]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/radix-tree.c
Merge tag 'perf-urgent-for-mingo-4.10-20170104' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/export.h>
30 #include <linux/radix-tree.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/kmemleak.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
44 /*
45 * Radix tree node cache.
46 */
47 static struct kmem_cache *radix_tree_node_cachep;
48
49 /*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
62 /*
63 * Per-cpu pool of preloaded nodes
64 */
65 struct radix_tree_preload {
66 unsigned nr;
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71
72 static inline struct radix_tree_node *entry_to_node(void *ptr)
73 {
74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75 }
76
77 static inline void *node_to_entry(void *ptr)
78 {
79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
80 }
81
82 #define RADIX_TREE_RETRY node_to_entry(NULL)
83
84 #ifdef CONFIG_RADIX_TREE_MULTIORDER
85 /* Sibling slots point directly to another slot in the same node */
86 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
87 {
88 void **ptr = node;
89 return (parent->slots <= ptr) &&
90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
91 }
92 #else
93 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94 {
95 return false;
96 }
97 #endif
98
99 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 void **slot)
101 {
102 return slot - parent->slots;
103 }
104
105 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 struct radix_tree_node **nodep, unsigned long index)
107 {
108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
109 void **entry = rcu_dereference_raw(parent->slots[offset]);
110
111 #ifdef CONFIG_RADIX_TREE_MULTIORDER
112 if (radix_tree_is_internal_node(entry)) {
113 if (is_sibling_entry(parent, entry)) {
114 void **sibentry = (void **) entry_to_node(entry);
115 offset = get_slot_offset(parent, sibentry);
116 entry = rcu_dereference_raw(*sibentry);
117 }
118 }
119 #endif
120
121 *nodep = (void *)entry;
122 return offset;
123 }
124
125 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
126 {
127 return root->gfp_mask & __GFP_BITS_MASK;
128 }
129
130 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132 {
133 __set_bit(offset, node->tags[tag]);
134 }
135
136 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138 {
139 __clear_bit(offset, node->tags[tag]);
140 }
141
142 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 int offset)
144 {
145 return test_bit(offset, node->tags[tag]);
146 }
147
148 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
149 {
150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
151 }
152
153 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
154 {
155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
156 }
157
158 static inline void root_tag_clear_all(struct radix_tree_root *root)
159 {
160 root->gfp_mask &= __GFP_BITS_MASK;
161 }
162
163 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
164 {
165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
166 }
167
168 static inline unsigned root_tags_get(struct radix_tree_root *root)
169 {
170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
171 }
172
173 /*
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
176 */
177 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
178 {
179 unsigned idx;
180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 if (node->tags[tag][idx])
182 return 1;
183 }
184 return 0;
185 }
186
187 /**
188 * radix_tree_find_next_bit - find the next set bit in a memory region
189 *
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
193 *
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
197 */
198 static __always_inline unsigned long
199 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 unsigned long offset)
201 {
202 const unsigned long *addr = node->tags[tag];
203
204 if (offset < RADIX_TREE_MAP_SIZE) {
205 unsigned long tmp;
206
207 addr += offset / BITS_PER_LONG;
208 tmp = *addr >> (offset % BITS_PER_LONG);
209 if (tmp)
210 return __ffs(tmp) + offset;
211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
212 while (offset < RADIX_TREE_MAP_SIZE) {
213 tmp = *++addr;
214 if (tmp)
215 return __ffs(tmp) + offset;
216 offset += BITS_PER_LONG;
217 }
218 }
219 return RADIX_TREE_MAP_SIZE;
220 }
221
222 static unsigned int iter_offset(const struct radix_tree_iter *iter)
223 {
224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
225 }
226
227 /*
228 * The maximum index which can be stored in a radix tree
229 */
230 static inline unsigned long shift_maxindex(unsigned int shift)
231 {
232 return (RADIX_TREE_MAP_SIZE << shift) - 1;
233 }
234
235 static inline unsigned long node_maxindex(struct radix_tree_node *node)
236 {
237 return shift_maxindex(node->shift);
238 }
239
240 #ifndef __KERNEL__
241 static void dump_node(struct radix_tree_node *node, unsigned long index)
242 {
243 unsigned long i;
244
245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 node, node->offset, index, index | node_maxindex(node),
247 node->parent,
248 node->tags[0][0], node->tags[1][0], node->tags[2][0],
249 node->shift, node->count, node->exceptional);
250
251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
252 unsigned long first = index | (i << node->shift);
253 unsigned long last = first | ((1UL << node->shift) - 1);
254 void *entry = node->slots[i];
255 if (!entry)
256 continue;
257 if (entry == RADIX_TREE_RETRY) {
258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 i, first, last, node);
260 } else if (!radix_tree_is_internal_node(entry)) {
261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 entry, i, first, last, node);
263 } else if (is_sibling_entry(node, entry)) {
264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 entry, i, first, last, node,
266 *(void **)entry_to_node(entry));
267 } else {
268 dump_node(entry_to_node(entry), first);
269 }
270 }
271 }
272
273 /* For debug */
274 static void radix_tree_dump(struct radix_tree_root *root)
275 {
276 pr_debug("radix root: %p rnode %p tags %x\n",
277 root, root->rnode,
278 root->gfp_mask >> __GFP_BITS_SHIFT);
279 if (!radix_tree_is_internal_node(root->rnode))
280 return;
281 dump_node(entry_to_node(root->rnode), 0);
282 }
283 #endif
284
285 /*
286 * This assumes that the caller has performed appropriate preallocation, and
287 * that the caller has pinned this thread of control to the current CPU.
