]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - lib/radix-tree.c
siphash: use _unaligned version by default
[mirror_ubuntu-jammy-kernel.git] / lib / radix-tree.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2005 SGI, Christoph Lameter
6 * Copyright (C) 2006 Nick Piggin
7 * Copyright (C) 2012 Konstantin Khlebnikov
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
10 */
11
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h> /* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
29
30
31 /*
32 * Radix tree node cache.
33 */
34 struct kmem_cache *radix_tree_node_cachep;
35
36 /*
37 * The radix tree is variable-height, so an insert operation not only has
38 * to build the branch to its corresponding item, it also has to build the
39 * branch to existing items if the size has to be increased (by
40 * radix_tree_extend).
41 *
42 * The worst case is a zero height tree with just a single item at index 0,
43 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
44 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
45 * Hence:
46 */
47 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
48
49 /*
50 * The IDR does not have to be as high as the radix tree since it uses
51 * signed integers, not unsigned longs.
52 */
53 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
54 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
55 RADIX_TREE_MAP_SHIFT))
56 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
57
58 /*
59 * Per-cpu pool of preloaded nodes
60 */
61 struct radix_tree_preload {
62 unsigned nr;
63 /* nodes->parent points to next preallocated node */
64 struct radix_tree_node *nodes;
65 };
66 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
67
68 static inline struct radix_tree_node *entry_to_node(void *ptr)
69 {
70 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
71 }
72
73 static inline void *node_to_entry(void *ptr)
74 {
75 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
76 }
77
78 #define RADIX_TREE_RETRY XA_RETRY_ENTRY
79
80 static inline unsigned long
81 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
82 {
83 return parent ? slot - parent->slots : 0;
84 }
85
86 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
87 struct radix_tree_node **nodep, unsigned long index)
88 {
89 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
90 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
91
92 *nodep = (void *)entry;
93 return offset;
94 }
95
96 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
97 {
98 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
99 }
100
101 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
102 int offset)
103 {
104 __set_bit(offset, node->tags[tag]);
105 }
106
107 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
108 int offset)
109 {
110 __clear_bit(offset, node->tags[tag]);
111 }
112
113 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
114 int offset)
115 {
116 return test_bit(offset, node->tags[tag]);
117 }
118
119 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
120 {
121 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
122 }
123
124 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
125 {
126 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
127 }
128
129 static inline void root_tag_clear_all(struct radix_tree_root *root)
130 {
131 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
132 }
133
134 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
135 {
136 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
137 }
138
139 static inline unsigned root_tags_get(const struct radix_tree_root *root)
140 {
141 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
142 }
143
144 static inline bool is_idr(const struct radix_tree_root *root)
145 {
146 return !!(root->xa_flags & ROOT_IS_IDR);
147 }
148
149 /*
150 * Returns 1 if any slot in the node has this tag set.
151 * Otherwise returns 0.
152 */
153 static inline int any_tag_set(const struct radix_tree_node *node,
154 unsigned int tag)
155 {
156 unsigned idx;
157 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
158 if (node->tags[tag][idx])
159 return 1;
160 }
161 return 0;
162 }
163
164 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
165 {
166 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
167 }
168
169 /**
170 * radix_tree_find_next_bit - find the next set bit in a memory region
171 *
172 * @node: where to begin the search
173 * @tag: the tag index
174 * @offset: the bitnumber to start searching at
175 *
176 * Unrollable variant of find_next_bit() for constant size arrays.
177 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
178 * Returns next bit offset, or size if nothing found.
179 */
180 static __always_inline unsigned long
181 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
182 unsigned long offset)
183 {
184 const unsigned long *addr = node->tags[tag];
185
186 if (offset < RADIX_TREE_MAP_SIZE) {
187 unsigned long tmp;
188
189 addr += offset / BITS_PER_LONG;
190 tmp = *addr >> (offset % BITS_PER_LONG);
191 if (tmp)
192 return __ffs(tmp) + offset;
193 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
194 while (offset < RADIX_TREE_MAP_SIZE) {
195 tmp = *++addr;
196 if (tmp)
197 return __ffs(tmp) + offset;
198 offset += BITS_PER_LONG;
199 }
200 }
201 return RADIX_TREE_MAP_SIZE;
202 }
203
204 static unsigned int iter_offset(const struct radix_tree_iter *iter)
205 {
206 return iter->index & RADIX_TREE_MAP_MASK;
207 }
208
209 /*
210 * The maximum index which can be stored in a radix tree
211 */
212 static inline unsigned long shift_maxindex(unsigned int shift)
213 {
214 return (RADIX_TREE_MAP_SIZE << shift) - 1;
215 }
216
217 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218 {
219 return shift_maxindex(node->shift);
220 }
221
222 static unsigned long next_index(unsigned long index,
223 const struct radix_tree_node *node,
224 unsigned long offset)
225 {
226 return (index & ~node_maxindex(node)) + (offset << node->shift);
227 }
228
229 /*
230 * This assumes that the caller has performed appropriate preallocation, and
231 * that the caller has pinned this thread of control to the current CPU.
232 */
233 static struct radix_tree_node *
234 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
235 struct radix_tree_root *root,
236 unsigned int shift, unsigned int offset,
237 unsigned int count, unsigned int nr_values)
238 {
239 struct radix_tree_node *ret = NULL;
240
241 /*
242 * Preload code isn't irq safe and it doesn't make sense to use
243 * preloading during an interrupt anyway as all the allocations have
244 * to be atomic. So just do normal allocation when in interrupt.
245 */
246 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
247 struct radix_tree_preload *rtp;
248
249 /*
250 * Even if the caller has preloaded, try to allocate from the
251 * cache first for the new node to get accounted to the memory
252 * cgroup.
253 */
254 ret = kmem_cache_alloc(radix_tree_node_cachep,
255 gfp_mask | __GFP_NOWARN);
256 if (ret)
257 goto out;
258
259 /*
260 * Provided the caller has preloaded here, we will always
261 * succeed in getting a node here (and never reach
262 * kmem_cache_alloc)
263 */
264 rtp = this_cpu_ptr(&radix_tree_preloads);
265 if (rtp->nr) {
266 ret = rtp->nodes;
267 rtp->nodes = ret->parent;
268 rtp->nr--;
269 }
270 /*
271 * Update the allocation stack trace as this is more useful
272 * for debugging.
