]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - lib/radix-tree.c
radix-tree: add support for multi-order iterating
[mirror_ubuntu-focal-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt.h> /* in_interrupt() */
37
38
39 /*
40 * The height_to_maxindex array needs to be one deeper than the maximum
41 * path as height 0 holds only 1 entry.
42 */
43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
45 /*
46 * Radix tree node cache.
47 */
48 static struct kmem_cache *radix_tree_node_cachep;
49
50 /*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
63 /*
64 * Per-cpu pool of preloaded nodes
65 */
66 struct radix_tree_preload {
67 int nr;
68 /* nodes->private_data points to next preallocated node */
69 struct radix_tree_node *nodes;
70 };
71 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
72
73 static inline void *ptr_to_indirect(void *ptr)
74 {
75 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
76 }
77
78 #define RADIX_TREE_RETRY ptr_to_indirect(NULL)
79
80 #ifdef CONFIG_RADIX_TREE_MULTIORDER
81 /* Sibling slots point directly to another slot in the same node */
82 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
83 {
84 void **ptr = node;
85 return (parent->slots <= ptr) &&
86 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
87 }
88 #else
89 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
90 {
91 return false;
92 }
93 #endif
94
95 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
96 void **slot)
97 {
98 return slot - parent->slots;
99 }
100
101 static unsigned radix_tree_descend(struct radix_tree_node *parent,
102 struct radix_tree_node **nodep, unsigned offset)
103 {
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 if (radix_tree_is_indirect_ptr(entry)) {
108 unsigned long siboff = get_slot_offset(parent, entry);
109 if (siboff < RADIX_TREE_MAP_SIZE) {
110 offset = siboff;
111 entry = rcu_dereference_raw(parent->slots[offset]);
112 }
113 }
114 #endif
115
116 *nodep = (void *)entry;
117 return offset;
118 }
119
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 return root->gfp_mask & __GFP_BITS_MASK;
123 }
124
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127 {
128 __set_bit(offset, node->tags[tag]);
129 }
130
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133 {
134 __clear_bit(offset, node->tags[tag]);
135 }
136
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139 {
140 return test_bit(offset, node->tags[tag]);
141 }
142
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
149 {
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 root->gfp_mask &= __GFP_BITS_MASK;
156 }
157
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167
168 /*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 int idx;
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180 }
181
182 /**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196 {
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216 }
217
218 #if 0
219 static void dump_node(void *slot, int height, int offset)
220 {
221 struct radix_tree_node *node;
222 int i;
223
224 if (!slot)
225 return;
226
227 if (height == 0) {
228 pr_debug("radix entry %p offset %d\n", slot, offset);
229 return;
230 }
231
232 node = indirect_to_ptr(slot);
233 pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
234 slot, offset, node->tags[0][0], node->tags[1][0],
235 node->tags[2][0], node->path, node->count, node->parent);
236
237 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
238 dump_node(node->slots[i], height - 1, i);
239 }
240
241 /* For debug */
242 static void radix_tree_dump(struct radix_tree_root *root)
243 {
244 pr_debug("radix root: %p height %d rnode %p tags %x\n",
245 root, root->height, root->rnode,
246 root->gfp_mask >> __GFP_BITS_SHIFT);
247 if (!radix_tree_is_indirect_ptr(root->rnode))
248 return;
249 dump_node(root->rnode, root->height, 0);
250 }
251 #endif
252
253 /*
254 * This assumes that the caller has performed appropriate preallocation, and
255 * that the caller has pinned this thread of control to the current CPU.
256 */
257 static struct radix_tree_node *
258 radix_tree_node_alloc(struct radix_tree_root *root)
259 {
260 struct radix_tree_node *ret = NULL;
261 gfp_t gfp_mask = root_gfp_mask(root);
262
263 /*
264 * Preload code isn't irq safe and it doesn't make sence to use
265 * preloading in the interrupt anyway as all the allocations have to
266 * be atomic. So just do normal allocation when in interrupt.
267 */
268 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
269 struct radix_tree_preload *rtp;
270
271 /*
272 * Even if the caller has preloaded, try to allocate from the
273 * cache first for the new node to get accounted.
274 */
275 ret = kmem_cache_alloc(radix_tree_node_cachep,
276 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
277 if (ret)
278 goto out;
279
280 /*
281 * Provided the caller has preloaded here, we will always
282 * succeed in getting a node here (and never reach
283 * kmem_cache_alloc)
284 */
285 rtp = this_cpu_ptr(&radix_tree_preloads);
286 if (rtp->nr) {
287 ret = rtp->nodes;
288 rtp->nodes = ret->private_data;
289 ret->private_data = NULL;
290 rtp->nr--;
291 }
292 /*
293 * Update the allocation stack trace as this is more useful
294 * for debugging.
295 */
296 kmemleak_update_trace(ret);
297 goto out;
298 }
299 ret = kmem_cache_alloc(radix_tree_node_cachep,
300 gfp_mask | __GFP_ACCOUNT);
301 out:
302 BUG_ON(radix_tree_is_indirect_ptr(ret));
303 return ret;
304 }
305
306 static void radix_tree_node_rcu_free(struct rcu_head *head)
307 {
308 struct radix_tree_node *node =
309 container_of(head, struct radix_tree_node, rcu_head);
310 int i;
311
312 /*
313 * must only free zeroed nodes into the slab. radix_tree_shrink
314 * can leave us with a non-NULL entry in the first slot, so clear
315 * that here to make sure.
316 */
317 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
318 tag_clear(node, i, 0);
319
320 node->slots[0] = NULL;
321 node->count = 0;
322
323 kmem_cache_free(radix_tree_node_cachep, node);
324 }
325
326 static inline void
327 radix_tree_node_free(struct radix_tree_node *node)
328 {
329 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
330 }
331
332 /*
333 * Load up this CPU's radix_tree_node buffer with sufficient objects to
334 * ensure that the addition of a single element in the tree cannot fail. On
335 * success, return zero, with preemption disabled. On error, return -ENOMEM
336 * with preemption not disabled.
