]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/radix-tree.c
lib: radix-tree: check accounting of existing slot replacement users
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
44 /*
45 * Radix tree node cache.
46 */
47 static struct kmem_cache *radix_tree_node_cachep;
48
49 /*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
62 /*
63 * Per-cpu pool of preloaded nodes
64 */
65 struct radix_tree_preload {
66 unsigned nr;
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71
72 static inline void *node_to_entry(void *ptr)
73 {
74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76
77 #define RADIX_TREE_RETRY node_to_entry(NULL)
78
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82 {
83 void **ptr = node;
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86 }
87 #else
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89 {
90 return false;
91 }
92 #endif
93
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 void **slot)
96 {
97 return slot - parent->slots;
98 }
99
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
102 {
103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 if (radix_tree_is_internal_node(entry)) {
108 if (is_sibling_entry(parent, entry)) {
109 void **sibentry = (void **) entry_to_node(entry);
110 offset = get_slot_offset(parent, sibentry);
111 entry = rcu_dereference_raw(*sibentry);
112 }
113 }
114 #endif
115
116 *nodep = (void *)entry;
117 return offset;
118 }
119
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 return root->gfp_mask & __GFP_BITS_MASK;
123 }
124
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127 {
128 __set_bit(offset, node->tags[tag]);
129 }
130
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133 {
134 __clear_bit(offset, node->tags[tag]);
135 }
136
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139 {
140 return test_bit(offset, node->tags[tag]);
141 }
142
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
149 {
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 root->gfp_mask &= __GFP_BITS_MASK;
156 }
157
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167
168 /*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 unsigned idx;
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180 }
181
182 /**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196 {
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216 }
217
218 #ifndef __KERNEL__
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
220 {
221 unsigned long i;
222
223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
224 node, node->offset,
225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 node->shift, node->count, node->exceptional, node->parent);
227
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
231 void *entry = node->slots[i];
232 if (!entry)
233 continue;
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 entry, i,
237 *(void **)entry_to_node(entry),
238 first, last);
239 } else if (!radix_tree_is_internal_node(entry)) {
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
242 } else {
243 dump_node(entry_to_node(entry), first);
244 }
245 }
246 }
247
248 /* For debug */
249 static void radix_tree_dump(struct radix_tree_root *root)
250 {
251 pr_debug("radix root: %p rnode %p tags %x\n",
252 root, root->rnode,
253 root->gfp_mask >> __GFP_BITS_SHIFT);
254 if (!radix_tree_is_internal_node(root->rnode))
255 return;
256 dump_node(entry_to_node(root->rnode), 0);
257 }
258 #endif
259
260 /*
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
263 */
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
266 {
267 struct radix_tree_node *ret = NULL;
268 gfp_t gfp_mask = root_gfp_mask(root);
269
270 /*
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
274 */
275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 struct radix_tree_preload *rtp;
277
278 /*
279 * Even if the caller has preloaded, try to allocate from the
280 * cache first for the new node to get accounted to the memory
281 * cgroup.
282 */
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
284 gfp_mask | __GFP_NOWARN);
285 if (ret)
286 goto out;
287
288 /*
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
291 * kmem_cache_alloc)
292 */
293 rtp = this_cpu_ptr(&radix_tree_preloads);
294 if (rtp->nr) {
295 ret = rtp->nodes;
296 rtp->nodes = ret->private_data;
297 ret->private_data = NULL;
298 rtp->nr--;
299 }
300 /*
301 * Update the allocation stack trace as this is more useful
302 * for debugging.
303 */
304 kmemleak_update_trace(ret);
305 goto out;
306 }
307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
308 out:
309 BUG_ON(radix_tree_is_internal_node(ret));
310 return ret;
311 }
312
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
314 {
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
317 int i;
318
319 /*
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
323 */
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
326
327 node->slots[0] = NULL;
328 node->count = 0;
329
330 kmem_cache_free(radix_tree_node_cachep, node);
331 }
332
333 static inline void
334 radix_tree_node_free(struct radix_tree_node *node)
335 {
336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
337 }
338
339 /*
340 * Load up this CPU's radix_tree_node buffer with sufficient objects to
341 * ensure that the addition of a single element in the tree cannot fail. On
342 * success, return zero, with preemption disabled. On error, return -ENOMEM
343 * with preemption not disabled.
344 *
345 * To make use of this facility, the radix tree must be initialised without
346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
347 */
348 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
349 {
350 struct radix_tree_preload *rtp;
351 struct radix_tree_node *node;
352 int ret = -ENOMEM;
353
354 /*
355 * Nodes preloaded by one cgroup can be be used by another cgroup, so
356 * they should never be accounted to any particular memory cgroup.
357 */
358 gfp_mask &= ~__GFP_ACCOUNT;
359
360 preempt_disable();
361 rtp = this_cpu_ptr(&radix_tree_preloads);
362 while (rtp->nr < nr) {
363 preempt_enable();
364 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
365 if (node == NULL)
366 goto out;
367 preempt_disable();
368 rtp = this_cpu_ptr(&radix_tree_preloads);
369 if (rtp->nr < nr) {
370 node->private_data = rtp->nodes;
371 rtp->nodes = node;
372 rtp->nr++;
373 } else {
374 kmem_cache_free(radix_tree_node_cachep, node);
375 }
376 }
377 ret = 0;
378 out:
379 return ret;
380 }
381
382 /*
383 * Load up this CPU's radix_tree_node buffer with sufficient objects to
384 * ensure that the addition of a single element in the tree cannot fail. On
385 * success, return zero, with preemption disabled. On error, return -ENOMEM
386 * with preemption not disabled.
387 *
388 * To make use of this facility, the radix tree must be initialised without
389 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
390 */
391 int radix_tree_preload(gfp_t gfp_mask)
392 {
393 /* Warn on non-sensical use... */
394 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
395 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
396 }
397 EXPORT_SYMBOL(radix_tree_preload);
398
399 /*
400 * The same as above function, except we don't guarantee preloading happens.