273 */
274 kmemleak_update_trace(ret);
275 goto out;
276 }
277 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
278 out:
279 BUG_ON(radix_tree_is_internal_node(ret));
280 if (ret) {
281 ret->shift = shift;
282 ret->offset = offset;
283 ret->count = count;
284 ret->nr_values = nr_values;
285 ret->parent = parent;
286 ret->array = root;
287 }
288 return ret;
289 }
290
291 void radix_tree_node_rcu_free(struct rcu_head *head)
292 {
293 struct radix_tree_node *node =
294 container_of(head, struct radix_tree_node, rcu_head);
295
296 /*
297 * Must only free zeroed nodes into the slab. We can be left with
298 * non-NULL entries by radix_tree_free_nodes, so clear the entries
299 * and tags here.
300 */
301 memset(node->slots, 0, sizeof(node->slots));
302 memset(node->tags, 0, sizeof(node->tags));
303 INIT_LIST_HEAD(&node->private_list);
304
305 kmem_cache_free(radix_tree_node_cachep, node);
306 }
307
308 static inline void
309 radix_tree_node_free(struct radix_tree_node *node)
310 {
311 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
312 }
313
314 /*
315 * Load up this CPU's radix_tree_node buffer with sufficient objects to
316 * ensure that the addition of a single element in the tree cannot fail. On
317 * success, return zero, with preemption disabled. On error, return -ENOMEM
318 * with preemption not disabled.
319 *
320 * To make use of this facility, the radix tree must be initialised without
321 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
322 */
323 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
324 {
325 struct radix_tree_preload *rtp;
326 struct radix_tree_node *node;
327 int ret = -ENOMEM;
328
329 /*
330 * Nodes preloaded by one cgroup can be used by another cgroup, so
331 * they should never be accounted to any particular memory cgroup.
332 */
333 gfp_mask &= ~__GFP_ACCOUNT;
334
335 preempt_disable();
336 rtp = this_cpu_ptr(&radix_tree_preloads);
337 while (rtp->nr < nr) {
338 preempt_enable();
339 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
340 if (node == NULL)
341 goto out;
342 preempt_disable();
343 rtp = this_cpu_ptr(&radix_tree_preloads);
344 if (rtp->nr < nr) {
345 node->parent = rtp->nodes;
346 rtp->nodes = node;
347 rtp->nr++;
348 } else {
349 kmem_cache_free(radix_tree_node_cachep, node);
350 }
351 }
352 ret = 0;
353 out:
354 return ret;
355 }
356
357 /*
358 * Load up this CPU's radix_tree_node buffer with sufficient objects to
359 * ensure that the addition of a single element in the tree cannot fail. On
360 * success, return zero, with preemption disabled. On error, return -ENOMEM
361 * with preemption not disabled.
362 *
363 * To make use of this facility, the radix tree must be initialised without
364 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
365 */
366 int radix_tree_preload(gfp_t gfp_mask)
367 {
368 /* Warn on non-sensical use... */
369 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
370 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
371 }
372 EXPORT_SYMBOL(radix_tree_preload);
373
374 /*
375 * The same as above function, except we don't guarantee preloading happens.
376 * We do it, if we decide it helps. On success, return zero with preemption
377 * disabled. On error, return -ENOMEM with preemption not disabled.
378 */
379 int radix_tree_maybe_preload(gfp_t gfp_mask)
380 {
381 if (gfpflags_allow_blocking(gfp_mask))
382 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
383 /* Preloading doesn't help anything with this gfp mask, skip it */
384 preempt_disable();
385 return 0;
386 }
387 EXPORT_SYMBOL(radix_tree_maybe_preload);
388
389 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
390 struct radix_tree_node **nodep, unsigned long *maxindex)
391 {
392 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
393
394 *nodep = node;
395
396 if (likely(radix_tree_is_internal_node(node))) {
397 node = entry_to_node(node);
398 *maxindex = node_maxindex(node);
399 return node->shift + RADIX_TREE_MAP_SHIFT;
400 }
401
402 *maxindex = 0;
403 return 0;
404 }
405
406 /*
407 * Extend a radix tree so it can store key @index.
408 */
409 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
410 unsigned long index, unsigned int shift)
411 {
412 void *entry;
413 unsigned int maxshift;
414 int tag;
415
416 /* Figure out what the shift should be. */
417 maxshift = shift;
418 while (index > shift_maxindex(maxshift))
419 maxshift += RADIX_TREE_MAP_SHIFT;
420
421 entry = rcu_dereference_raw(root->xa_head);
422 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
423 goto out;
424
425 do {
426 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
427 root, shift, 0, 1, 0);
428 if (!node)
429 return -ENOMEM;
430
431 if (is_idr(root)) {
432 all_tag_set(node, IDR_FREE);
433 if (!root_tag_get(root, IDR_FREE)) {
434 tag_clear(node, IDR_FREE, 0);
435 root_tag_set(root, IDR_FREE);
436 }
437 } else {
438 /* Propagate the aggregated tag info to the new child */
439 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
440 if (root_tag_get(root, tag))
441 tag_set(node, tag, 0);
442 }
443 }
444
445 BUG_ON(shift > BITS_PER_LONG);
446 if (radix_tree_is_internal_node(entry)) {
447 entry_to_node(entry)->parent = node;
448 } else if (xa_is_value(entry)) {
449 /* Moving a value entry root->xa_head to a node */
450 node->nr_values = 1;
451 }
452 /*
453 * entry was already in the radix tree, so we do not need
454 * rcu_assign_pointer here
455 */
456 node->slots[0] = (void __rcu *)entry;
457 entry = node_to_entry(node);
458 rcu_assign_pointer(root->xa_head, entry);
459 shift += RADIX_TREE_MAP_SHIFT;
460 } while (shift <= maxshift);
461 out:
462 return maxshift + RADIX_TREE_MAP_SHIFT;
463 }
464
465 /**
466 * radix_tree_shrink - shrink radix tree to minimum height
467 * @root: radix tree root
468 */
469 static inline bool radix_tree_shrink(struct radix_tree_root *root)
470 {
471 bool shrunk = false;
472
473 for (;;) {
474 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
475 struct radix_tree_node *child;
476
477 if (!radix_tree_is_internal_node(node))
478 break;
479 node = entry_to_node(node);
480
481 /*
482 * The candidate node has more than one child, or its child
483 * is not at the leftmost slot, we cannot shrink.