337 *
338 * To make use of this facility, the radix tree must be initialised without
339 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
340 */
341 static int __radix_tree_preload(gfp_t gfp_mask)
342 {
343 struct radix_tree_preload *rtp;
344 struct radix_tree_node *node;
345 int ret = -ENOMEM;
346
347 preempt_disable();
348 rtp = this_cpu_ptr(&radix_tree_preloads);
349 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
350 preempt_enable();
351 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
352 if (node == NULL)
353 goto out;
354 preempt_disable();
355 rtp = this_cpu_ptr(&radix_tree_preloads);
356 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
357 node->private_data = rtp->nodes;
358 rtp->nodes = node;
359 rtp->nr++;
360 } else {
361 kmem_cache_free(radix_tree_node_cachep, node);
362 }
363 }
364 ret = 0;
365 out:
366 return ret;
367 }
368
369 /*
370 * Load up this CPU's radix_tree_node buffer with sufficient objects to
371 * ensure that the addition of a single element in the tree cannot fail. On
372 * success, return zero, with preemption disabled. On error, return -ENOMEM
373 * with preemption not disabled.
374 *
375 * To make use of this facility, the radix tree must be initialised without
376 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
377 */
378 int radix_tree_preload(gfp_t gfp_mask)
379 {
380 /* Warn on non-sensical use... */
381 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
382 return __radix_tree_preload(gfp_mask);
383 }
384 EXPORT_SYMBOL(radix_tree_preload);
385
386 /*
387 * The same as above function, except we don't guarantee preloading happens.
388 * We do it, if we decide it helps. On success, return zero with preemption
389 * disabled. On error, return -ENOMEM with preemption not disabled.
390 */
391 int radix_tree_maybe_preload(gfp_t gfp_mask)
392 {
393 if (gfpflags_allow_blocking(gfp_mask))
394 return __radix_tree_preload(gfp_mask);
395 /* Preloading doesn't help anything with this gfp mask, skip it */
396 preempt_disable();
397 return 0;
398 }
399 EXPORT_SYMBOL(radix_tree_maybe_preload);
400
401 /*
402 * Return the maximum key which can be store into a
403 * radix tree with height HEIGHT.
404 */
405 static inline unsigned long radix_tree_maxindex(unsigned int height)
406 {
407 return height_to_maxindex[height];
408 }
409
410 static inline unsigned long node_maxindex(struct radix_tree_node *node)
411 {
412 return radix_tree_maxindex(node->path & RADIX_TREE_HEIGHT_MASK);
413 }
414
415 static unsigned radix_tree_load_root(struct radix_tree_root *root,
416 struct radix_tree_node **nodep, unsigned long *maxindex)
417 {
418 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
419
420 *nodep = node;
421
422 if (likely(radix_tree_is_indirect_ptr(node))) {
423 node = indirect_to_ptr(node);
424 *maxindex = node_maxindex(node);
425 return (node->path & RADIX_TREE_HEIGHT_MASK) *
426 RADIX_TREE_MAP_SHIFT;
427 }
428
429 *maxindex = 0;
430 return 0;
431 }
432
433 /*
434 * Extend a radix tree so it can store key @index.
435 */
436 static int radix_tree_extend(struct radix_tree_root *root,
437 unsigned long index)
438 {
439 struct radix_tree_node *node;
440 struct radix_tree_node *slot;
441 unsigned int height;
442 int tag;
443
444 /* Figure out what the height should be. */
445 height = root->height + 1;
446 while (index > radix_tree_maxindex(height))
447 height++;
448
449 if (root->rnode == NULL) {
450 root->height = height;
451 goto out;
452 }
453
454 do {
455 unsigned int newheight;
456 if (!(node = radix_tree_node_alloc(root)))
457 return -ENOMEM;
458
459 /* Propagate the aggregated tag info into the new root */
460 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
461 if (root_tag_get(root, tag))
462 tag_set(node, tag, 0);
463 }
464
465 /* Increase the height. */
466 newheight = root->height+1;
467 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
468 node->path = newheight;
469 node->count = 1;
470 node->parent = NULL;
471 slot = root->rnode;
472 if (radix_tree_is_indirect_ptr(slot)) {
473 slot = indirect_to_ptr(slot);
474 slot->parent = node;
475 slot = ptr_to_indirect(slot);
476 }
477 node->slots[0] = slot;
478 node = ptr_to_indirect(node);
479 rcu_assign_pointer(root->rnode, node);
480 root->height = newheight;
481 } while (height > root->height);
482 out:
483 return height * RADIX_TREE_MAP_SHIFT;
484 }
485
486 /**
487 * __radix_tree_create - create a slot in a radix tree
488 * @root: radix tree root
489 * @index: index key
490 * @order: index occupies 2^order aligned slots
491 * @nodep: returns node
492 * @slotp: returns slot
493 *
494 * Create, if necessary, and return the node and slot for an item
495 * at position @index in the radix tree @root.
496 *
497 * Until there is more than one item in the tree, no nodes are
498 * allocated and @root->rnode is used as a direct slot instead of
499 * pointing to a node, in which case *@nodep will be NULL.
500 *
501 * Returns -ENOMEM, or 0 for success.