401 * We do it, if we decide it helps. On success, return zero with preemption
402 * disabled. On error, return -ENOMEM with preemption not disabled.
403 */
404 int radix_tree_maybe_preload(gfp_t gfp_mask)
405 {
406 if (gfpflags_allow_blocking(gfp_mask))
407 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
408 /* Preloading doesn't help anything with this gfp mask, skip it */
409 preempt_disable();
410 return 0;
411 }
412 EXPORT_SYMBOL(radix_tree_maybe_preload);
413
414 /*
415 * The same as function above, but preload number of nodes required to insert
416 * (1 << order) continuous naturally-aligned elements.
417 */
418 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
419 {
420 unsigned long nr_subtrees;
421 int nr_nodes, subtree_height;
422
423 /* Preloading doesn't help anything with this gfp mask, skip it */
424 if (!gfpflags_allow_blocking(gfp_mask)) {
425 preempt_disable();
426 return 0;
427 }
428
429 /*
430 * Calculate number and height of fully populated subtrees it takes to
431 * store (1 << order) elements.
432 */
433 nr_subtrees = 1 << order;
434 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
435 subtree_height++)
436 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
437
438 /*
439 * The worst case is zero height tree with a single item at index 0 and
440 * then inserting items starting at ULONG_MAX - (1 << order).
441 *
442 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
443 * 0-index item.
444 */
445 nr_nodes = RADIX_TREE_MAX_PATH;
446
447 /* Plus branch to fully populated subtrees. */
448 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
449
450 /* Root node is shared. */
451 nr_nodes--;
452
453 /* Plus nodes required to build subtrees. */
454 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
455
456 return __radix_tree_preload(gfp_mask, nr_nodes);
457 }
458
459 /*
460 * The maximum index which can be stored in a radix tree
461 */
462 static inline unsigned long shift_maxindex(unsigned int shift)
463 {
464 return (RADIX_TREE_MAP_SIZE << shift) - 1;
465 }
466
467 static inline unsigned long node_maxindex(struct radix_tree_node *node)
468 {
469 return shift_maxindex(node->shift);
470 }
471
472 static unsigned radix_tree_load_root(struct radix_tree_root *root,
473 struct radix_tree_node **nodep, unsigned long *maxindex)
474 {
475 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
476
477 *nodep = node;
478
479 if (likely(radix_tree_is_internal_node(node))) {
480 node = entry_to_node(node);
481 *maxindex = node_maxindex(node);
482 return node->shift + RADIX_TREE_MAP_SHIFT;
483 }
484
485 *maxindex = 0;
486 return 0;
487 }
488
489 /*
490 * Extend a radix tree so it can store key @index.
491 */
492 static int radix_tree_extend(struct radix_tree_root *root,
493 unsigned long index, unsigned int shift)
494 {
495 struct radix_tree_node *slot;
496 unsigned int maxshift;
497 int tag;
498
499 /* Figure out what the shift should be. */
500 maxshift = shift;
501 while (index > shift_maxindex(maxshift))
502 maxshift += RADIX_TREE_MAP_SHIFT;
503
504 slot = root->rnode;
505 if (!slot)
506 goto out;
507
508 do {
509 struct radix_tree_node *node = radix_tree_node_alloc(root);
510
511 if (!node)
512 return -ENOMEM;
513
514 /* Propagate the aggregated tag info into the new root */
515 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
516 if (root_tag_get(root, tag))
517 tag_set(node, tag, 0);
518 }
519
520 BUG_ON(shift > BITS_PER_LONG);
521 node->shift = shift;
522 node->offset = 0;
523 node->count = 1;
524 node->parent = NULL;
525 if (radix_tree_is_internal_node(slot)) {
526 entry_to_node(slot)->parent = node;
527 } else {
528 /* Moving an exceptional root->rnode to a node */
529 if (radix_tree_exceptional_entry(slot))
530 node->exceptional = 1;
531 }
532 node->slots[0] = slot;
533 slot = node_to_entry(node);
534 rcu_assign_pointer(root->rnode, slot);
535 shift += RADIX_TREE_MAP_SHIFT;
536 } while (shift <= maxshift);
537 out:
538 return maxshift + RADIX_TREE_MAP_SHIFT;
539 }
540
541 /**
542 * __radix_tree_create - create a slot in a radix tree
543 * @root: radix tree root
544 * @index: index key
545 * @order: index occupies 2^order aligned slots
546 * @nodep: returns node
547 * @slotp: returns slot
548 *
549 * Create, if necessary, and return the node and slot for an item
550 * at position @index in the radix tree @root.
551 *
552 * Until there is more than one item in the tree, no nodes are
553 * allocated and @root->rnode is used as a direct slot instead of
554 * pointing to a node, in which case *@nodep will be NULL.
555 *
556 * Returns -ENOMEM, or 0 for success.