484 */
485 if (node->count != 1)
486 break;
487 child = rcu_dereference_raw(node->slots[0]);
488 if (!child)
489 break;
490
491 /*
492 * For an IDR, we must not shrink entry 0 into the root in
493 * case somebody calls idr_replace() with a pointer that
494 * appears to be an internal entry
495 */
496 if (!node->shift && is_idr(root))
497 break;
498
499 if (radix_tree_is_internal_node(child))
500 entry_to_node(child)->parent = NULL;
501
502 /*
503 * We don't need rcu_assign_pointer(), since we are simply
504 * moving the node from one part of the tree to another: if it
505 * was safe to dereference the old pointer to it
506 * (node->slots[0]), it will be safe to dereference the new
507 * one (root->xa_head) as far as dependent read barriers go.
508 */
509 root->xa_head = (void __rcu *)child;
510 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
511 root_tag_clear(root, IDR_FREE);
512
513 /*
514 * We have a dilemma here. The node's slot[0] must not be
515 * NULLed in case there are concurrent lookups expecting to
516 * find the item. However if this was a bottom-level node,
517 * then it may be subject to the slot pointer being visible
518 * to callers dereferencing it. If item corresponding to
519 * slot[0] is subsequently deleted, these callers would expect
520 * their slot to become empty sooner or later.
521 *
522 * For example, lockless pagecache will look up a slot, deref
523 * the page pointer, and if the page has 0 refcount it means it
524 * was concurrently deleted from pagecache so try the deref
525 * again. Fortunately there is already a requirement for logic
526 * to retry the entire slot lookup -- the indirect pointer
527 * problem (replacing direct root node with an indirect pointer
528 * also results in a stale slot). So tag the slot as indirect
529 * to force callers to retry.
530 */
531 node->count = 0;
532 if (!radix_tree_is_internal_node(child)) {
533 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
534 }
535
536 WARN_ON_ONCE(!list_empty(&node->private_list));
537 radix_tree_node_free(node);
538 shrunk = true;
539 }
540
541 return shrunk;
542 }
543
544 static bool delete_node(struct radix_tree_root *root,
545 struct radix_tree_node *node)
546 {
547 bool deleted = false;
548
549 do {
550 struct radix_tree_node *parent;
551
552 if (node->count) {
553 if (node_to_entry(node) ==
554 rcu_dereference_raw(root->xa_head))
555 deleted |= radix_tree_shrink(root);
556 return deleted;
557 }
558
559 parent = node->parent;
560 if (parent) {
561 parent->slots[node->offset] = NULL;
562 parent->count--;
563 } else {
564 /*
565 * Shouldn't the tags already have all been cleared
566 * by the caller?
567 */
568 if (!is_idr(root))
569 root_tag_clear_all(root);
570 root->xa_head = NULL;
571 }
572
573 WARN_ON_ONCE(!list_empty(&node->private_list));
574 radix_tree_node_free(node);
575 deleted = true;
576
577 node = parent;
578 } while (node);
579
580 return deleted;
581 }
582
583 /**
584 * __radix_tree_create - create a slot in a radix tree
585 * @root: radix tree root
586 * @index: index key
587 * @nodep: returns node
588 * @slotp: returns slot
589 *
590 * Create, if necessary, and return the node and slot for an item
591 * at position @index in the radix tree @root.
592 *
593 * Until there is more than one item in the tree, no nodes are
594 * allocated and @root->xa_head is used as a direct slot instead of
595 * pointing to a node, in which case *@nodep will be NULL.
596 *
597 * Returns -ENOMEM, or 0 for success.
598 */
599 static int __radix_tree_create(struct radix_tree_root *root,
600 unsigned long index, struct radix_tree_node **nodep,
601 void __rcu ***slotp)
602 {
603 struct radix_tree_node *node = NULL, *child;
604 void __rcu **slot = (void __rcu **)&root->xa_head;
605 unsigned long maxindex;
606 unsigned int shift, offset = 0;
607 unsigned long max = index;
608 gfp_t gfp = root_gfp_mask(root);
609
610 shift = radix_tree_load_root(root, &child, &maxindex);
611
612 /* Make sure the tree is high enough. */
613 if (max > maxindex) {
614 int error = radix_tree_extend(root, gfp, max, shift);
615 if (error < 0)
616 return error;
617 shift = error;
618 child = rcu_dereference_raw(root->xa_head);
619 }
620
621 while (shift > 0) {
622 shift -= RADIX_TREE_MAP_SHIFT;
623 if (child == NULL) {
624 /* Have to add a child node. */
625 child = radix_tree_node_alloc(gfp, node, root, shift,
626 offset, 0, 0);
627 if (!child)
628 return -ENOMEM;
629 rcu_assign_pointer(*slot, node_to_entry(child));
630 if (node)
631 node->count++;
632 } else if (!radix_tree_is_internal_node(child))
633 break;
634
635 /* Go a level down */
636 node = entry_to_node(child);
637 offset = radix_tree_descend(node, &child, index);
638 slot = &node->slots[offset];
639 }
640
641 if (nodep)
642 *nodep = node;
643 if (slotp)
644 *slotp = slot;
645 return 0;
646 }
647
648 /*
649 * Free any nodes below this node. The tree is presumed to not need
650 * shrinking, and any user data in the tree is presumed to not need a
651 * destructor called on it. If we need to add a destructor, we can
652 * add that functionality later. Note that we may not clear tags or
653 * slots from the tree as an RCU walker may still have a pointer into
654 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
655 * but we'll still have to clear those in rcu_free.
