case, rather than the returned results being
1331 * an atomic snapshot of the tree at a single point in time, the
1332 * semantics of an RCU protected gang lookup are as though multiple
1333 * radix_tree_lookups have been issued in individual locks, and results
1334 * stored in 'results'.
1335 */
1336 unsigned int
1337 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1338 unsigned long first_index, unsigned int max_items)
1339 {
1340 struct radix_tree_iter iter;
1341 void **slot;
1342 unsigned int ret = 0;
1343
1344 if (unlikely(!max_items))
1345 return 0;
1346
1347 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1348 results[ret] = rcu_dereference_raw(*slot);
1349 if (!results[ret])
1350 continue;
1351 if (radix_tree_is_internal_node(results[ret])) {
1352 slot = radix_tree_iter_retry(&iter);
1353 continue;
1354 }
1355 if (++ret == max_items)
1356 break;
1357 }
1358
1359 return ret;
1360 }
1361 EXPORT_SYMBOL(radix_tree_gang_lookup);
1362
1363 /**
1364 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1365 * @root: radix tree root
1366 * @results: where the results of the lookup are placed
1367 * @indices: where their indices should be placed (but usually NULL)
1368 * @first_index: start the lookup from this key
1369 * @max_items: place up to this many items at *results
1370 *
1371 * Performs an index-ascending scan of the tree for present items. Places
1372 * their slots at *@results and returns the number of items which were
1373 * placed at *@results.
1374 *
1375 * The implementation is naive.
1376 *
1377 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1378 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1379 * protection, radix_tree_deref_slot may fail requiring a retry.
1380 */
1381 unsigned int
1382 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1383 void ***results, unsigned long *indices,
1384 unsigned long first_index, unsigned int max_items)
1385 {
1386 struct radix_tree_iter iter;
1387 void **slot;
1388 unsigned int ret = 0;
1389
1390 if (unlikely(!max_items))
1391 return 0;
1392
1393 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1394 results[ret] = slot;
1395 if (indices)
1396 indices[ret] = iter.index;
1397 if (++ret == max_items)
1398 break;
1399 }
1400
1401 return ret;
1402 }
1403 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1404
1405 /**
1406 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1407 * based on a tag
1408 * @root: radix tree root
1409 * @results: where the results of the lookup are placed
1410 * @first_index: start the lookup from this key
1411 * @max_items: place up to this many items at *results
1412 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1413 *
1414 * Performs an index-ascending scan of the tree for present items which
1415 * have the tag indexed by @tag set. Places the items at *@results and
1416 * returns the number of items which were placed at *@results.
1417 */
1418 unsigned int
1419 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1420 unsigned long first_index, unsigned int max_items,
1421 unsigned int tag)
1422 {
1423 struct radix_tree_iter iter;
1424 void **slot;
1425 unsigned int ret = 0;
1426
1427 if (unlikely(!max_items))
1428 return 0;
1429
1430 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1431 results[ret] = rcu_dereference_raw(*slot);
1432 if (!results[ret])
1433 continue;
1434 if (radix_tree_is_internal_node(results[ret])) {
1435 slot = radix_tree_iter_retry(&iter);
1436 continue;
1437 }
1438 if (++ret == max_items)
1439 break;
1440 }
1441
1442 return ret;
1443 }
1444 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1445
1446 /**
1447 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1448 * radix tree based on a tag
1449 * @root: radix tree root
1450 * @results: where the results of the lookup are placed
1451 * @first_index: start the lookup from this key
1452 * @max_items: place up to this many items at *results
1453 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1454 *
1455 * Performs an index-ascending scan of the tree for present items which
1456 * have the tag indexed by @tag set. Places the slots at *@results and
1457 * returns the number of slots which were placed at *@results.