557 */
558 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
559 unsigned order, struct radix_tree_node **nodep,
560 void ***slotp)
561 {
562 struct radix_tree_node *node = NULL, *child;
563 void **slot = (void **)&root->rnode;
564 unsigned long maxindex;
565 unsigned int shift, offset = 0;
566 unsigned long max = index | ((1UL << order) - 1);
567
568 shift = radix_tree_load_root(root, &child, &maxindex);
569
570 /* Make sure the tree is high enough. */
571 if (max > maxindex) {
572 int error = radix_tree_extend(root, max, shift);
573 if (error < 0)
574 return error;
575 shift = error;
576 child = root->rnode;
577 if (order == shift)
578 shift += RADIX_TREE_MAP_SHIFT;
579 }
580
581 while (shift > order) {
582 shift -= RADIX_TREE_MAP_SHIFT;
583 if (child == NULL) {
584 /* Have to add a child node. */
585 child = radix_tree_node_alloc(root);
586 if (!child)
587 return -ENOMEM;
588 child->shift = shift;
589 child->offset = offset;
590 child->parent = node;
591 rcu_assign_pointer(*slot, node_to_entry(child));
592 if (node)
593 node->count++;
594 } else if (!radix_tree_is_internal_node(child))
595 break;
596
597 /* Go a level down */
598 node = entry_to_node(child);
599 offset = radix_tree_descend(node, &child, index);
600 slot = &node->slots[offset];
601 }
602
603 #ifdef CONFIG_RADIX_TREE_MULTIORDER
604 /* Insert pointers to the canonical entry */
605 if (order > shift) {
606 unsigned i, n = 1 << (order - shift);
607 offset = offset & ~(n - 1);
608 slot = &node->slots[offset];
609 child = node_to_entry(slot);
610 for (i = 0; i < n; i++) {
611 if (slot[i])
612 return -EEXIST;
613 }
614
615 for (i = 1; i < n; i++) {
616 rcu_assign_pointer(slot[i], child);
617 node->count++;
618 }
619 }
620 #endif
621
622 if (nodep)
623 *nodep = node;
624 if (slotp)
625 *slotp = slot;
626 return 0;
627 }
628
629 /**
630 * __radix_tree_insert - insert into a radix tree
631 * @root: radix tree root
632 * @index: index key
633 * @order: key covers the 2^order indices around index
634 * @item: item to insert
635 *
636 * Insert an item into the radix tree at position @index.
637 */
638 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
639 unsigned order, void *item)
640 {
641 struct radix_tree_node *node;
642 void **slot;
643 int error;
644
645 BUG_ON(radix_tree_is_internal_node(item));
646
647 error = __radix_tree_create(root, index, order, &node, &slot);
648 if (error)
649 return error;
650 if (*slot != NULL)
651 return -EEXIST;
652 rcu_assign_pointer(*slot, item);
653
654 if (node) {
655 unsigned offset = get_slot_offset(node, slot);
656 node->count++;
657 if (radix_tree_exceptional_entry(item))
658 node->exceptional++;
659 BUG_ON(tag_get(node, 0, offset));
660 BUG_ON(tag_get(node, 1, offset));
661 BUG_ON(tag_get(node, 2, offset));
662 } else {
663 BUG_ON(root_tags_get(root));
664 }
665
666 return 0;
667 }
668 EXPORT_SYMBOL(__radix_tree_insert);
669
670 /**
671 * __radix_tree_lookup - lookup an item in a radix tree
672 * @root: radix tree root
673 * @index: index key
674 * @nodep: returns node
675 * @slotp: returns slot
676 *
677 * Lookup and return the item at position @index in the radix
678 * tree @root.
679 *
680 * Until there is more than one item in the tree, no nodes are
681 * allocated and @root->rnode is used as a direct slot instead of
682 * pointing to a node, in which case *@nodep will be NULL.
683 */
684 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
685 struct radix_tree_node **nodep, void ***slotp)
686 {
687 struct radix_tree_node *node, *parent;
688 unsigned long maxindex;
689 void **slot;
690
691 restart:
692 parent = NULL;
693 slot = (void **)&root->rnode;
694 radix_tree_load_root(root, &node, &maxindex);
695 if (index > maxindex)
696 return NULL;
697
698 while (radix_tree_is_internal_node(node)) {
699 unsigned offset;
700
701 if (node == RADIX_TREE_RETRY)
702 goto restart;
703 parent = entry_to_node(node);
704 offset = radix_tree_descend(parent, &node, index);
705 slot = parent->slots + offset;
706 }
707
708 if (nodep)
709 *nodep = parent;
710 if (slotp)
711 *slotp = slot;
712 return node;
713 }
714
715 /**
716 * radix_tree_lookup_slot - lookup a slot in a radix tree
717 * @root: radix tree root
718 * @index: index key
719 *
720 * Returns: the slot corresponding to the position @index in the
721 * radix tree @root. This is useful for update-if-exists operations.
722 *
723 * This function can be called under rcu_read_lock iff the slot is not
724 * modified by radix_tree_replace_slot, otherwise it must be called
725 * exclusive from other writers. Any dereference of the slot must be done
726 * using radix_tree_deref_slot.
727 */
728 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
729 {
730 void **slot;
731
732 if (!__radix_tree_lookup(root, index, NULL, &slot))
733 return NULL;
734 return slot;
735 }
736 EXPORT_SYMBOL(radix_tree_lookup_slot);
737
738 /**
739 * radix_tree_lookup - perform lookup operation on a radix tree
740 * @root: radix tree root
741 * @index: index key
742 *
743 * Lookup the item at the position @index in the radix tree @root.
744 *
745 * This function can be called under rcu_read_lock, however the caller
746 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
747 * them safely). No RCU barriers are required to access or modify the
748 * returned item, however.
749 */
750 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
751 {
752 return __radix_tree_lookup(root, index, NULL, NULL);
753 }
754 EXPORT_SYMBOL(radix_tree_lookup);
755
756 static void replace_slot(struct radix_tree_root *root,
757 struct radix_tree_node *node,
758 void **slot, void *item,
759 bool warn_typeswitch)
760 {
761 void *old = rcu_dereference_raw(*slot);
762 int exceptional;
763
764 WARN_ON_ONCE(radix_tree_is_internal_node(item));
765 WARN_ON_ONCE(!!item - !!old);
766
767 exceptional = !!radix_tree_exceptional_entry(item) -
768 !!radix_tree_exceptional_entry(old);
769
770 WARN_ON_ONCE(warn_typeswitch && exceptional);
771
772 if (node)
773 node->exceptional += exceptional;
774
775 rcu_assign_pointer(*slot, item);
776 }
777
778 /**
779 * __radix_tree_replace - replace item in a slot
780 * @root: radix tree root
781 * @node: pointer to tree node
782 * @slot: pointer to slot in @node
783 * @item: new item to store in the slot.
784 *
785 * For use with __radix_tree_lookup(). Caller must hold tree write locked
786 * across slot lookup and replacement.