288 */
289 static struct radix_tree_node *
290 radix_tree_node_alloc(struct radix_tree_root *root,
291 struct radix_tree_node *parent,
292 unsigned int shift, unsigned int offset,
293 unsigned int count, unsigned int exceptional)
294 {
295 struct radix_tree_node *ret = NULL;
296 gfp_t gfp_mask = root_gfp_mask(root);
297
298 /*
299 * Preload code isn't irq safe and it doesn't make sense to use
300 * preloading during an interrupt anyway as all the allocations have
301 * to be atomic. So just do normal allocation when in interrupt.
302 */
303 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
304 struct radix_tree_preload *rtp;
305
306 /*
307 * Even if the caller has preloaded, try to allocate from the
308 * cache first for the new node to get accounted to the memory
309 * cgroup.
310 */
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
312 gfp_mask | __GFP_NOWARN);
313 if (ret)
314 goto out;
315
316 /*
317 * Provided the caller has preloaded here, we will always
318 * succeed in getting a node here (and never reach
319 * kmem_cache_alloc)
320 */
321 rtp = this_cpu_ptr(&radix_tree_preloads);
322 if (rtp->nr) {
323 ret = rtp->nodes;
324 rtp->nodes = ret->private_data;
325 ret->private_data = NULL;
326 rtp->nr--;
327 }
328 /*
329 * Update the allocation stack trace as this is more useful
330 * for debugging.
331 */
332 kmemleak_update_trace(ret);
333 goto out;
334 }
335 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
336 out:
337 BUG_ON(radix_tree_is_internal_node(ret));
338 if (ret) {
339 ret->parent = parent;
340 ret->shift = shift;
341 ret->offset = offset;
342 ret->count = count;
343 ret->exceptional = exceptional;
344 }
345 return ret;
346 }
347
348 static void radix_tree_node_rcu_free(struct rcu_head *head)
349 {
350 struct radix_tree_node *node =
351 container_of(head, struct radix_tree_node, rcu_head);
352
353 /*
354 * Must only free zeroed nodes into the slab. We can be left with
355 * non-NULL entries by radix_tree_free_nodes, so clear the entries
356 * and tags here.
357 */
358 memset(node->slots, 0, sizeof(node->slots));
359 memset(node->tags, 0, sizeof(node->tags));
360 INIT_LIST_HEAD(&node->private_list);
361
362 kmem_cache_free(radix_tree_node_cachep, node);
363 }
364
365 static inline void
366 radix_tree_node_free(struct radix_tree_node *node)
367 {
368 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
369 }
370
371 /*
372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
373 * ensure that the addition of a single element in the tree cannot fail. On
374 * success, return zero, with preemption disabled. On error, return -ENOMEM
375 * with preemption not disabled.
376 *
377 * To make use of this facility, the radix tree must be initialised without
378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
379 */
380 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
381 {
382 struct radix_tree_preload *rtp;
383 struct radix_tree_node *node;
384 int ret = -ENOMEM;
385
386 /*
387 * Nodes preloaded by one cgroup can be be used by another cgroup, so
388 * they should never be accounted to any particular memory cgroup.