656 */
657 static void radix_tree_free_nodes(struct radix_tree_node *node)
658 {
659 unsigned offset = 0;
660 struct radix_tree_node *child = entry_to_node(node);
661
662 for (;;) {
663 void *entry = rcu_dereference_raw(child->slots[offset]);
664 if (xa_is_node(entry) && child->shift) {
665 child = entry_to_node(entry);
666 offset = 0;
667 continue;
668 }
669 offset++;
670 while (offset == RADIX_TREE_MAP_SIZE) {
671 struct radix_tree_node *old = child;
672 offset = child->offset + 1;
673 child = child->parent;
674 WARN_ON_ONCE(!list_empty(&old->private_list));
675 radix_tree_node_free(old);
676 if (old == entry_to_node(node))
677 return;
678 }
679 }
680 }
681
682 static inline int insert_entries(struct radix_tree_node *node,
683 void __rcu **slot, void *item, bool replace)
684 {
685 if (*slot)
686 return -EEXIST;
687 rcu_assign_pointer(*slot, item);
688 if (node) {
689 node->count++;
690 if (xa_is_value(item))
691 node->nr_values++;
692 }
693 return 1;
694 }
695
696 /**
697 * radix_tree_insert - insert into a radix tree
698 * @root: radix tree root
699 * @index: index key
700 * @item: item to insert
701 *
702 * Insert an item into the radix tree at position @index.
703 */
704 int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
705 void *item)
706 {
707 struct radix_tree_node *node;
708 void __rcu **slot;
709 int error;
710
711 BUG_ON(radix_tree_is_internal_node(item));
712
713 error = __radix_tree_create(root, index, &node, &slot);
714 if (error)
715 return error;
716
717 error = insert_entries(node, slot, item, false);
718 if (error < 0)
719 return error;
720
721 if (node) {
722 unsigned offset = get_slot_offset(node, slot);
723 BUG_ON(tag_get(node, 0, offset));
724 BUG_ON(tag_get(node, 1, offset));
725 BUG_ON(tag_get(node, 2, offset));
726 } else {
727 BUG_ON(root_tags_get(root));
728 }
729
730 return 0;
731 }
732 EXPORT_SYMBOL(radix_tree_insert);
733
734 /**
735 * __radix_tree_lookup - lookup an item in a radix tree
736 * @root: radix tree root
737 * @index: index key
738 * @nodep: returns node
739 * @slotp: returns slot
740 *
741 * Lookup and return the item at position @index in the radix
742 * tree @root.
743 *
744 * Until there is more than one item in the tree, no nodes are
745 * allocated and @root->xa_head is used as a direct slot instead of
746 * pointing to a node, in which case *@nodep will be NULL.
747 */
748 void *__radix_tree_lookup(const struct radix_tree_root *root,
749 unsigned long index, struct radix_tree_node **nodep,
750 void __rcu ***slotp)
751 {
752 struct radix_tree_node *node, *parent;
753 unsigned long maxindex;
754 void __rcu **slot;
755
756 restart:
757 parent = NULL;
758 slot = (void __rcu **)&root->xa_head;
759 radix_tree_load_root(root, &node, &maxindex);
760 if (index > maxindex)
761 return NULL;
762
763 while (radix_tree_is_internal_node(node)) {
764 unsigned offset;
765
766 parent = entry_to_node(node);
767 offset = radix_tree_descend(parent, &node, index);
768 slot = parent->slots + offset;
769 if (node == RADIX_TREE_RETRY)
770 goto restart;
771 if (parent->shift == 0)
772 break;
773 }
774
775 if (nodep)
776 *nodep = parent;
777 if (slotp)
778 *slotp = slot;
779 return node;
780 }
781
782 /**
783 * radix_tree_lookup_slot - lookup a slot in a radix tree
784 * @root: radix tree root
785 * @index: index key
786 *
787 * Returns: the slot corresponding to the position @index in the
788 * radix tree @root. This is useful for update-if-exists operations.
789 *
790 * This function can be called under rcu_read_lock iff the slot is not
791 * modified by radix_tree_replace_slot, otherwise it must be called
792 * exclusive from other writers. Any dereference of the slot must be done
793 * using radix_tree_deref_slot.
794 */
795 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
796 unsigned long index)
797 {
798 void __rcu **slot;
799
800 if (!__radix_tree_lookup(root, index, NULL, &slot))
801 return NULL;
802 return slot;
803 }
804 EXPORT_SYMBOL(radix_tree_lookup_slot);
805
806 /**
807 * radix_tree_lookup - perform lookup operation on a radix tree
808 * @root: radix tree root
809 * @index: index key
810 *
811 * Lookup the item at the position @index in the radix tree @root.
812 *
813 * This function can be called under rcu_read_lock, however the caller
814 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
815 * them safely). No RCU barriers are required to access or modify the
816 * returned item, however.
817 */
818 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
819 {
820 return __radix_tree_lookup(root, index, NULL, NULL);
821 }
822 EXPORT_SYMBOL(radix_tree_lookup);
823
824 static void replace_slot(void __rcu **slot, void *item,
825 struct radix_tree_node *node, int count, int values)
826 {
827 if (node && (count || values)) {
828 node->count += count;
829 node->nr_values += values;
830 }
831
832 rcu_assign_pointer(*slot, item);
833 }
834
835 static bool node_tag_get(const struct radix_tree_root *root,
836 const struct radix_tree_node *node,
837 unsigned int tag, unsigned int offset)
838 {
839 if (node)
840 return tag_get(node, tag, offset);
841 return root_tag_get(root, tag);
842 }
843
844 /*
845 * IDR users want to be able to store NULL in the tree, so if the slot isn't
846 * free, don't adjust the count, even if it's transitioning between NULL and
847 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
848 * have empty bits, but it only stores NULL in slots when they're being
849 * deleted.