502 */
503 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
504 unsigned order, struct radix_tree_node **nodep,
505 void ***slotp)
506 {
507 struct radix_tree_node *node = NULL, *slot;
508 unsigned long maxindex;
509 unsigned int height, shift, offset;
510 unsigned long max = index | ((1UL << order) - 1);
511
512 shift = radix_tree_load_root(root, &slot, &maxindex);
513
514 /* Make sure the tree is high enough. */
515 if (max > maxindex) {
516 int error = radix_tree_extend(root, max);
517 if (error < 0)
518 return error;
519 shift = error;
520 slot = root->rnode;
521 if (order == shift) {
522 shift += RADIX_TREE_MAP_SHIFT;
523 root->height++;
524 }
525 }
526
527 height = root->height;
528
529 offset = 0; /* uninitialised var warning */
530 while (shift > order) {
531 if (slot == NULL) {
532 /* Have to add a child node. */
533 if (!(slot = radix_tree_node_alloc(root)))
534 return -ENOMEM;
535 slot->path = height;
536 slot->parent = node;
537 if (node) {
538 rcu_assign_pointer(node->slots[offset],
539 ptr_to_indirect(slot));
540 node->count++;
541 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
542 } else
543 rcu_assign_pointer(root->rnode,
544 ptr_to_indirect(slot));
545 } else if (!radix_tree_is_indirect_ptr(slot))
546 break;
547
548 /* Go a level down */
549 height--;
550 shift -= RADIX_TREE_MAP_SHIFT;
551 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
552 node = indirect_to_ptr(slot);
553 slot = node->slots[offset];
554 }
555
556 #ifdef CONFIG_RADIX_TREE_MULTIORDER
557 /* Insert pointers to the canonical entry */
558 if (order > shift) {
559 int i, n = 1 << (order - shift);
560 offset = offset & ~(n - 1);
561 slot = ptr_to_indirect(&node->slots[offset]);
562 for (i = 0; i < n; i++) {
563 if (node->slots[offset + i])
564 return -EEXIST;
565 }
566
567 for (i = 1; i < n; i++) {
568 rcu_assign_pointer(node->slots[offset + i], slot);
569 node->count++;
570 }
571 }
572 #endif
573
574 if (nodep)
575 *nodep = node;
576 if (slotp)
577 *slotp = node ? node->slots + offset : (void **)&root->rnode;
578 return 0;
579 }
580
581 /**
582 * __radix_tree_insert - insert into a radix tree
583 * @root: radix tree root
584 * @index: index key
585 * @order: key covers the 2^order indices around index
586 * @item: item to insert
587 *
588 * Insert an item into the radix tree at position @index.
589 */
590 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
591 unsigned order, void *item)
592 {
593 struct radix_tree_node *node;
594 void **slot;
595 int error;
596
597 BUG_ON(radix_tree_is_indirect_ptr(item));
598
599 error = __radix_tree_create(root, index, order, &node, &slot);
600 if (error)
601 return error;
602 if (*slot != NULL)
603 return -EEXIST;
604 rcu_assign_pointer(*slot, item);
605
606 if (node) {
607 unsigned offset = get_slot_offset(node, slot);
608 node->count++;
609 BUG_ON(tag_get(node, 0, offset));
610 BUG_ON(tag_get(node, 1, offset));
611 BUG_ON(tag_get(node, 2, offset));
612 } else {
613 BUG_ON(root_tags_get(root));
614 }
615
616 return 0;
617 }
618 EXPORT_SYMBOL(__radix_tree_insert);
619
620 /**
621 * __radix_tree_lookup - lookup an item in a radix tree
622 * @root: radix tree root
623 * @index: index key
624 * @nodep: returns node
625 * @slotp: returns slot
626 *
627 * Lookup and return the item at position @index in the radix
628 * tree @root.
629 *
630 * Until there is more than one item in the tree, no nodes are
631 * allocated and @root->rnode is used as a direct slot instead of
632 * pointing to a node, in which case *@nodep will be NULL.
633 */
634 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
635 struct radix_tree_node **nodep, void ***slotp)
636 {
637 struct radix_tree_node *node, *parent;
638 unsigned long maxindex;
639 unsigned int shift;
640 void **slot;
641
642 restart:
643 parent = NULL;
644 slot = (void **)&root->rnode;
645 shift = radix_tree_load_root(root, &node, &maxindex);
646 if (index > maxindex)
647 return NULL;
648
649 while (radix_tree_is_indirect_ptr(node)) {
650 unsigned offset;
651
652 if (node == RADIX_TREE_RETRY)
653 goto restart;
654 parent = indirect_to_ptr(node);
655 shift -= RADIX_TREE_MAP_SHIFT;
656 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
657 offset = radix_tree_descend(parent, &node, offset);
658 slot = parent->slots + offset;
659 }
660
661 if (nodep)
662 *nodep = parent;
663 if (slotp)
664 *slotp = slot;
665 return node;
666 }
667
668 /**
669 * radix_tree_lookup_slot - lookup a slot in a radix tree
670 * @root: radix tree root
671 * @index: index key
672 *
673 * Returns: the slot corresponding to the position @index in the
674 * radix tree @root. This is useful for update-if-exists operations.
675 *
676 * This function can be called under rcu_read_lock iff the slot is not
677 * modified by radix_tree_replace_slot, otherwise it must be called
678 * exclusive from other writers. Any dereference of the slot must be done
679 * using radix_tree_deref_slot.
680 */
681 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
682 {
683 void **slot;
684
685 if (!__radix_tree_lookup(root, index, NULL, &slot))
686 return NULL;
687 return slot;
688 }
689 EXPORT_SYMBOL(radix_tree_lookup_slot);
690
691 /**
692 * radix_tree_lookup - perform lookup operation on a radix tree
693 * @root: radix tree root
694 * @index: index key
695 *
696 * Lookup the item at the position @index in the radix tree @root.
697 *
698 * This function can be called under rcu_read_lock, however the caller
699 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
700 * them safely). No RCU barriers are required to access or modify the
701 * returned item, however.
702 */
703 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
704 {
705 return __radix_tree_lookup(root, index, NULL, NULL);
706 }
707 EXPORT_SYMBOL(radix_tree_lookup);
708
709 /**
710 * radix_tree_tag_set - set a tag on a radix tree node
711 * @root: radix tree root
712 * @index: index key
713 * @tag: tag index
714 *
715 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
716 * corresponding to @index in the radix tree. From
717 * the root all the way down to the leaf node.
718 *
719 * Returns the address of the tagged item. Setting a tag on a not-present
720 * item is a bug.