389 */
390 gfp_mask &= ~__GFP_ACCOUNT;
391
392 preempt_disable();
393 rtp = this_cpu_ptr(&radix_tree_preloads);
394 while (rtp->nr < nr) {
395 preempt_enable();
396 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
397 if (node == NULL)
398 goto out;
399 preempt_disable();
400 rtp = this_cpu_ptr(&radix_tree_preloads);
401 if (rtp->nr < nr) {
402 node->private_data = rtp->nodes;
403 rtp->nodes = node;
404 rtp->nr++;
405 } else {
406 kmem_cache_free(radix_tree_node_cachep, node);
407 }
408 }
409 ret = 0;
410 out:
411 return ret;
412 }
413
414 /*
415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
416 * ensure that the addition of a single element in the tree cannot fail. On
417 * success, return zero, with preemption disabled. On error, return -ENOMEM
418 * with preemption not disabled.
419 *
420 * To make use of this facility, the radix tree must be initialised without
421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
422 */
423 int radix_tree_preload(gfp_t gfp_mask)
424 {
425 /* Warn on non-sensical use... */
426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
428 }
429 EXPORT_SYMBOL(radix_tree_preload);
430
431 /*
432 * The same as above function, except we don't guarantee preloading happens.
433 * We do it, if we decide it helps. On success, return zero with preemption
434 * disabled. On error, return -ENOMEM with preemption not disabled.
435 */
436 int radix_tree_maybe_preload(gfp_t gfp_mask)
437 {
438 if (gfpflags_allow_blocking(gfp_mask))
439 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
440 /* Preloading doesn't help anything with this gfp mask, skip it */
441 preempt_disable();
442 return 0;
443 }
444 EXPORT_SYMBOL(radix_tree_maybe_preload);
445
446 #ifdef CONFIG_RADIX_TREE_MULTIORDER
447 /*
448 * Preload with enough objects to ensure that we can split a single entry
449 * of order @old_order into many entries of size @new_order
450 */
451 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
452 gfp_t gfp_mask)
453 {
454 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
455 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
456 (new_order / RADIX_TREE_MAP_SHIFT);
457 unsigned nr = 0;
458
459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
460 BUG_ON(new_order >= old_order);
461
462 while (layers--)
463 nr = nr * RADIX_TREE_MAP_SIZE + 1;
464 return __radix_tree_preload(gfp_mask, top * nr);
465 }
466 #endif
467
468 /*
469 * The same as function above, but preload number of nodes required to insert
470 * (1 << order) continuous naturally-aligned elements.
471 */
472 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
473 {
474 unsigned long nr_subtrees;
475 int nr_nodes, subtree_height;
476
477 /* Preloading doesn't help anything with this gfp mask, skip it */
478 if (!gfpflags_allow_blocking(gfp_mask)) {
479 preempt_disable();
480 return 0;
481 }
482
483 /*
484 * Calculate number and height of fully populated subtrees it takes to
485 * store (1 << order) elements.
486 */
487 nr_subtrees = 1 << order;
488 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
489 subtree_height++)
490 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
491
492 /*
493 * The worst case is zero height tree with a single item at index 0 and
494 * then inserting items starting at ULONG_MAX - (1 << order).
495 *
496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
497 * 0-index item.
498 */
499 nr_nodes = RADIX_TREE_MAX_PATH;
500
501 /* Plus branch to fully populated subtrees. */
502 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
503
504 /* Root node is shared. */
505 nr_nodes--;
506
507 /* Plus nodes required to build subtrees. */
508 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
509
510 return __radix_tree_preload(gfp_mask, nr_nodes);
511 }
512
513 static unsigned radix_tree_load_root(struct radix_tree_root *root,
514 struct radix_tree_node **nodep, unsigned long *maxindex)
515 {
516 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
517
518 *nodep = node;
519
520 if (likely(radix_tree_is_internal_node(node))) {
521 node = entry_to_node(node);
522 *maxindex = node_maxindex(node);
523 return node->shift + RADIX_TREE_MAP_SHIFT;
524 }
525
526 *maxindex = 0;
527 return 0;
528 }
529
530 /*
531 * Extend a radix tree so it can store key @index.