850 */
851 static int calculate_count(struct radix_tree_root *root,
852 struct radix_tree_node *node, void __rcu **slot,
853 void *item, void *old)
854 {
855 if (is_idr(root)) {
856 unsigned offset = get_slot_offset(node, slot);
857 bool free = node_tag_get(root, node, IDR_FREE, offset);
858 if (!free)
859 return 0;
860 if (!old)
861 return 1;
862 }
863 return !!item - !!old;
864 }
865
866 /**
867 * __radix_tree_replace - replace item in a slot
868 * @root: radix tree root
869 * @node: pointer to tree node
870 * @slot: pointer to slot in @node
871 * @item: new item to store in the slot.
872 *
873 * For use with __radix_tree_lookup(). Caller must hold tree write locked
874 * across slot lookup and replacement.
875 */
876 void __radix_tree_replace(struct radix_tree_root *root,
877 struct radix_tree_node *node,
878 void __rcu **slot, void *item)
879 {
880 void *old = rcu_dereference_raw(*slot);
881 int values = !!xa_is_value(item) - !!xa_is_value(old);
882 int count = calculate_count(root, node, slot, item, old);
883
884 /*
885 * This function supports replacing value entries and
886 * deleting entries, but that needs accounting against the
887 * node unless the slot is root->xa_head.
888 */
889 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
890 (count || values));
891 replace_slot(slot, item, node, count, values);
892
893 if (!node)
894 return;
895
896 delete_node(root, node);
897 }
898
899 /**
900 * radix_tree_replace_slot - replace item in a slot
901 * @root: radix tree root
902 * @slot: pointer to slot
903 * @item: new item to store in the slot.
904 *
905 * For use with radix_tree_lookup_slot() and
906 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
907 * across slot lookup and replacement.
908 *
909 * NOTE: This cannot be used to switch between non-entries (empty slots),
910 * regular entries, and value entries, as that requires accounting
911 * inside the radix tree node. When switching from one type of entry or
912 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
913 * radix_tree_iter_replace().
914 */
915 void radix_tree_replace_slot(struct radix_tree_root *root,
916 void __rcu **slot, void *item)
917 {
918 __radix_tree_replace(root, NULL, slot, item);
919 }
920 EXPORT_SYMBOL(radix_tree_replace_slot);
921
922 /**
923 * radix_tree_iter_replace - replace item in a slot
924 * @root: radix tree root
925 * @iter: iterator state
926 * @slot: pointer to slot
927 * @item: new item to store in the slot.
928 *
929 * For use with radix_tree_for_each_slot().
930 * Caller must hold tree write locked.
931 */
932 void radix_tree_iter_replace(struct radix_tree_root *root,
933 const struct radix_tree_iter *iter,
934 void __rcu **slot, void *item)
935 {
936 __radix_tree_replace(root, iter->node, slot, item);
937 }
938
939 static void node_tag_set(struct radix_tree_root *root,
940 struct radix_tree_node *node,
941 unsigned int tag, unsigned int offset)
942 {
943 while (node) {
944 if (tag_get(node, tag, offset))
945 return;
946 tag_set(node, tag, offset);
947 offset = node->offset;
948 node = node->parent;
949 }
950
951 if (!root_tag_get(root, tag))
952 root_tag_set(root, tag);
953 }
954
955 /**
956 * radix_tree_tag_set - set a tag on a radix tree node
957 * @root: radix tree root
958 * @index: index key
959 * @tag: tag index
960 *
961 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
962 * corresponding to @index in the radix tree. From
963 * the root all the way down to the leaf node.
964 *
965 * Returns the address of the tagged item. Setting a tag on a not-present
966 * item is a bug.
967 */
968 void *radix_tree_tag_set(struct radix_tree_root *root,
969 unsigned long index, unsigned int tag)
970 {
971 struct radix_tree_node *node, *parent;
972 unsigned long maxindex;
973
974 radix_tree_load_root(root, &node, &maxindex);
975 BUG_ON(index > maxindex);
976
977 while (radix_tree_is_internal_node(node)) {
978 unsigned offset;
979
980 parent = entry_to_node(node);
981 offset = radix_tree_descend(parent, &node, index);
982 BUG_ON(!node);
983
984 if (!tag_get(parent, tag, offset))
985 tag_set(parent, tag, offset);
986 }
987
988 /* set the root's tag bit */
989 if (!root_tag_get(root, tag))
990 root_tag_set(root, tag);
991
992 return node;
993 }
994 EXPORT_SYMBOL(radix_tree_tag_set);
995
996 static void node_tag_clear(struct radix_tree_root *root,
997 struct radix_tree_node *node,
998 unsigned int tag, unsigned int offset)
999 {
1000 while (node) {
1001 if (!tag_get(node, tag, offset))
1002 return;
1003 tag_clear(node, tag, offset);
1004 if (any_tag_set(node, tag))
1005 return;
1006
1007 offset = node->offset;
1008 node = node->parent;
1009 }
1010
1011 /* clear the root's tag bit */
1012 if (root_tag_get(root, tag))
1013 root_tag_clear(root, tag);
1014 }
1015
1016 /**
1017 * radix_tree_tag_clear - clear a tag on a radix tree node
1018 * @root: radix tree root
1019 * @index: index key
1020 * @tag: tag index
1021 *
1022 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1023 * corresponding to @index in the radix tree. If this causes
1024 * the leaf node to have no tags set then clear the tag in the
1025 * next-to-leaf node, etc.
1026 *
1027 * Returns the address of the tagged item on success, else NULL. ie:
1028 * has the same return value and semantics as radix_tree_lookup().