721 */
722 void *radix_tree_tag_set(struct radix_tree_root *root,
723 unsigned long index, unsigned int tag)
724 {
725 unsigned int height, shift;
726 struct radix_tree_node *slot;
727
728 height = root->height;
729 BUG_ON(index > radix_tree_maxindex(height));
730
731 slot = indirect_to_ptr(root->rnode);
732 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
733
734 while (height > 0) {
735 int offset;
736
737 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
738 if (!tag_get(slot, tag, offset))
739 tag_set(slot, tag, offset);
740 slot = slot->slots[offset];
741 BUG_ON(slot == NULL);
742 if (!radix_tree_is_indirect_ptr(slot))
743 break;
744 slot = indirect_to_ptr(slot);
745 shift -= RADIX_TREE_MAP_SHIFT;
746 height--;
747 }
748
749 /* set the root's tag bit */
750 if (slot && !root_tag_get(root, tag))
751 root_tag_set(root, tag);
752
753 return slot;
754 }
755 EXPORT_SYMBOL(radix_tree_tag_set);
756
757 /**
758 * radix_tree_tag_clear - clear a tag on a radix tree node
759 * @root: radix tree root
760 * @index: index key
761 * @tag: tag index
762 *
763 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
764 * corresponding to @index in the radix tree. If
765 * this causes the leaf node to have no tags set then clear the tag in the
766 * next-to-leaf node, etc.
767 *
768 * Returns the address of the tagged item on success, else NULL. ie:
769 * has the same return value and semantics as radix_tree_lookup().
770 */
771 void *radix_tree_tag_clear(struct radix_tree_root *root,
772 unsigned long index, unsigned int tag)
773 {
774 struct radix_tree_node *node = NULL;
775 struct radix_tree_node *slot = NULL;
776 unsigned int height, shift;
777 int uninitialized_var(offset);
778
779 height = root->height;
780 if (index > radix_tree_maxindex(height))
781 goto out;
782
783 shift = height * RADIX_TREE_MAP_SHIFT;
784 slot = root->rnode;
785
786 while (shift) {
787 if (slot == NULL)
788 goto out;
789 if (!radix_tree_is_indirect_ptr(slot))
790 break;
791 slot = indirect_to_ptr(slot);
792
793 shift -= RADIX_TREE_MAP_SHIFT;
794 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
795 node = slot;
796 slot = slot->slots[offset];
797 }
798
799 if (slot == NULL)
800 goto out;
801
802 while (node) {
803 if (!tag_get(node, tag, offset))
804 goto out;
805 tag_clear(node, tag, offset);
806 if (any_tag_set(node, tag))
807 goto out;
808
809 index >>= RADIX_TREE_MAP_SHIFT;
810 offset = index & RADIX_TREE_MAP_MASK;
811 node = node->parent;
812 }
813
814 /* clear the root's tag bit */
815 if (root_tag_get(root, tag))
816 root_tag_clear(root, tag);
817
818 out:
819 return slot;
820 }
821 EXPORT_SYMBOL(radix_tree_tag_clear);
822
823 /**
824 * radix_tree_tag_get - get a tag on a radix tree node
825 * @root: radix tree root
826 * @index: index key
827 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
828 *
829 * Return values:
830 *
831 * 0: tag not present or not set
832 * 1: tag set
833 *
834 * Note that the return value of this function may not be relied on, even if
835 * the RCU lock is held, unless tag modification and node deletion are excluded
836 * from concurrency.
837 */
838 int radix_tree_tag_get(struct radix_tree_root *root,
839 unsigned long index, unsigned int tag)
840 {
841 unsigned int height, shift;
842 struct radix_tree_node *node;
843
844 /* check the root's tag bit */
845 if (!root_tag_get(root, tag))
846 return 0;
847
848 node = rcu_dereference_raw(root->rnode);
849 if (node == NULL)
850 return 0;
851
852 if (!radix_tree_is_indirect_ptr(node))
853 return (index == 0);
854 node = indirect_to_ptr(node);
855
856 height = node->path & RADIX_TREE_HEIGHT_MASK;
857 if (index > radix_tree_maxindex(height))
858 return 0;
859
860 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
861
862 for ( ; ; ) {
863 int offset;
864
865 if (node == NULL)
866 return 0;
867 node = indirect_to_ptr(node);
868
869 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
870 if (!tag_get(node, tag, offset))
871 return 0;
872 if (height == 1)
873 return 1;
874 node = rcu_dereference_raw(node->slots[offset]);
875 if (!radix_tree_is_indirect_ptr(node))
876 return 1;
877 shift -= RADIX_TREE_MAP_SHIFT;
878 height--;
879 }
880 }
881 EXPORT_SYMBOL(radix_tree_tag_get);
882
883 static inline void __set_iter_shift(struct radix_tree_iter *iter,
884 unsigned int shift)
885 {
886 #ifdef CONFIG_RADIX_TREE_MULTIORDER
887 iter->shift = shift;
888 #endif
889 }
890
891 /**
892 * radix_tree_next_chunk - find next chunk of slots for iteration
893 *
894 * @root: radix tree root
895 * @iter: iterator state
896 * @flags: RADIX_TREE_ITER_* flags and tag index
897 * Returns: pointer to chunk first slot, or NULL if iteration is over
898 */
899 void **radix_tree_next_chunk(struct radix_tree_root *root,
900 struct radix_tree_iter *iter, unsigned flags)
901 {
902 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
903 struct radix_tree_node *rnode, *node;
904 unsigned long index, offset, maxindex;
905
906 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
907 return NULL;
908
909 /*
910 * Catch next_index overflow after ~0UL. iter->index never overflows
911 * during iterating; it can be zero only at the beginning.
912 * And we cannot overflow iter->next_index in a single step,
913 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
914 *
915 * This condition also used by radix_tree_next_slot() to stop
916 * contiguous iterating, and forbid swithing to the next chunk.