532 */
533 static int radix_tree_extend(struct radix_tree_root *root,
534 unsigned long index, unsigned int shift)
535 {
536 struct radix_tree_node *slot;
537 unsigned int maxshift;
538 int tag;
539
540 /* Figure out what the shift should be. */
541 maxshift = shift;
542 while (index > shift_maxindex(maxshift))
543 maxshift += RADIX_TREE_MAP_SHIFT;
544
545 slot = root->rnode;
546 if (!slot)
547 goto out;
548
549 do {
550 struct radix_tree_node *node = radix_tree_node_alloc(root,
551 NULL, shift, 0, 1, 0);
552 if (!node)
553 return -ENOMEM;
554
555 /* Propagate the aggregated tag info into the new root */
556 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
557 if (root_tag_get(root, tag))
558 tag_set(node, tag, 0);
559 }
560
561 BUG_ON(shift > BITS_PER_LONG);
562 if (radix_tree_is_internal_node(slot)) {
563 entry_to_node(slot)->parent = node;
564 } else if (radix_tree_exceptional_entry(slot)) {
565 /* Moving an exceptional root->rnode to a node */
566 node->exceptional = 1;
567 }
568 node->slots[0] = slot;
569 slot = node_to_entry(node);
570 rcu_assign_pointer(root->rnode, slot);
571 shift += RADIX_TREE_MAP_SHIFT;
572 } while (shift <= maxshift);
573 out:
574 return maxshift + RADIX_TREE_MAP_SHIFT;
575 }
576
577 /**
578 * radix_tree_shrink - shrink radix tree to minimum height
579 * @root radix tree root
580 */
581 static inline void radix_tree_shrink(struct radix_tree_root *root,
582 radix_tree_update_node_t update_node,
583 void *private)
584 {
585 for (;;) {
586 struct radix_tree_node *node = root->rnode;
587 struct radix_tree_node *child;
588
589 if (!radix_tree_is_internal_node(node))
590 break;
591 node = entry_to_node(node);
592
593 /*
594 * The candidate node has more than one child, or its child
595 * is not at the leftmost slot, or the child is a multiorder
596 * entry, we cannot shrink.
597 */
598 if (node->count != 1)
599 break;
600 child = node->slots[0];
601 if (!child)
602 break;
603 if (!radix_tree_is_internal_node(child) && node->shift)
604 break;
605
606 if (radix_tree_is_internal_node(child))
607 entry_to_node(child)->parent = NULL;
608
609 /*
610 * We don't need rcu_assign_pointer(), since we are simply
611 * moving the node from one part of the tree to another: if it
612 * was safe to dereference the old pointer to it
613 * (node->slots[0]), it will be safe to dereference the new
614 * one (root->rnode) as far as dependent read barriers go.
615 */
616 root->rnode = child;
617
618 /*
619 * We have a dilemma here. The node's slot[0] must not be
620 * NULLed in case there are concurrent lookups expecting to
621 * find the item. However if this was a bottom-level node,
622 * then it may be subject to the slot pointer being visible
623 * to callers dereferencing it. If item corresponding to
624 * slot[0] is subsequently deleted, these callers would expect
625 * their slot to become empty sooner or later.
626 *
627 * For example, lockless pagecache will look up a slot, deref
628 * the page pointer, and if the page has 0 refcount it means it
629 * was concurrently deleted from pagecache so try the deref
630 * again. Fortunately there is already a requirement for logic
631 * to retry the entire slot lookup -- the indirect pointer
632 * problem (replacing direct root node with an indirect pointer
633 * also results in a stale slot). So tag the slot as indirect
634 * to force callers to retry.
635 */
636 node->count = 0;
637 if (!radix_tree_is_internal_node(child)) {
638 node->slots[0] = RADIX_TREE_RETRY;
639 if (update_node)
640 update_node(node, private);
641 }
642
643 radix_tree_node_free(node);
644 }
645 }
646
647 static void delete_node(struct radix_tree_root *root,
648 struct radix_tree_node *node,
649 radix_tree_update_node_t update_node, void *private)
650 {
651 do {
652 struct radix_tree_node *parent;
653
654 if (node->count) {
655 if (node == entry_to_node(root->rnode))
656 radix_tree_shrink(root, update_node, private);
657 return;
658 }
659
660 parent = node->parent;
661 if (parent) {
662 parent->slots[node->offset] = NULL;
663 parent->count--;
664 } else {
665 root_tag_clear_all(root);
666 root->rnode = NULL;
667 }
668
669 radix_tree_node_free(node);
670
671 node = parent;
672 } while (node);
673 }
674
675 /**
676 * __radix_tree_create - create a slot in a radix tree
677 * @root: radix tree root
678 * @index: index key
679 * @order: index occupies 2^order aligned slots
680 * @nodep: returns node
681 * @slotp: returns slot
682 *
683 * Create, if necessary, and return the node and slot for an item
684 * at position @index in the radix tree @root.
685 *
686 * Until there is more than one item in the tree, no nodes are
687 * allocated and @root->rnode is used as a direct slot instead of
688 * pointing to a node, in which case *@nodep will be NULL.