1029 */
1030 void *radix_tree_tag_clear(struct radix_tree_root *root,
1031 unsigned long index, unsigned int tag)
1032 {
1033 struct radix_tree_node *node, *parent;
1034 unsigned long maxindex;
1035 int offset;
1036
1037 radix_tree_load_root(root, &node, &maxindex);
1038 if (index > maxindex)
1039 return NULL;
1040
1041 parent = NULL;
1042
1043 while (radix_tree_is_internal_node(node)) {
1044 parent = entry_to_node(node);
1045 offset = radix_tree_descend(parent, &node, index);
1046 }
1047
1048 if (node)
1049 node_tag_clear(root, parent, tag, offset);
1050
1051 return node;
1052 }
1053 EXPORT_SYMBOL(radix_tree_tag_clear);
1054
1055 /**
1056 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1057 * @root: radix tree root
1058 * @iter: iterator state
1059 * @tag: tag to clear
1060 */
1061 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1062 const struct radix_tree_iter *iter, unsigned int tag)
1063 {
1064 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1065 }
1066
1067 /**
1068 * radix_tree_tag_get - get a tag on a radix tree node
1069 * @root: radix tree root
1070 * @index: index key
1071 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1072 *
1073 * Return values:
1074 *
1075 * 0: tag not present or not set
1076 * 1: tag set
1077 *
1078 * Note that the return value of this function may not be relied on, even if
1079 * the RCU lock is held, unless tag modification and node deletion are excluded
1080 * from concurrency.
1081 */
1082 int radix_tree_tag_get(const struct radix_tree_root *root,
1083 unsigned long index, unsigned int tag)
1084 {
1085 struct radix_tree_node *node, *parent;
1086 unsigned long maxindex;
1087
1088 if (!root_tag_get(root, tag))
1089 return 0;
1090
1091 radix_tree_load_root(root, &node, &maxindex);
1092 if (index > maxindex)
1093 return 0;
1094
1095 while (radix_tree_is_internal_node(node)) {
1096 unsigned offset;
1097
1098 parent = entry_to_node(node);
1099 offset = radix_tree_descend(parent, &node, index);
1100
1101 if (!tag_get(parent, tag, offset))
1102 return 0;
1103 if (node == RADIX_TREE_RETRY)
1104 break;
1105 }
1106
1107 return 1;
1108 }
1109 EXPORT_SYMBOL(radix_tree_tag_get);
1110
1111 /* Construct iter->tags bit-mask from node->tags[tag] array */
1112 static void set_iter_tags(struct radix_tree_iter *iter,
1113 struct radix_tree_node *node, unsigned offset,
1114 unsigned tag)
1115 {
1116 unsigned tag_long = offset / BITS_PER_LONG;
1117 unsigned tag_bit = offset % BITS_PER_LONG;
1118
1119 if (!node) {
1120 iter->tags = 1;
1121 return;
1122 }
1123
1124 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1125
1126 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1127 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1128 /* Pick tags from next element */
1129 if (tag_bit)
1130 iter->tags |= node->tags[tag][tag_long + 1] <<
1131 (BITS_PER_LONG - tag_bit);
1132 /* Clip chunk size, here only BITS_PER_LONG tags */
1133 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1134 }
1135 }
1136
1137 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1138 struct radix_tree_iter *iter)
1139 {
1140 slot++;
1141 iter->index = __radix_tree_iter_add(iter, 1);
1142 iter->next_index = iter->index;
1143 iter->tags = 0;
1144 return NULL;
1145 }
1146 EXPORT_SYMBOL(radix_tree_iter_resume);
1147
1148 /**
1149 * radix_tree_next_chunk - find next chunk of slots for iteration
1150 *
1151 * @root: radix tree root
1152 * @iter: iterator state
1153 * @flags: RADIX_TREE_ITER_* flags and tag index
1154 * Returns: pointer to chunk first slot, or NULL if iteration is over
1155 */
1156 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1157 struct radix_tree_iter *iter, unsigned flags)
1158 {
1159 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1160 struct radix_tree_node *node, *child;
1161 unsigned long index, offset, maxindex;
1162
1163 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1164 return NULL;
1165
1166 /*
1167 * Catch next_index overflow after ~0UL. iter->index never overflows
1168 * during iterating; it can be zero only at the beginning.
1169 * And we cannot overflow iter->next_index in a single step,
1170 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1171 *
1172 * This condition also used by radix_tree_next_slot() to stop
1173 * contiguous iterating, and forbid switching to the next chunk.
1174 */
1175 index = iter->next_index;
1176 if (!index && iter->index)
1177 return NULL;
1178
1179 restart:
1180 radix_tree_load_root(root, &child, &maxindex);
1181 if (index > maxindex)
1182 return NULL;
1183 if (!child)
1184 return NULL;
1185
1186 if (!radix_tree_is_internal_node(child)) {
1187 /* Single-slot tree */
1188 iter->index = index;
1189 iter->next_index = maxindex + 1;
1190 iter->tags = 1;
1191 iter->node = NULL;
1192 return (void __rcu **)&root->xa_head;
1193 }
1194
1195 do {
1196 node = entry_to_node(child);
1197 offset = radix_tree_descend(node, &child, index);
1198
1199 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1200 !tag_get(node, tag, offset) : !child) {
1201 /* Hole detected */
1202 if (flags & RADIX_TREE_ITER_CONTIG)
1203 return NULL;
1204
1205 if (flags & RADIX_TREE_ITER_TAGGED)
1206 offset = radix_tree_find_next_bit(node, tag,
1207 offset + 1);
1208 else
1209 while (++offset < RADIX_TREE_MAP_SIZE) {
1210 void *slot = rcu_dereference_raw(
1211 node->slots[offset]);
1212 if (slot)
1213 break;
1214 }
1215 index &= ~node_maxindex(node);
1216 index += offset << node->shift;
1217 /* Overflow after ~0UL */
1218 if (!index)
1219 return NULL;
1220 if (offset == RADIX_TREE_MAP_SIZE)
1221 goto restart;
1222 child = rcu_dereference_raw(node->slots[offset]);
1223 }
1224
1225 if (!child)
1226 goto restart;
1227 if (child == RADIX_TREE_RETRY)
1228 break;
1229 } while (node->shift && radix_tree_is_internal_node(child));
1230
1231 /* Update the iterator state */
1232 iter->index = (index &~ node_maxindex(node)) | offset;
1233 iter->next_index = (index | node_maxindex(node)) + 1;
1234 iter->node = node;
1235
1236 if (flags & RADIX_TREE_ITER_TAGGED)
1237 set_iter_tags(iter, node, offset, tag);
1238
1239 return node->slots + offset;
1240 }
1241 EXPORT_SYMBOL(radix_tree_next_chunk);
1242
1243 /**
1244 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1245 * @root: radix tree root
1246 * @results: where the results of the lookup are placed
1247 * @first_index: start the lookup from this key
1248 * @max_items: place up to this many items at *results
1249 *
1250 * Performs an index-ascending scan of the tree for present items. Places
1251 * them at *@results and returns the number of items which were placed at
1252 * *@results.