917 */
918 index = iter->next_index;
919 if (!index && iter->index)
920 return NULL;
921
922 restart:
923 shift = radix_tree_load_root(root, &rnode, &maxindex);
924 if (index > maxindex)
925 return NULL;
926
927 if (radix_tree_is_indirect_ptr(rnode)) {
928 rnode = indirect_to_ptr(rnode);
929 } else if (rnode) {
930 /* Single-slot tree */
931 iter->index = index;
932 iter->next_index = maxindex + 1;
933 iter->tags = 1;
934 __set_iter_shift(iter, shift);
935 return (void **)&root->rnode;
936 } else
937 return NULL;
938
939 shift -= RADIX_TREE_MAP_SHIFT;
940 offset = index >> shift;
941
942 node = rnode;
943 while (1) {
944 struct radix_tree_node *slot;
945 unsigned new_off = radix_tree_descend(node, &slot, offset);
946
947 if (new_off < offset) {
948 offset = new_off;
949 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
950 index |= offset << shift;
951 }
952
953 if ((flags & RADIX_TREE_ITER_TAGGED) ?
954 !tag_get(node, tag, offset) : !slot) {
955 /* Hole detected */
956 if (flags & RADIX_TREE_ITER_CONTIG)
957 return NULL;
958
959 if (flags & RADIX_TREE_ITER_TAGGED)
960 offset = radix_tree_find_next_bit(
961 node->tags[tag],
962 RADIX_TREE_MAP_SIZE,
963 offset + 1);
964 else
965 while (++offset < RADIX_TREE_MAP_SIZE) {
966 void *slot = node->slots[offset];
967 if (is_sibling_entry(node, slot))
968 continue;
969 if (slot)
970 break;
971 }
972 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
973 index += offset << shift;
974 /* Overflow after ~0UL */
975 if (!index)
976 return NULL;
977 if (offset == RADIX_TREE_MAP_SIZE)
978 goto restart;
979 slot = rcu_dereference_raw(node->slots[offset]);
980 }
981
982 if ((slot == NULL) || (slot == RADIX_TREE_RETRY))
983 goto restart;
984 if (!radix_tree_is_indirect_ptr(slot))
985 break;
986
987 node = indirect_to_ptr(slot);
988 shift -= RADIX_TREE_MAP_SHIFT;
989 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
990 }
991
992 /* Update the iterator state */
993 iter->index = index & ~((1 << shift) - 1);
994 iter->next_index = (index | ((RADIX_TREE_MAP_SIZE << shift) - 1)) + 1;
995 __set_iter_shift(iter, shift);
996
997 /* Construct iter->tags bit-mask from node->tags[tag] array */
998 if (flags & RADIX_TREE_ITER_TAGGED) {
999 unsigned tag_long, tag_bit;
1000
1001 tag_long = offset / BITS_PER_LONG;
1002 tag_bit = offset % BITS_PER_LONG;
1003 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1004 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1005 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1006 /* Pick tags from next element */
1007 if (tag_bit)
1008 iter->tags |= node->tags[tag][tag_long + 1] <<
1009 (BITS_PER_LONG - tag_bit);
1010 /* Clip chunk size, here only BITS_PER_LONG tags */
1011 iter->next_index = index + BITS_PER_LONG;
1012 }
1013 }
1014
1015 return node->slots + offset;
1016 }
1017 EXPORT_SYMBOL(radix_tree_next_chunk);
1018
1019 /**
1020 * radix_tree_range_tag_if_tagged - for each item in given range set given
1021 * tag if item has another tag set
1022 * @root: radix tree root
1023 * @first_indexp: pointer to a starting index of a range to scan
1024 * @last_index: last index of a range to scan
1025 * @nr_to_tag: maximum number items to tag
1026 * @iftag: tag index to test
1027 * @settag: tag index to set if tested tag is set
1028 *
1029 * This function scans range of radix tree from first_index to last_index
1030 * (inclusive). For each item in the range if iftag is set, the function sets
1031 * also settag. The function stops either after tagging nr_to_tag items or
1032 * after reaching last_index.
1033 *
1034 * The tags must be set from the leaf level only and propagated back up the
1035 * path to the root. We must do this so that we resolve the full path before
1036 * setting any tags on intermediate nodes. If we set tags as we descend, then
1037 * we can get to the leaf node and find that the index that has the iftag
1038 * set is outside the range we are scanning. This reults in dangling tags and
1039 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1040 *
1041 * The function returns number of leaves where the tag was set and sets
1042 * *first_indexp to the first unscanned index.
1043 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1044 * be prepared to handle that.
1045 */
1046 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1047 unsigned long *first_indexp, unsigned long last_index,
1048 unsigned long nr_to_tag,
1049 unsigned int iftag, unsigned int settag)
1050 {
1051 unsigned int height = root->height;
1052 struct radix_tree_node *node = NULL;
1053 struct radix_tree_node *slot;
1054 unsigned int shift;
1055 unsigned long tagged = 0;
1056 unsigned long index = *first_indexp;
1057
1058 last_index = min(last_index, radix_tree_maxindex(height));
1059 if (index > last_index)
1060 return 0;
1061 if (!nr_to_tag)
1062 return 0;
1063 if (!root_tag_get(root, iftag)) {
1064 *first_indexp = last_index + 1;
1065 return 0;
1066 }
1067 if (height == 0) {
1068 *first_indexp = last_index + 1;
1069 root_tag_set(root, settag);
1070 return 1;
1071 }
1072
1073 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1074 slot = indirect_to_ptr(root->rnode);
1075
1076 for (;;) {
1077 unsigned long upindex;
1078 int offset;
1079
1080 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1081 if (!slot->slots[offset])
1082 goto next;
1083 if (!tag_get(slot, iftag, offset))
1084 goto next;
1085 if (shift) {
1086 node = slot;
1087 slot = slot->slots[offset];
1088 if (radix_tree_is_indirect_ptr(slot)) {
1089 slot = indirect_to_ptr(slot);
1090 shift -= RADIX_TREE_MAP_SHIFT;
1091 continue;
1092 } else {
1093 slot = node;
1094 node = node->parent;
1095 }
1096 }
1097
1098 /* tag the leaf */
1099 tagged += 1 << shift;
1100 tag_set(slot, settag, offset);
1101
1102 /* walk back up the path tagging interior nodes */
1103 upindex = index;
1104 while (node) {
1105 upindex >>= RADIX_TREE_MAP_SHIFT;
1106 offset = upindex & RADIX_TREE_MAP_MASK;
1107
1108 /* stop if we find a node with the tag already set */
1109 if (tag_get(node, settag, offset))
1110 break;
1111 tag_set(node, settag, offset);
1112 node = node->parent;
1113 }
1114
1115 /*
1116 * Small optimization: now clear that node pointer.