787 */
788 void __radix_tree_replace(struct radix_tree_root *root,
789 struct radix_tree_node *node,
790 void **slot, void *item)
791 {
792 /*
793 * This function supports replacing exceptional entries, but
794 * that needs accounting against the node unless the slot is
795 * root->rnode.
796 */
797 replace_slot(root, node, slot, item,
798 !node && slot != (void **)&root->rnode);
799 }
800
801 /**
802 * radix_tree_replace_slot - replace item in a slot
803 * @root: radix tree root
804 * @slot: pointer to slot
805 * @item: new item to store in the slot.
806 *
807 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
808 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
809 * across slot lookup and replacement.
810 *
811 * NOTE: This cannot be used to switch between non-entries (empty slots),
812 * regular entries, and exceptional entries, as that requires accounting
813 * inside the radix tree node. When switching from one type of entry to
814 * another, use __radix_tree_lookup() and __radix_tree_replace().
815 */
816 void radix_tree_replace_slot(struct radix_tree_root *root,
817 void **slot, void *item)
818 {
819 replace_slot(root, NULL, slot, item, true);
820 }
821
822 /**
823 * radix_tree_tag_set - set a tag on a radix tree node
824 * @root: radix tree root
825 * @index: index key
826 * @tag: tag index
827 *
828 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
829 * corresponding to @index in the radix tree. From
830 * the root all the way down to the leaf node.
831 *
832 * Returns the address of the tagged item. Setting a tag on a not-present
833 * item is a bug.
834 */
835 void *radix_tree_tag_set(struct radix_tree_root *root,
836 unsigned long index, unsigned int tag)
837 {
838 struct radix_tree_node *node, *parent;
839 unsigned long maxindex;
840
841 radix_tree_load_root(root, &node, &maxindex);
842 BUG_ON(index > maxindex);
843
844 while (radix_tree_is_internal_node(node)) {
845 unsigned offset;
846
847 parent = entry_to_node(node);
848 offset = radix_tree_descend(parent, &node, index);
849 BUG_ON(!node);
850
851 if (!tag_get(parent, tag, offset))
852 tag_set(parent, tag, offset);
853 }
854
855 /* set the root's tag bit */
856 if (!root_tag_get(root, tag))
857 root_tag_set(root, tag);
858
859 return node;
860 }
861 EXPORT_SYMBOL(radix_tree_tag_set);
862
863 static void node_tag_clear(struct radix_tree_root *root,
864 struct radix_tree_node *node,
865 unsigned int tag, unsigned int offset)
866 {
867 while (node) {
868 if (!tag_get(node, tag, offset))
869 return;
870 tag_clear(node, tag, offset);
871 if (any_tag_set(node, tag))
872 return;
873
874 offset = node->offset;
875 node = node->parent;
876 }
877
878 /* clear the root's tag bit */
879 if (root_tag_get(root, tag))
880 root_tag_clear(root, tag);
881 }
882
883 /**
884 * radix_tree_tag_clear - clear a tag on a radix tree node
885 * @root: radix tree root
886 * @index: index key
887 * @tag: tag index
888 *
889 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
890 * corresponding to @index in the radix tree. If this causes
891 * the leaf node to have no tags set then clear the tag in the
892 * next-to-leaf node, etc.
893 *
894 * Returns the address of the tagged item on success, else NULL. ie:
895 * has the same return value and semantics as radix_tree_lookup().
896 */
897 void *radix_tree_tag_clear(struct radix_tree_root *root,
898 unsigned long index, unsigned int tag)
899 {
900 struct radix_tree_node *node, *parent;
901 unsigned long maxindex;
902 int uninitialized_var(offset);
903
904 radix_tree_load_root(root, &node, &maxindex);
905 if (index > maxindex)
906 return NULL;
907
908 parent = NULL;
909
910 while (radix_tree_is_internal_node(node)) {
911 parent = entry_to_node(node);
912 offset = radix_tree_descend(parent, &node, index);
913 }
914
915 if (node)
916 node_tag_clear(root, parent, tag, offset);
917
918 return node;
919 }
920 EXPORT_SYMBOL(radix_tree_tag_clear);
921
922 /**
923 * radix_tree_tag_get - get a tag on a radix tree node
924 * @root: radix tree root
925 * @index: index key
926 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
927 *
928 * Return values:
929 *
930 * 0: tag not present or not set
931 * 1: tag set
932 *
933 * Note that the return value of this function may not be relied on, even if
934 * the RCU lock is held, unless tag modification and node deletion are excluded
935 * from concurrency.
936 */
937 int radix_tree_tag_get(struct radix_tree_root *root,
938 unsigned long index, unsigned int tag)
939 {
940 struct radix_tree_node *node, *parent;
941 unsigned long maxindex;
942
943 if (!root_tag_get(root, tag))
944 return 0;
945
946 radix_tree_load_root(root, &node, &maxindex);
947 if (index > maxindex)
948 return 0;
949 if (node == NULL)
950 return 0;
951
952 while (radix_tree_is_internal_node(node)) {
953 unsigned offset;
954
955 parent = entry_to_node(node);
956 offset = radix_tree_descend(parent, &node, index);
957
958 if (!node)
959 return 0;
960 if (!tag_get(parent, tag, offset))
961 return 0;
962 if (node == RADIX_TREE_RETRY)
963 break;
964 }
965
966 return 1;
967 }
968 EXPORT_SYMBOL(radix_tree_tag_get);
969
970 static inline void __set_iter_shift(struct radix_tree_iter *iter,
971 unsigned int shift)
972 {
973 #ifdef CONFIG_RADIX_TREE_MULTIORDER
974 iter->shift = shift;
975 #endif
976 }
977
978 /**
979 * radix_tree_next_chunk - find next chunk of slots for iteration
980 *
981 * @root: radix tree root
982 * @iter: iterator state
983 * @flags: RADIX_TREE_ITER_* flags and tag index
984 * Returns: pointer to chunk first slot, or NULL if iteration is over
985 */
986 void **radix_tree_next_chunk(struct radix_tree_root *root,
987 struct radix_tree_iter *iter, unsigned flags)
988 {
989 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
990 struct radix_tree_node *node, *child;
991 unsigned long index, offset, maxindex;
992
993 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
994 return NULL;
995
996 /*
997 * Catch next_index overflow after ~0UL. iter->index never overflows
998 * during iterating; it can be zero only at the beginning.