1253 *
1254 * The implementation is naive.
1255 *
1256 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1257 * rcu_read_lock. In this case, rather than the returned results being
1258 * an atomic snapshot of the tree at a single point in time, the
1259 * semantics of an RCU protected gang lookup are as though multiple
1260 * radix_tree_lookups have been issued in individual locks, and results
1261 * stored in 'results'.
1262 */
1263 unsigned int
1264 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1265 unsigned long first_index, unsigned int max_items)
1266 {
1267 struct radix_tree_iter iter;
1268 void __rcu **slot;
1269 unsigned int ret = 0;
1270
1271 if (unlikely(!max_items))
1272 return 0;
1273
1274 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1275 results[ret] = rcu_dereference_raw(*slot);
1276 if (!results[ret])
1277 continue;
1278 if (radix_tree_is_internal_node(results[ret])) {
1279 slot = radix_tree_iter_retry(&iter);
1280 continue;
1281 }
1282 if (++ret == max_items)
1283 break;
1284 }
1285
1286 return ret;
1287 }
1288 EXPORT_SYMBOL(radix_tree_gang_lookup);
1289
1290 /**
1291 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1292 * based on a tag
1293 * @root: radix tree root
1294 * @results: where the results of the lookup are placed
1295 * @first_index: start the lookup from this key
1296 * @max_items: place up to this many items at *results
1297 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1298 *
1299 * Performs an index-ascending scan of the tree for present items which
1300 * have the tag indexed by @tag set. Places the items at *@results and
1301 * returns the number of items which were placed at *@results.
1302 */
1303 unsigned int
1304 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1305 unsigned long first_index, unsigned int max_items,
1306 unsigned int tag)
1307 {
1308 struct radix_tree_iter iter;
1309 void __rcu **slot;
1310 unsigned int ret = 0;
1311
1312 if (unlikely(!max_items))
1313 return 0;
1314
1315 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1316 results[ret] = rcu_dereference_raw(*slot);
1317 if (!results[ret])
1318 continue;
1319 if (radix_tree_is_internal_node(results[ret])) {
1320 slot = radix_tree_iter_retry(&iter);
1321 continue;
1322 }
1323 if (++ret == max_items)
1324 break;
1325 }
1326
1327 return ret;
1328 }
1329 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1330
1331 /**
1332 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1333 * radix tree based on a tag
1334 * @root: radix tree root
1335 * @results: where the results of the lookup are placed
1336 * @first_index: start the lookup from this key
1337 * @max_items: place up to this many items at *results
1338 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1339 *
1340 * Performs an index-ascending scan of the tree for present items which
1341 * have the tag indexed by @tag set. Places the slots at *@results and
1342 * returns the number of slots which were placed at *@results.
1343 */
1344 unsigned int
1345 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1346 void __rcu ***results, unsigned long first_index,
1347 unsigned int max_items, unsigned int tag)
1348 {
1349 struct radix_tree_iter iter;
1350 void __rcu **slot;
1351 unsigned int ret = 0;
1352
1353 if (unlikely(!max_items))
1354 return 0;
1355
1356 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1357 results[ret] = slot;
1358 if (++ret == max_items)
1359 break;
1360 }
1361
1362 return ret;
1363 }
1364 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1365
1366 static bool __radix_tree_delete(struct radix_tree_root *root,
1367 struct radix_tree_node *node, void __rcu **slot)
1368 {
1369 void *old = rcu_dereference_raw(*slot);
1370 int values = xa_is_value(old) ? -1 : 0;
1371 unsigned offset = get_slot_offset(node, slot);
1372 int tag;
1373
1374 if (is_idr(root))
1375 node_tag_set(root, node, IDR_FREE, offset);
1376 else
1377 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1378 node_tag_clear(root, node, tag, offset);
1379
1380 replace_slot(slot, NULL, node, -1, values);
1381 return node && delete_node(root, node);
1382 }
1383
1384 /**
1385 * radix_tree_iter_delete - delete the entry at this iterator position
1386 * @root: radix tree root
1387 * @iter: iterator state
1388 * @slot: pointer to slot
1389 *
1390 * Delete the entry at the position currently pointed to by the iterator.
1391 * This may result in the current node being freed; if it is, the iterator
1392 * is advanced so that it will not reference the freed memory. This
1393 * function may be called without any locking if there are no other threads
1394 * which can access this tree.
1395 */
1396 void radix_tree_iter_delete(struct radix_tree_root *root,
1397 struct radix_tree_iter *iter, void __rcu **slot)
1398 {
1399 if (__radix_tree_delete(root, iter->node, slot))
1400 iter->index = iter->next_index;
1401 }
1402 EXPORT_SYMBOL(radix_tree_iter_delete);
1403
1404 /**
1405 * radix_tree_delete_item - delete an item from a radix tree
1406 * @root: radix tree root
1407 * @index: index key
1408 * @item: expected item
1409 *
1410 * Remove @item at @index from the radix tree rooted at @root.
1411 *
1412 * Return: the deleted entry, or %NULL if it was not present
1413 * or the entry at the given @index was not @item.
1414 */
1415 void *radix_tree_delete_item(struct radix_tree_root *root,
1416 unsigned long index, void *item)
1417 {
1418 struct radix_tree_node *node = NULL;
1419 void __rcu **slot = NULL;
1420 void *entry;
1421
1422 entry = __radix_tree_lookup(root, index, &node, &slot);
1423 if (!slot)
1424 return NULL;
1425 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1426 get_slot_offset(node, slot))))
1427 return NULL;
1428
1429 if (item && entry != item)
1430 return NULL;
1431
1432 __radix_tree_delete(root, node, slot);
1433
1434 return entry;
1435 }
1436 EXPORT_SYMBOL(radix_tree_delete_item);
1437
1438 /**
1439 * radix_tree_delete - delete an entry from a radix tree
1440 * @root: radix tree root
1441 * @index: index key
1442 *
1443 * Remove the entry at @index from the radix tree rooted at @root.