1117 * Since all of this slot's ancestors now have the tag set
1118 * from setting it above, we have no further need to walk
1119 * back up the tree setting tags, until we update slot to
1120 * point to another radix_tree_node.
1121 */
1122 node = NULL;
1123
1124 next:
1125 /* Go to next item at level determined by 'shift' */
1126 index = ((index >> shift) + 1) << shift;
1127 /* Overflow can happen when last_index is ~0UL... */
1128 if (index > last_index || !index)
1129 break;
1130 if (tagged >= nr_to_tag)
1131 break;
1132 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
1133 /*
1134 * We've fully scanned this node. Go up. Because
1135 * last_index is guaranteed to be in the tree, what
1136 * we do below cannot wander astray.
1137 */
1138 slot = slot->parent;
1139 shift += RADIX_TREE_MAP_SHIFT;
1140 }
1141 }
1142 /*
1143 * We need not to tag the root tag if there is no tag which is set with
1144 * settag within the range from *first_indexp to last_index.
1145 */
1146 if (tagged > 0)
1147 root_tag_set(root, settag);
1148 *first_indexp = index;
1149
1150 return tagged;
1151 }
1152 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1153
1154 /**
1155 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1156 * @root: radix tree root
1157 * @results: where the results of the lookup are placed
1158 * @first_index: start the lookup from this key
1159 * @max_items: place up to this many items at *results
1160 *
1161 * Performs an index-ascending scan of the tree for present items. Places
1162 * them at *@results and returns the number of items which were placed at
1163 * *@results.
1164 *
1165 * The implementation is naive.
1166 *
1167 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1168 * rcu_read_lock. In this case, rather than the returned results being
1169 * an atomic snapshot of the tree at a single point in time, the semantics
1170 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1171 * have been issued in individual locks, and results stored in 'results'.
1172 */
1173 unsigned int
1174 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1175 unsigned long first_index, unsigned int max_items)
1176 {
1177 struct radix_tree_iter iter;
1178 void **slot;
1179 unsigned int ret = 0;
1180
1181 if (unlikely(!max_items))
1182 return 0;
1183
1184 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1185 results[ret] = rcu_dereference_raw(*slot);
1186 if (!results[ret])
1187 continue;
1188 if (radix_tree_is_indirect_ptr(results[ret])) {
1189 slot = radix_tree_iter_retry(&iter);
1190 continue;
1191 }
1192 if (++ret == max_items)
1193 break;
1194 }
1195
1196 return ret;
1197 }
1198 EXPORT_SYMBOL(radix_tree_gang_lookup);
1199
1200 /**
1201 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1202 * @root: radix tree root
1203 * @results: where the results of the lookup are placed
1204 * @indices: where their indices should be placed (but usually NULL)
1205 * @first_index: start the lookup from this key
1206 * @max_items: place up to this many items at *results
1207 *
1208 * Performs an index-ascending scan of the tree for present items. Places
1209 * their slots at *@results and returns the number of items which were
1210 * placed at *@results.
1211 *
1212 * The implementation is naive.
1213 *
1214 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1215 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1216 * protection, radix_tree_deref_slot may fail requiring a retry.
1217 */
1218 unsigned int
1219 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1220 void ***results, unsigned long *indices,
1221 unsigned long first_index, unsigned int max_items)
1222 {
1223 struct radix_tree_iter iter;
1224 void **slot;
1225 unsigned int ret = 0;
1226
1227 if (unlikely(!max_items))
1228 return 0;
1229
1230 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1231 results[ret] = slot;
1232 if (indices)
1233 indices[ret] = iter.index;
1234 if (++ret == max_items)
1235 break;
1236 }
1237
1238 return ret;
1239 }
1240 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1241
1242 /**
1243 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1244 * based on a tag
1245 * @root: radix tree root
1246 * @results: where the results of the lookup are placed
1247 * @first_index: start the lookup from this key
1248 * @max_items: place up to this many items at *results
1249 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1250 *
1251 * Performs an index-ascending scan of the tree for present items which
1252 * have the tag indexed by @tag set. Places the items at *@results and
1253 * returns the number of items which were placed at *@results.
1254 */
1255 unsigned int
1256 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1257 unsigned long first_index, unsigned int max_items,
1258 unsigned int tag)
1259 {
1260 struct radix_tree_iter iter;
1261 void **slot;
1262 unsigned int ret = 0;
1263
1264 if (unlikely(!max_items))
1265 return 0;
1266
1267 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1268 results[ret] = rcu_dereference_raw(*slot);
1269 if (!results[ret])
1270 continue;
1271 if (radix_tree_is_indirect_ptr(results[ret])) {
1272 slot = radix_tree_iter_retry(&iter);
1273 continue;
1274 }
1275 if (++ret == max_items)
1276 break;
1277 }
1278
1279 return ret;
1280 }
1281 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1282
1283 /**
1284 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1285 * radix tree based on a tag
1286 * @root: radix tree root
1287 * @results: where the results of the lookup are placed
1288 * @first_index: start the lookup from this key
1289 * @max_items: place up to this many items at *results
1290 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1291 *
1292 * Performs an index-ascending scan of the tree for present items which
1293 * have the tag indexed by @tag set. Places the slots at *@results and
1294 * returns the number of slots which were placed at *@results.