999 * And we cannot overflow iter->next_index in a single step,
1000 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1001 *
1002 * This condition also used by radix_tree_next_slot() to stop
1003 * contiguous iterating, and forbid swithing to the next chunk.
1004 */
1005 index = iter->next_index;
1006 if (!index && iter->index)
1007 return NULL;
1008
1009 restart:
1010 radix_tree_load_root(root, &child, &maxindex);
1011 if (index > maxindex)
1012 return NULL;
1013 if (!child)
1014 return NULL;
1015
1016 if (!radix_tree_is_internal_node(child)) {
1017 /* Single-slot tree */
1018 iter->index = index;
1019 iter->next_index = maxindex + 1;
1020 iter->tags = 1;
1021 __set_iter_shift(iter, 0);
1022 return (void **)&root->rnode;
1023 }
1024
1025 do {
1026 node = entry_to_node(child);
1027 offset = radix_tree_descend(node, &child, index);
1028
1029 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1030 !tag_get(node, tag, offset) : !child) {
1031 /* Hole detected */
1032 if (flags & RADIX_TREE_ITER_CONTIG)
1033 return NULL;
1034
1035 if (flags & RADIX_TREE_ITER_TAGGED)
1036 offset = radix_tree_find_next_bit(
1037 node->tags[tag],
1038 RADIX_TREE_MAP_SIZE,
1039 offset + 1);
1040 else
1041 while (++offset < RADIX_TREE_MAP_SIZE) {
1042 void *slot = node->slots[offset];
1043 if (is_sibling_entry(node, slot))
1044 continue;
1045 if (slot)
1046 break;
1047 }
1048 index &= ~node_maxindex(node);
1049 index += offset << node->shift;
1050 /* Overflow after ~0UL */
1051 if (!index)
1052 return NULL;
1053 if (offset == RADIX_TREE_MAP_SIZE)
1054 goto restart;
1055 child = rcu_dereference_raw(node->slots[offset]);
1056 }
1057
1058 if ((child == NULL) || (child == RADIX_TREE_RETRY))
1059 goto restart;
1060 } while (radix_tree_is_internal_node(child));
1061
1062 /* Update the iterator state */
1063 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1064 iter->next_index = (index | node_maxindex(node)) + 1;
1065 __set_iter_shift(iter, node->shift);
1066
1067 /* Construct iter->tags bit-mask from node->tags[tag] array */
1068 if (flags & RADIX_TREE_ITER_TAGGED) {
1069 unsigned tag_long, tag_bit;
1070
1071 tag_long = offset / BITS_PER_LONG;
1072 tag_bit = offset % BITS_PER_LONG;
1073 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1074 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1075 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1076 /* Pick tags from next element */
1077 if (tag_bit)
1078 iter->tags |= node->tags[tag][tag_long + 1] <<
1079 (BITS_PER_LONG - tag_bit);
1080 /* Clip chunk size, here only BITS_PER_LONG tags */
1081 iter->next_index = index + BITS_PER_LONG;
1082 }
1083 }
1084
1085 return node->slots + offset;
1086 }
1087 EXPORT_SYMBOL(radix_tree_next_chunk);
1088
1089 /**
1090 * radix_tree_range_tag_if_tagged - for each item in given range set given
1091 * tag if item has another tag set
1092 * @root: radix tree root
1093 * @first_indexp: pointer to a starting index of a range to scan
1094 * @last_index: last index of a range to scan
1095 * @nr_to_tag: maximum number items to tag
1096 * @iftag: tag index to test
1097 * @settag: tag index to set if tested tag is set
1098 *
1099 * This function scans range of radix tree from first_index to last_index
1100 * (inclusive). For each item in the range if iftag is set, the function sets
1101 * also settag. The function stops either after tagging nr_to_tag items or
1102 * after reaching last_index.
1103 *
1104 * The tags must be set from the leaf level only and propagated back up the
1105 * path to the root. We must do this so that we resolve the full path before
1106 * setting any tags on intermediate nodes. If we set tags as we descend, then
1107 * we can get to the leaf node and find that the index that has the iftag
1108 * set is outside the range we are scanning. This reults in dangling tags and
1109 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1110 *
1111 * The function returns the number of leaves where the tag was set and sets
1112 * *first_indexp to the first unscanned index.
1113 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1114 * be prepared to handle that.