1458 */
1459 unsigned int
1460 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1461 unsigned long first_index, unsigned int max_items,
1462 unsigned int tag)
1463 {
1464 struct radix_tree_iter iter;
1465 void **slot;
1466 unsigned int ret = 0;
1467
1468 if (unlikely(!max_items))
1469 return 0;
1470
1471 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1472 results[ret] = slot;
1473 if (++ret == max_items)
1474 break;
1475 }
1476
1477 return ret;
1478 }
1479 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1480
1481 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1482 #include <linux/sched.h> /* for cond_resched() */
1483
1484 struct locate_info {
1485 unsigned long found_index;
1486 bool stop;
1487 };
1488
1489 /*
1490 * This linear search is at present only useful to shmem_unuse_inode().
1491 */
1492 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1493 unsigned long index, struct locate_info *info)
1494 {
1495 unsigned long i;
1496
1497 do {
1498 unsigned int shift = slot->shift;
1499
1500 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1501 i < RADIX_TREE_MAP_SIZE;
1502 i++, index += (1UL << shift)) {
1503 struct radix_tree_node *node =
1504 rcu_dereference_raw(slot->slots[i]);
1505 if (node == RADIX_TREE_RETRY)
1506 goto out;
1507 if (!radix_tree_is_internal_node(node)) {
1508 if (node == item) {
1509 info->found_index = index;
1510 info->stop = true;
1511 goto out;
1512 }
1513 continue;
1514 }
1515 node = entry_to_node(node);
1516 if (is_sibling_entry(slot, node))
1517 continue;
1518 slot = node;
1519 break;
1520 }
1521 } while (i < RADIX_TREE_MAP_SIZE);
1522
1523 out:
1524 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1525 info->stop = true;
1526 return index;
1527 }
1528
1529 /**
1530 * radix_tree_locate_item - search through radix tree for item
1531 * @root: radix tree root
1532 * @item: item to be found
1533 *
1534 * Returns index where item was found, or -1 if not found.
1535 * Caller must hold no lock (since this time-consuming function needs
1536 * to be preemptible), and must check afterwards if item is still there.
1537 */
1538 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1539 {
1540 struct radix_tree_node *node;
1541 unsigned long max_index;
1542 unsigned long cur_index = 0;
1543 struct locate_info info = {
1544 .found_index = -1,
1545 .stop = false,
1546 };
1547
1548 do {
1549 rcu_read_lock();
1550 node = rcu_dereference_raw(root->rnode);
1551 if (!radix_tree_is_internal_node(node)) {
1552 rcu_read_unlock();
1553 if (node == item)
1554 info.found_index = 0;
1555 break;
1556 }
1557
1558 node = entry_to_node(node);
1559
1560 max_index = node_maxindex(node);
1561 if (cur_index > max_index) {
1562 rcu_read_unlock();
1563 break;
1564 }
1565
1566 cur_index = __locate(node, item, cur_index, &info);
1567 rcu_read_unlock();
1568 cond_resched();
1569 } while (!info.stop && cur_index <= max_index);
1570
1571 return info.found_index;
1572 }
1573 #else
1574 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1575 {
1576 return -1;
1577 }
1578 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1579
1580 /**
1581 * __radix_tree_delete_node - try to free node after clearing a slot
1582 * @root: radix tree root
1583 * @node: node containing @index
1584 *
1585 * After clearing the slot at @index in @node from radix tree
1586 * rooted at @root, call this function to attempt freeing the
1587 * node and shrinking the tree.
1588 */
1589 void __radix_tree_delete_node(struct radix_tree_root *root,
1590 struct radix_tree_node *node)
1591 {
1592 delete_node(root, node, NULL, NULL);
1593 }
1594
1595 static inline void delete_sibling_entries(struct radix_tree_node *node,
1596 void *ptr, unsigned offset)
1597 {
1598 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1599 int i;
1600 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1601 if (node->slots[offset + i] != ptr)
1602 break;
1603 node->slots[offset + i] = NULL;
1604 node->count--;
1605 }
1606 #endif
1607 }
1608
1609 /**
1610 * radix_tree_delete_item - delete an item from a radix tree
1611 * @root: radix tree root
1612 * @index: index key
1613 * @item: expected item
1614 *
1615 * Remove @item at @index from the radix tree rooted at @root.
1616 *
1617 * Returns the address of the deleted item, or NULL if it was not present
1618 * or the entry at the given @index was not @item.