1295 */
1296 unsigned int
1297 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1298 unsigned long first_index, unsigned int max_items,
1299 unsigned int tag)
1300 {
1301 struct radix_tree_iter iter;
1302 void **slot;
1303 unsigned int ret = 0;
1304
1305 if (unlikely(!max_items))
1306 return 0;
1307
1308 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1309 results[ret] = slot;
1310 if (++ret == max_items)
1311 break;
1312 }
1313
1314 return ret;
1315 }
1316 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1317
1318 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1319 #include <linux/sched.h> /* for cond_resched() */
1320
1321 /*
1322 * This linear search is at present only useful to shmem_unuse_inode().
1323 */
1324 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1325 unsigned long index, unsigned long *found_index)
1326 {
1327 unsigned int shift, height;
1328 unsigned long i;
1329
1330 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1331 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1332
1333 for ( ; height > 1; height--) {
1334 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1335 for (;;) {
1336 if (slot->slots[i] != NULL)
1337 break;
1338 index &= ~((1UL << shift) - 1);
1339 index += 1UL << shift;
1340 if (index == 0)
1341 goto out; /* 32-bit wraparound */
1342 i++;
1343 if (i == RADIX_TREE_MAP_SIZE)
1344 goto out;
1345 }
1346
1347 slot = rcu_dereference_raw(slot->slots[i]);
1348 if (slot == NULL)
1349 goto out;
1350 if (!radix_tree_is_indirect_ptr(slot)) {
1351 if (slot == item) {
1352 *found_index = index + i;
1353 index = 0;
1354 } else {
1355 index += shift;
1356 }
1357 goto out;
1358 }
1359 slot = indirect_to_ptr(slot);
1360 shift -= RADIX_TREE_MAP_SHIFT;
1361 }
1362
1363 /* Bottom level: check items */
1364 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1365 if (slot->slots[i] == item) {
1366 *found_index = index + i;
1367 index = 0;
1368 goto out;
1369 }
1370 }
1371 index += RADIX_TREE_MAP_SIZE;
1372 out:
1373 return index;
1374 }
1375
1376 /**
1377 * radix_tree_locate_item - search through radix tree for item
1378 * @root: radix tree root
1379 * @item: item to be found
1380 *
1381 * Returns index where item was found, or -1 if not found.
1382 * Caller must hold no lock (since this time-consuming function needs
1383 * to be preemptible), and must check afterwards if item is still there.
1384 */
1385 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1386 {
1387 struct radix_tree_node *node;
1388 unsigned long max_index;
1389 unsigned long cur_index = 0;
1390 unsigned long found_index = -1;
1391
1392 do {
1393 rcu_read_lock();
1394 node = rcu_dereference_raw(root->rnode);
1395 if (!radix_tree_is_indirect_ptr(node)) {
1396 rcu_read_unlock();
1397 if (node == item)
1398 found_index = 0;
1399 break;
1400 }
1401
1402 node = indirect_to_ptr(node);
1403 max_index = radix_tree_maxindex(node->path &
1404 RADIX_TREE_HEIGHT_MASK);
1405 if (cur_index > max_index) {
1406 rcu_read_unlock();
1407 break;
1408 }
1409
1410 cur_index = __locate(node, item, cur_index, &found_index);
1411 rcu_read_unlock();
1412 cond_resched();
1413 } while (cur_index != 0 && cur_index <= max_index);
1414
1415 return found_index;
1416 }
1417 #else
1418 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1419 {
1420 return -1;
1421 }
1422 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1423
1424 /**
1425 * radix_tree_shrink - shrink height of a radix tree to minimal
1426 * @root radix tree root
1427 */
1428 static inline void radix_tree_shrink(struct radix_tree_root *root)
1429 {
1430 /* try to shrink tree height */
1431 while (root->height > 0) {
1432 struct radix_tree_node *to_free = root->rnode;
1433 struct radix_tree_node *slot;
1434
1435 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1436 to_free = indirect_to_ptr(to_free);
1437
1438 /*
1439 * The candidate node has more than one child, or its child
1440 * is not at the leftmost slot, or it is a multiorder entry,
1441 * we cannot shrink.
1442 */
1443 if (to_free->count != 1)
1444 break;
1445 slot = to_free->slots[0];
1446 if (!slot)
1447 break;
1448 if (!radix_tree_is_indirect_ptr(slot) && (root->height > 1))
1449 break;
1450
1451 if (radix_tree_is_indirect_ptr(slot)) {
1452 slot = indirect_to_ptr(slot);
1453 slot->parent = NULL;
1454 slot = ptr_to_indirect(slot);
1455 }
1456
1457 /*
1458 * We don't need rcu_assign_pointer(), since we are simply
1459 * moving the node from one part of the tree to another: if it
1460 * was safe to dereference the old pointer to it
1461 * (to_free->slots[0]), it will be safe to dereference the new
1462 * one (root->rnode) as far as dependent read barriers go.
1463 */
1464 root->rnode = slot;
1465 root->height--;
1466
1467 /*
1468 * We have a dilemma here. The node's slot[0] must not be
1469 * NULLed in case there are concurrent lookups expecting to
1470 * find the item. However if this was a bottom-level node,
1471 * then it may be subject to the slot pointer being visible
1472 * to callers dereferencing it. If item corresponding to
1473 * slot[0] is subsequently deleted, these callers would expect
1474 * their slot to become empty sooner or later.
1475 *
1476 * For example, lockless pagecache will look up a slot, deref
1477 * the page pointer, and if the page is 0 refcount it means it
1478 * was concurrently deleted from pagecache so try the deref
1479 * again. Fortunately there is already a requirement for logic
1480 * to retry the entire slot lookup -- the indirect pointer
1481 * problem (replacing direct root node with an indirect pointer
1482 * also results in a stale slot). So tag the slot as indirect
1483 * to force callers to retry.