1115 */
1116 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1117 unsigned long *first_indexp, unsigned long last_index,
1118 unsigned long nr_to_tag,
1119 unsigned int iftag, unsigned int settag)
1120 {
1121 struct radix_tree_node *parent, *node, *child;
1122 unsigned long maxindex;
1123 unsigned long tagged = 0;
1124 unsigned long index = *first_indexp;
1125
1126 radix_tree_load_root(root, &child, &maxindex);
1127 last_index = min(last_index, maxindex);
1128 if (index > last_index)
1129 return 0;
1130 if (!nr_to_tag)
1131 return 0;
1132 if (!root_tag_get(root, iftag)) {
1133 *first_indexp = last_index + 1;
1134 return 0;
1135 }
1136 if (!radix_tree_is_internal_node(child)) {
1137 *first_indexp = last_index + 1;
1138 root_tag_set(root, settag);
1139 return 1;
1140 }
1141
1142 node = entry_to_node(child);
1143
1144 for (;;) {
1145 unsigned offset = radix_tree_descend(node, &child, index);
1146 if (!child)
1147 goto next;
1148 if (!tag_get(node, iftag, offset))
1149 goto next;
1150 /* Sibling slots never have tags set on them */
1151 if (radix_tree_is_internal_node(child)) {
1152 node = entry_to_node(child);
1153 continue;
1154 }
1155
1156 /* tag the leaf */
1157 tagged++;
1158 tag_set(node, settag, offset);
1159
1160 /* walk back up the path tagging interior nodes */
1161 parent = node;
1162 for (;;) {
1163 offset = parent->offset;
1164 parent = parent->parent;
1165 if (!parent)
1166 break;
1167 /* stop if we find a node with the tag already set */
1168 if (tag_get(parent, settag, offset))
1169 break;
1170 tag_set(parent, settag, offset);
1171 }
1172 next:
1173 /* Go to next entry in node */
1174 index = ((index >> node->shift) + 1) << node->shift;
1175 /* Overflow can happen when last_index is ~0UL... */
1176 if (index > last_index || !index)
1177 break;
1178 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1179 while (offset == 0) {
1180 /*
1181 * We've fully scanned this node. Go up. Because
1182 * last_index is guaranteed to be in the tree, what
1183 * we do below cannot wander astray.
1184 */
1185 node = node->parent;
1186 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1187 }
1188 if (is_sibling_entry(node, node->slots[offset]))
1189 goto next;
1190 if (tagged >= nr_to_tag)
1191 break;
1192 }
1193 /*
1194 * We need not to tag the root tag if there is no tag which is set with
1195 * settag within the range from *first_indexp to last_index.
1196 */
1197 if (tagged > 0)
1198 root_tag_set(root, settag);
1199 *first_indexp = index;
1200
1201 return tagged;
1202 }
1203 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1204
1205 /**
1206 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1207 * @root: radix tree root
1208 * @results: where the results of the lookup are placed
1209 * @first_index: start the lookup from this key
1210 * @max_items: place up to this many items at *results
1211 *
1212 * Performs an index-ascending scan of the tree for present items. Places
1213 * them at *@results and returns the number of items which were placed at
1214 * *@results.
1215 *
1216 * The implementation is naive.
1217 *
1218 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1219 * rcu_read_lock. In this case, rather than the returned results being
1220 * an atomic snapshot of the tree at a single point in time, the
1221 * semantics of an RCU protected gang lookup are as though multiple
1222 * radix_tree_lookups have been issued in individual locks, and results
1223 * stored in 'results'.
1224 */
1225 unsigned int
1226 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1227 unsigned long first_index, unsigned int max_items)
1228 {
1229 struct radix_tree_iter iter;
1230 void **slot;
1231 unsigned int ret = 0;
1232
1233 if (unlikely(!max_items))
1234 return 0;
1235
1236 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1237 results[ret] = rcu_dereference_raw(*slot);
1238 if (!results[ret])
1239 continue;
1240 if (radix_tree_is_internal_node(results[ret])) {
1241 slot = radix_tree_iter_retry(&iter);
1242 continue;
1243 }
1244 if (++ret == max_items)
1245 break;
1246 }
1247
1248 return ret;
1249 }
1250 EXPORT_SYMBOL(radix_tree_gang_lookup);
1251
1252 /**
1253 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1254 * @root: radix tree root
1255 * @results: where the results of the lookup are placed
1256 * @indices: where their indices should be placed (but usually NULL)
1257 * @first_index: start the lookup from this key
1258 * @max_items: place up to this many items at *results
1259 *
1260 * Performs an index-ascending scan of the tree for present items. Places
1261 * their slots at *@results and returns the number of items which were
1262 * placed at *@results.
1263 *
1264 * The implementation is naive.
1265 *
1266 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1267 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1268 * protection, radix_tree_deref_slot may fail requiring a retry.
1269 */
1270 unsigned int
1271 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1272 void ***results, unsigned long *indices,
1273 unsigned long first_index, unsigned int max_items)
1274 {
1275 struct radix_tree_iter iter;
1276 void **slot;
1277 unsigned int ret = 0;
1278
1279 if (unlikely(!max_items))
1280 return 0;
1281
1282 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1283 results[ret] = slot;
1284 if (indices)
1285 indices[ret] = iter.index;
1286 if (++ret == max_items)
1287 break;
1288 }
1289
1290 return ret;
1291 }
1292 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1293
1294 /**
1295 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1296 * based on a tag
1297 * @root: radix tree root
1298 * @results: where the results of the lookup are placed
1299 * @first_index: start the lookup from this key
1300 * @max_items: place up to this many items at *results
1301 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1302 *
1303 * Performs an index-ascending scan of the tree for present items which
1304 * have the tag indexed by @tag set. Places the items at *@results and
1305 * returns the number of items which were placed at *@results.
1306 */
1307 unsigned int
1308 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1309 unsigned long first_index, unsigned int max_items,
1310 unsigned int tag)
1311 {
1312 struct radix_tree_iter iter;
1313 void **slot;
1314 unsigned int ret = 0;
1315
1316 if (unlikely(!max_items))
1317 return 0;
1318
1319 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1320 results[ret] = rcu_dereference_raw(*slot);
1321 if (!results[ret])
1322 continue;
1323 if (radix_tree_is_internal_node(results[ret])) {
1324 slot = radix_tree_iter_retry(&iter);
1325 continue;
1326 }
1327 if (++ret == max_items)
1328 break;
1329 }
1330
1331 return ret;
1332 }
1333 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1334
1335 /**
1336 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1337 * radix tree based on a tag
1338 * @root: radix tree root
1339 * @results: where the results of the lookup are placed
1340 * @first_index: start the lookup from this key
1341 * @max_items: place up to this many items at *results
1342 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1343 *
1344 * Performs an index-ascending scan of the tree for present items which
1345 * have the tag indexed by @tag set. Places the slots at *@results and
1346 * returns the number of slots which were placed at *@results.