1444 *
1445 * Return: The deleted entry, or %NULL if it was not present.
1446 */
1447 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1448 {
1449 return radix_tree_delete_item(root, index, NULL);
1450 }
1451 EXPORT_SYMBOL(radix_tree_delete);
1452
1453 /**
1454 * radix_tree_tagged - test whether any items in the tree are tagged
1455 * @root: radix tree root
1456 * @tag: tag to test
1457 */
1458 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1459 {
1460 return root_tag_get(root, tag);
1461 }
1462 EXPORT_SYMBOL(radix_tree_tagged);
1463
1464 /**
1465 * idr_preload - preload for idr_alloc()
1466 * @gfp_mask: allocation mask to use for preloading
1467 *
1468 * Preallocate memory to use for the next call to idr_alloc(). This function
1469 * returns with preemption disabled. It will be enabled by idr_preload_end().
1470 */
1471 void idr_preload(gfp_t gfp_mask)
1472 {
1473 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1474 preempt_disable();
1475 }
1476 EXPORT_SYMBOL(idr_preload);
1477
1478 void __rcu **idr_get_free(struct radix_tree_root *root,
1479 struct radix_tree_iter *iter, gfp_t gfp,
1480 unsigned long max)
1481 {
1482 struct radix_tree_node *node = NULL, *child;
1483 void __rcu **slot = (void __rcu **)&root->xa_head;
1484 unsigned long maxindex, start = iter->next_index;
1485 unsigned int shift, offset = 0;
1486
1487 grow:
1488 shift = radix_tree_load_root(root, &child, &maxindex);
1489 if (!radix_tree_tagged(root, IDR_FREE))
1490 start = max(start, maxindex + 1);
1491 if (start > max)
1492 return ERR_PTR(-ENOSPC);
1493
1494 if (start > maxindex) {
1495 int error = radix_tree_extend(root, gfp, start, shift);
1496 if (error < 0)
1497 return ERR_PTR(error);
1498 shift = error;
1499 child = rcu_dereference_raw(root->xa_head);
1500 }
1501 if (start == 0 && shift == 0)
1502 shift = RADIX_TREE_MAP_SHIFT;
1503
1504 while (shift) {
1505 shift -= RADIX_TREE_MAP_SHIFT;
1506 if (child == NULL) {
1507 /* Have to add a child node. */
1508 child = radix_tree_node_alloc(gfp, node, root, shift,
1509 offset, 0, 0);
1510 if (!child)
1511 return ERR_PTR(-ENOMEM);
1512 all_tag_set(child, IDR_FREE);
1513 rcu_assign_pointer(*slot, node_to_entry(child));
1514 if (node)
1515 node->count++;
1516 } else if (!radix_tree_is_internal_node(child))
1517 break;
1518
1519 node = entry_to_node(child);
1520 offset = radix_tree_descend(node, &child, start);
1521 if (!tag_get(node, IDR_FREE, offset)) {
1522 offset = radix_tree_find_next_bit(node, IDR_FREE,
1523 offset + 1);
1524 start = next_index(start, node, offset);
1525 if (start > max || start == 0)
1526 return ERR_PTR(-ENOSPC);
1527 while (offset == RADIX_TREE_MAP_SIZE) {
1528 offset = node->offset + 1;
1529 node = node->parent;
1530 if (!node)
1531 goto grow;
1532 shift = node->shift;
1533 }
1534 child = rcu_dereference_raw(node->slots[offset]);
1535 }
1536 slot = &node->slots[offset];
1537 }
1538
1539 iter->index = start;
1540 if (node)
1541 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1542 else
1543 iter->next_index = 1;
1544 iter->node = node;
1545 set_iter_tags(iter, node, offset, IDR_FREE);
1546
1547 return slot;
1548 }
1549
1550 /**
1551 * idr_destroy - release all internal memory from an IDR
1552 * @idr: idr handle
1553 *
1554 * After this function is called, the IDR is empty, and may be reused or
1555 * the data structure containing it may be freed.
1556 *
1557 * A typical clean-up sequence for objects stored in an idr tree will use
1558 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1559 * free the memory used to keep track of those objects.
1560 */
1561 void idr_destroy(struct idr *idr)
1562 {
1563 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1564 if (radix_tree_is_internal_node(node))
1565 radix_tree_free_nodes(node);
1566 idr->idr_rt.xa_head = NULL;
1567 root_tag_set(&idr->idr_rt, IDR_FREE);
1568 }
1569 EXPORT_SYMBOL(idr_destroy);
1570
1571 static void
1572 radix_tree_node_ctor(void *arg)
1573 {
1574 struct radix_tree_node *node = arg;
1575
1576 memset(node, 0, sizeof(*node));
1577 INIT_LIST_HEAD(&node->private_list);
1578 }
1579
1580 static int radix_tree_cpu_dead(unsigned int cpu)
1581 {
1582 struct radix_tree_preload *rtp;
1583 struct radix_tree_node *node;
1584
1585 /* Free per-cpu pool of preloaded nodes */
1586 rtp = &per_cpu(radix_tree_preloads, cpu);
1587 while (rtp->nr) {
1588 node = rtp->nodes;
1589 rtp->nodes = node->parent;
1590 kmem_cache_free(radix_tree_node_cachep, node);
1591 rtp->nr--;
1592 }
1593 return 0;
1594 }
1595
1596 void __init radix_tree_init(void)
1597 {
1598 int ret;
1599
1600 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1601 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1602 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1603 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1604 sizeof(struct radix_tree_node), 0,
1605 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1606 radix_tree_node_ctor);
1607 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1608 NULL, radix_tree_cpu_dead);
1609 WARN_ON(ret < 0);
1610 }