1484 */
1485 if (!radix_tree_is_indirect_ptr(slot))
1486 to_free->slots[0] = RADIX_TREE_RETRY;
1487
1488 radix_tree_node_free(to_free);
1489 }
1490 }
1491
1492 /**
1493 * __radix_tree_delete_node - try to free node after clearing a slot
1494 * @root: radix tree root
1495 * @node: node containing @index
1496 *
1497 * After clearing the slot at @index in @node from radix tree
1498 * rooted at @root, call this function to attempt freeing the
1499 * node and shrinking the tree.
1500 *
1501 * Returns %true if @node was freed, %false otherwise.
1502 */
1503 bool __radix_tree_delete_node(struct radix_tree_root *root,
1504 struct radix_tree_node *node)
1505 {
1506 bool deleted = false;
1507
1508 do {
1509 struct radix_tree_node *parent;
1510
1511 if (node->count) {
1512 if (node == indirect_to_ptr(root->rnode)) {
1513 radix_tree_shrink(root);
1514 if (root->height == 0)
1515 deleted = true;
1516 }
1517 return deleted;
1518 }
1519
1520 parent = node->parent;
1521 if (parent) {
1522 unsigned int offset;
1523
1524 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1525 parent->slots[offset] = NULL;
1526 parent->count--;
1527 } else {
1528 root_tag_clear_all(root);
1529 root->height = 0;
1530 root->rnode = NULL;
1531 }
1532
1533 radix_tree_node_free(node);
1534 deleted = true;
1535
1536 node = parent;
1537 } while (node);
1538
1539 return deleted;
1540 }
1541
1542 static inline void delete_sibling_entries(struct radix_tree_node *node,
1543 void *ptr, unsigned offset)
1544 {
1545 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1546 int i;
1547 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1548 if (node->slots[offset + i] != ptr)
1549 break;
1550 node->slots[offset + i] = NULL;
1551 node->count--;
1552 }
1553 #endif
1554 }
1555
1556 /**
1557 * radix_tree_delete_item - delete an item from a radix tree
1558 * @root: radix tree root
1559 * @index: index key
1560 * @item: expected item
1561 *
1562 * Remove @item at @index from the radix tree rooted at @root.
1563 *
1564 * Returns the address of the deleted item, or NULL if it was not present
1565 * or the entry at the given @index was not @item.
1566 */
1567 void *radix_tree_delete_item(struct radix_tree_root *root,
1568 unsigned long index, void *item)
1569 {
1570 struct radix_tree_node *node;
1571 unsigned int offset;
1572 void **slot;
1573 void *entry;
1574 int tag;
1575
1576 entry = __radix_tree_lookup(root, index, &node, &slot);
1577 if (!entry)
1578 return NULL;
1579
1580 if (item && entry != item)
1581 return NULL;
1582
1583 if (!node) {
1584 root_tag_clear_all(root);
1585 root->rnode = NULL;
1586 return entry;
1587 }
1588
1589 offset = get_slot_offset(node, slot);
1590
1591 /*
1592 * Clear all tags associated with the item to be deleted.
1593 * This way of doing it would be inefficient, but seldom is any set.
1594 */
1595 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1596 if (tag_get(node, tag, offset))
1597 radix_tree_tag_clear(root, index, tag);
1598 }
1599
1600 delete_sibling_entries(node, ptr_to_indirect(slot), offset);
1601 node->slots[offset] = NULL;
1602 node->count--;
1603
1604 __radix_tree_delete_node(root, node);
1605
1606 return entry;
1607 }
1608 EXPORT_SYMBOL(radix_tree_delete_item);
1609
1610 /**
1611 * radix_tree_delete - delete an item from a radix tree
1612 * @root: radix tree root
1613 * @index: index key
1614 *
1615 * Remove the item at @index from the radix tree rooted at @root.
1616 *
1617 * Returns the address of the deleted item, or NULL if it was not present.
1618 */
1619 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1620 {
1621 return radix_tree_delete_item(root, index, NULL);
1622 }
1623 EXPORT_SYMBOL(radix_tree_delete);
1624
1625 /**
1626 * radix_tree_tagged - test whether any items in the tree are tagged
1627 * @root: radix tree root
1628 * @tag: tag to test
1629 */
1630 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1631 {
1632 return root_tag_get(root, tag);
1633 }
1634 EXPORT_SYMBOL(radix_tree_tagged);
1635
1636 static void
1637 radix_tree_node_ctor(void *arg)
1638 {
1639 struct radix_tree_node *node = arg;
1640
1641 memset(node, 0, sizeof(*node));
1642 INIT_LIST_HEAD(&node->private_list);
1643 }
1644
1645 static __init unsigned long __maxindex(unsigned int height)
1646 {
1647 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1648 int shift = RADIX_TREE_INDEX_BITS - width;
1649
1650 if (shift < 0)
1651 return ~0UL;
1652 if (shift >= BITS_PER_LONG)
1653 return 0UL;
1654 return ~0UL >> shift;
1655 }
1656
1657 static __init void radix_tree_init_maxindex(void)
1658 {
1659 unsigned int i;
1660
1661 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1662 height_to_maxindex[i] = __maxindex(i);
1663 }
1664
1665 static int radix_tree_callback(struct notifier_block *nfb,
1666 unsigned long action,
1667 void *hcpu)
1668 {
1669 int cpu = (long)hcpu;
1670 struct radix_tree_preload *rtp;
1671 struct radix_tree_node *node;
1672
1673 /* Free per-cpu pool of perloaded nodes */
1674 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1675 rtp = &per_cpu(radix_tree_preloads, cpu);
1676 while (rtp->nr) {
1677 node = rtp->nodes;
1678 rtp->nodes = node->private_data;
1679 kmem_cache_free(radix_tree_node_cachep, node);
1680 rtp->nr--;
1681 }
1682 }
1683 return NOTIFY_OK;
1684 }
1685
1686 void __init radix_tree_init(void)
1687 {
1688 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1689 sizeof(struct radix_tree_node), 0,
1690 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1691 radix_tree_node_ctor);
1692 radix_tree_init_maxindex();
1693 hotcpu_notifier(radix_tree_callback, 0);
1694 }