1347 */
1348 unsigned int
1349 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1350 unsigned long first_index, unsigned int max_items,
1351 unsigned int tag)
1352 {
1353 struct radix_tree_iter iter;
1354 void **slot;
1355 unsigned int ret = 0;
1356
1357 if (unlikely(!max_items))
1358 return 0;
1359
1360 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1361 results[ret] = slot;
1362 if (++ret == max_items)
1363 break;
1364 }
1365
1366 return ret;
1367 }
1368 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1369
1370 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1371 #include <linux/sched.h> /* for cond_resched() */
1372
1373 struct locate_info {
1374 unsigned long found_index;
1375 bool stop;
1376 };
1377
1378 /*
1379 * This linear search is at present only useful to shmem_unuse_inode().
1380 */
1381 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1382 unsigned long index, struct locate_info *info)
1383 {
1384 unsigned long i;
1385
1386 do {
1387 unsigned int shift = slot->shift;
1388
1389 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1390 i < RADIX_TREE_MAP_SIZE;
1391 i++, index += (1UL << shift)) {
1392 struct radix_tree_node *node =
1393 rcu_dereference_raw(slot->slots[i]);
1394 if (node == RADIX_TREE_RETRY)
1395 goto out;
1396 if (!radix_tree_is_internal_node(node)) {
1397 if (node == item) {
1398 info->found_index = index;
1399 info->stop = true;
1400 goto out;
1401 }
1402 continue;
1403 }
1404 node = entry_to_node(node);
1405 if (is_sibling_entry(slot, node))
1406 continue;
1407 slot = node;
1408 break;
1409 }
1410 } while (i < RADIX_TREE_MAP_SIZE);
1411
1412 out:
1413 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1414 info->stop = true;
1415 return index;
1416 }
1417
1418 /**
1419 * radix_tree_locate_item - search through radix tree for item
1420 * @root: radix tree root
1421 * @item: item to be found
1422 *
1423 * Returns index where item was found, or -1 if not found.
1424 * Caller must hold no lock (since this time-consuming function needs
1425 * to be preemptible), and must check afterwards if item is still there.
1426 */
1427 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1428 {
1429 struct radix_tree_node *node;
1430 unsigned long max_index;
1431 unsigned long cur_index = 0;
1432 struct locate_info info = {
1433 .found_index = -1,
1434 .stop = false,
1435 };
1436
1437 do {
1438 rcu_read_lock();
1439 node = rcu_dereference_raw(root->rnode);
1440 if (!radix_tree_is_internal_node(node)) {
1441 rcu_read_unlock();
1442 if (node == item)
1443 info.found_index = 0;
1444 break;
1445 }
1446
1447 node = entry_to_node(node);
1448
1449 max_index = node_maxindex(node);
1450 if (cur_index > max_index) {
1451 rcu_read_unlock();
1452 break;
1453 }
1454
1455 cur_index = __locate(node, item, cur_index, &info);
1456 rcu_read_unlock();
1457 cond_resched();
1458 } while (!info.stop && cur_index <= max_index);
1459
1460 return info.found_index;
1461 }
1462 #else
1463 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1464 {
1465 return -1;
1466 }
1467 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1468
1469 /**
1470 * radix_tree_shrink - shrink radix tree to minimum height
1471 * @root radix tree root
1472 */
1473 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1474 {
1475 bool shrunk = false;
1476
1477 for (;;) {
1478 struct radix_tree_node *node = root->rnode;
1479 struct radix_tree_node *child;
1480
1481 if (!radix_tree_is_internal_node(node))
1482 break;
1483 node = entry_to_node(node);
1484
1485 /*
1486 * The candidate node has more than one child, or its child
1487 * is not at the leftmost slot, or the child is a multiorder
1488 * entry, we cannot shrink.
1489 */
1490 if (node->count != 1)
1491 break;
1492 child = node->slots[0];
1493 if (!child)
1494 break;
1495 if (!radix_tree_is_internal_node(child) && node->shift)
1496 break;
1497
1498 if (radix_tree_is_internal_node(child))
1499 entry_to_node(child)->parent = NULL;
1500
1501 /*
1502 * We don't need rcu_assign_pointer(), since we are simply
1503 * moving the node from one part of the tree to another: if it
1504 * was safe to dereference the old pointer to it
1505 * (node->slots[0]), it will be safe to dereference the new
1506 * one (root->rnode) as far as dependent read barriers go.
1507 */
1508 root->rnode = child;
1509
1510 /*
1511 * We have a dilemma here. The node's slot[0] must not be
1512 * NULLed in case there are concurrent lookups expecting to
1513 * find the item. However if this was a bottom-level node,
1514 * then it may be subject to the slot pointer being visible
1515 * to callers dereferencing it. If item corresponding to
1516 * slot[0] is subsequently deleted, these callers would expect
1517 * their slot to become empty sooner or later.
1518 *
1519 * For example, lockless pagecache will look up a slot, deref
1520 * the page pointer, and if the page has 0 refcount it means it
1521 * was concurrently deleted from pagecache so try the deref
1522 * again. Fortunately there is already a requirement for logic
1523 * to retry the entire slot lookup -- the indirect pointer
1524 * problem (replacing direct root node with an indirect pointer
1525 * also results in a stale slot). So tag the slot as indirect
1526 * to force callers to retry.
1527 */
1528 if (!radix_tree_is_internal_node(child))
1529 node->slots[0] = RADIX_TREE_RETRY;
1530
1531 radix_tree_node_free(node);
1532 shrunk = true;
1533 }
1534
1535 return shrunk;
1536 }
1537
1538 /**
1539 * __radix_tree_delete_node - try to free node after clearing a slot
1540 * @root: radix tree root
1541 * @node: node containing @index
1542 *
1543 * After clearing the slot at @index in @node from radix tree
1544 * rooted at @root, call this function to attempt freeing the
1545 * node and shrinking the tree.
1546 *
1547 * Returns %true if @node was freed, %false otherwise.