1619 */
1620 void *radix_tree_delete_item(struct radix_tree_root *root,
1621 unsigned long index, void *item)
1622 {
1623 struct radix_tree_node *node;
1624 unsigned int offset;
1625 void **slot;
1626 void *entry;
1627 int tag;
1628
1629 entry = __radix_tree_lookup(root, index, &node, &slot);
1630 if (!entry)
1631 return NULL;
1632
1633 if (item && entry != item)
1634 return NULL;
1635
1636 if (!node) {
1637 root_tag_clear_all(root);
1638 root->rnode = NULL;
1639 return entry;
1640 }
1641
1642 offset = get_slot_offset(node, slot);
1643
1644 /* Clear all tags associated with the item to be deleted. */
1645 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1646 node_tag_clear(root, node, tag, offset);
1647
1648 delete_sibling_entries(node, node_to_entry(slot), offset);
1649 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1650
1651 return entry;
1652 }
1653 EXPORT_SYMBOL(radix_tree_delete_item);
1654
1655 /**
1656 * radix_tree_delete - delete an item from a radix tree
1657 * @root: radix tree root
1658 * @index: index key
1659 *
1660 * Remove the item at @index from the radix tree rooted at @root.
1661 *
1662 * Returns the address of the deleted item, or NULL if it was not present.
1663 */
1664 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1665 {
1666 return radix_tree_delete_item(root, index, NULL);
1667 }
1668 EXPORT_SYMBOL(radix_tree_delete);
1669
1670 void radix_tree_clear_tags(struct radix_tree_root *root,
1671 struct radix_tree_node *node,
1672 void **slot)
1673 {
1674 if (node) {
1675 unsigned int tag, offset = get_slot_offset(node, slot);
1676 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1677 node_tag_clear(root, node, tag, offset);
1678 } else {
1679 /* Clear root node tags */
1680 root->gfp_mask &= __GFP_BITS_MASK;
1681 }
1682 }
1683
1684 /**
1685 * radix_tree_tagged - test whether any items in the tree are tagged
1686 * @root: radix tree root
1687 * @tag: tag to test
1688 */
1689 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1690 {
1691 return root_tag_get(root, tag);
1692 }
1693 EXPORT_SYMBOL(radix_tree_tagged);
1694
1695 static void
1696 radix_tree_node_ctor(void *arg)
1697 {
1698 struct radix_tree_node *node = arg;
1699
1700 memset(node, 0, sizeof(*node));
1701 INIT_LIST_HEAD(&node->private_list);
1702 }
1703
1704 static __init unsigned long __maxindex(unsigned int height)
1705 {
1706 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1707 int shift = RADIX_TREE_INDEX_BITS - width;
1708
1709 if (shift < 0)
1710 return ~0UL;
1711 if (shift >= BITS_PER_LONG)
1712 return 0UL;
1713 return ~0UL >> shift;
1714 }
1715
1716 static __init void radix_tree_init_maxnodes(void)
1717 {
1718 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1719 unsigned int i, j;
1720
1721 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1722 height_to_maxindex[i] = __maxindex(i);
1723 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1724 for (j = i; j > 0; j--)
1725 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1726 }
1727 }
1728
1729 static int radix_tree_cpu_dead(unsigned int cpu)
1730 {
1731 struct radix_tree_preload *rtp;
1732 struct radix_tree_node *node;
1733
1734 /* Free per-cpu pool of preloaded nodes */
1735 rtp = &per_cpu(radix_tree_preloads, cpu);
1736 while (rtp->nr) {
1737 node = rtp->nodes;
1738 rtp->nodes = node->private_data;
1739 kmem_cache_free(radix_tree_node_cachep, node);
1740 rtp->nr--;
1741 }
1742 return 0;
1743 }
1744
1745 void __init radix_tree_init(void)
1746 {
1747 int ret;
1748 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1749 sizeof(struct radix_tree_node), 0,
1750 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1751 radix_tree_node_ctor);
1752 radix_tree_init_maxnodes();
1753 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1754 NULL, radix_tree_cpu_dead);
1755 WARN_ON(ret < 0);
1756 }