1548 */
1549 bool __radix_tree_delete_node(struct radix_tree_root *root,
1550 struct radix_tree_node *node)
1551 {
1552 bool deleted = false;
1553
1554 do {
1555 struct radix_tree_node *parent;
1556
1557 if (node->count) {
1558 if (node == entry_to_node(root->rnode))
1559 deleted |= radix_tree_shrink(root);
1560 return deleted;
1561 }
1562
1563 parent = node->parent;
1564 if (parent) {
1565 parent->slots[node->offset] = NULL;
1566 parent->count--;
1567 } else {
1568 root_tag_clear_all(root);
1569 root->rnode = NULL;
1570 }
1571
1572 radix_tree_node_free(node);
1573 deleted = true;
1574
1575 node = parent;
1576 } while (node);
1577
1578 return deleted;
1579 }
1580
1581 static inline void delete_sibling_entries(struct radix_tree_node *node,
1582 void *ptr, unsigned offset)
1583 {
1584 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1585 int i;
1586 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1587 if (node->slots[offset + i] != ptr)
1588 break;
1589 node->slots[offset + i] = NULL;
1590 node->count--;
1591 }
1592 #endif
1593 }
1594
1595 /**
1596 * radix_tree_delete_item - delete an item from a radix tree
1597 * @root: radix tree root
1598 * @index: index key
1599 * @item: expected item
1600 *
1601 * Remove @item at @index from the radix tree rooted at @root.
1602 *
1603 * Returns the address of the deleted item, or NULL if it was not present
1604 * or the entry at the given @index was not @item.
1605 */
1606 void *radix_tree_delete_item(struct radix_tree_root *root,
1607 unsigned long index, void *item)
1608 {
1609 struct radix_tree_node *node;
1610 unsigned int offset;
1611 void **slot;
1612 void *entry;
1613 int tag;
1614
1615 entry = __radix_tree_lookup(root, index, &node, &slot);
1616 if (!entry)
1617 return NULL;
1618
1619 if (item && entry != item)
1620 return NULL;
1621
1622 if (!node) {
1623 root_tag_clear_all(root);
1624 root->rnode = NULL;
1625 return entry;
1626 }
1627
1628 offset = get_slot_offset(node, slot);
1629
1630 /* Clear all tags associated with the item to be deleted. */
1631 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1632 node_tag_clear(root, node, tag, offset);
1633
1634 delete_sibling_entries(node, node_to_entry(slot), offset);
1635 node->slots[offset] = NULL;
1636 node->count--;
1637 if (radix_tree_exceptional_entry(entry))
1638 node->exceptional--;
1639
1640 __radix_tree_delete_node(root, node);
1641
1642 return entry;
1643 }
1644 EXPORT_SYMBOL(radix_tree_delete_item);
1645
1646 /**
1647 * radix_tree_delete - delete an item from a radix tree
1648 * @root: radix tree root
1649 * @index: index key
1650 *
1651 * Remove the item at @index from the radix tree rooted at @root.
1652 *
1653 * Returns the address of the deleted item, or NULL if it was not present.
1654 */
1655 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1656 {
1657 return radix_tree_delete_item(root, index, NULL);
1658 }
1659 EXPORT_SYMBOL(radix_tree_delete);
1660
1661 void radix_tree_clear_tags(struct radix_tree_root *root,
1662 struct radix_tree_node *node,
1663 void **slot)
1664 {
1665 if (node) {
1666 unsigned int tag, offset = get_slot_offset(node, slot);
1667 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1668 node_tag_clear(root, node, tag, offset);
1669 } else {
1670 /* Clear root node tags */
1671 root->gfp_mask &= __GFP_BITS_MASK;
1672 }
1673 }
1674
1675 /**
1676 * radix_tree_tagged - test whether any items in the tree are tagged
1677 * @root: radix tree root
1678 * @tag: tag to test
1679 */
1680 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1681 {
1682 return root_tag_get(root, tag);
1683 }
1684 EXPORT_SYMBOL(radix_tree_tagged);
1685
1686 static void
1687 radix_tree_node_ctor(void *arg)
1688 {
1689 struct radix_tree_node *node = arg;
1690
1691 memset(node, 0, sizeof(*node));
1692 INIT_LIST_HEAD(&node->private_list);
1693 }
1694
1695 static __init unsigned long __maxindex(unsigned int height)
1696 {
1697 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1698 int shift = RADIX_TREE_INDEX_BITS - width;
1699
1700 if (shift < 0)
1701 return ~0UL;
1702 if (shift >= BITS_PER_LONG)
1703 return 0UL;
1704 return ~0UL >> shift;
1705 }
1706
1707 static __init void radix_tree_init_maxnodes(void)
1708 {
1709 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1710 unsigned int i, j;
1711
1712 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1713 height_to_maxindex[i] = __maxindex(i);
1714 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1715 for (j = i; j > 0; j--)
1716 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1717 }
1718 }
1719
1720 static int radix_tree_callback(struct notifier_block *nfb,
1721 unsigned long action, void *hcpu)
1722 {
1723 int cpu = (long)hcpu;
1724 struct radix_tree_preload *rtp;
1725 struct radix_tree_node *node;
1726
1727 /* Free per-cpu pool of preloaded nodes */
1728 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1729 rtp = &per_cpu(radix_tree_preloads, cpu);
1730 while (rtp->nr) {
1731 node = rtp->nodes;
1732 rtp->nodes = node->private_data;
1733 kmem_cache_free(radix_tree_node_cachep, node);
1734 rtp->nr--;
1735 }
1736 }
1737 return NOTIFY_OK;
1738 }
1739
1740 void __init radix_tree_init(void)
1741 {
1742 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1743 sizeof(struct radix_tree_node), 0,
1744 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1745 radix_tree_node_ctor);
1746 radix_tree_init_maxnodes();
1747 hotcpu_notifier(radix_tree_callback, 0);
1748 }