689 *
690 * Returns -ENOMEM, or 0 for success.
691 */
692 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
693 unsigned order, struct radix_tree_node **nodep,
694 void ***slotp)
695 {
696 struct radix_tree_node *node = NULL, *child;
697 void **slot = (void **)&root->rnode;
698 unsigned long maxindex;
699 unsigned int shift, offset = 0;
700 unsigned long max = index | ((1UL << order) - 1);
701
702 shift = radix_tree_load_root(root, &child, &maxindex);
703
704 /* Make sure the tree is high enough. */
705 if (order > 0 && max == ((1UL << order) - 1))
706 max++;
707 if (max > maxindex) {
708 int error = radix_tree_extend(root, max, shift);
709 if (error < 0)
710 return error;
711 shift = error;
712 child = root->rnode;
713 }
714
715 while (shift > order) {
716 shift -= RADIX_TREE_MAP_SHIFT;
717 if (child == NULL) {
718 /* Have to add a child node. */
719 child = radix_tree_node_alloc(root, node, shift,
720 offset, 0, 0);
721 if (!child)
722 return -ENOMEM;
723 rcu_assign_pointer(*slot, node_to_entry(child));
724 if (node)
725 node->count++;
726 } else if (!radix_tree_is_internal_node(child))
727 break;
728
729 /* Go a level down */
730 node = entry_to_node(child);
731 offset = radix_tree_descend(node, &child, index);
732 slot = &node->slots[offset];
733 }
734
735 if (nodep)
736 *nodep = node;
737 if (slotp)
738 *slotp = slot;
739 return 0;
740 }
741
742 #ifdef CONFIG_RADIX_TREE_MULTIORDER
743 /*
744 * Free any nodes below this node. The tree is presumed to not need
745 * shrinking, and any user data in the tree is presumed to not need a
746 * destructor called on it. If we need to add a destructor, we can
747 * add that functionality later. Note that we may not clear tags or
748 * slots from the tree as an RCU walker may still have a pointer into
749 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
750 * but we'll still have to clear those in rcu_free.
751 */
752 static void radix_tree_free_nodes(struct radix_tree_node *node)
753 {
754 unsigned offset = 0;
755 struct radix_tree_node *child = entry_to_node(node);
756
757 for (;;) {
758 void *entry = child->slots[offset];
759 if (radix_tree_is_internal_node(entry) &&
760 !is_sibling_entry(child, entry)) {
761 child = entry_to_node(entry);
762 offset = 0;
763 continue;
764 }
765 offset++;
766 while (offset == RADIX_TREE_MAP_SIZE) {
767 struct radix_tree_node *old = child;
768 offset = child->offset + 1;
769 child = child->parent;
770 radix_tree_node_free(old);
771 if (old == entry_to_node(node))
772 return;
773 }
774 }
775 }
776
777 static inline int insert_entries(struct radix_tree_node *node, void **slot,
778 void *item, unsigned order, bool replace)
779 {
780 struct radix_tree_node *child;
781 unsigned i, n, tag, offset, tags = 0;
782
783 if (node) {
784 if (order > node->shift)
785 n = 1 << (order - node->shift);
786 else
787 n = 1;
788 offset = get_slot_offset(node, slot);
789 } else {
790 n = 1;
791 offset = 0;
792 }
793
794 if (n > 1) {
795 offset = offset & ~(n - 1);
796 slot = &node->slots[offset];
797 }
798 child = node_to_entry(slot);
799
800 for (i = 0; i < n; i++) {
801 if (slot[i]) {
802 if (replace) {
803 node->count--;
804 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
805 if (tag_get(node, tag, offset + i))
806 tags |= 1 << tag;
807 } else
808 return -EEXIST;
809 }
810 }
811
812 for (i = 0; i < n; i++) {
813 struct radix_tree_node *old = slot[i];
814 if (i) {
815 rcu_assign_pointer(slot[i], child);
816 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
817 if (tags & (1 << tag))
818 tag_clear(node, tag, offset + i);
819 } else {
820 rcu_assign_pointer(slot[i], item);
821 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
822 if (tags & (1 << tag))
823 tag_set(node, tag, offset);
824 }
825 if (radix_tree_is_internal_node(old) &&
826 !is_sibling_entry(node, old) &&
827 (old != RADIX_TREE_RETRY))
828 radix_tree_free_nodes(old);
829 if (radix_tree_exceptional_entry(old))
830 node->exceptional--;
831 }
832 if (node) {
833 node->count += n;
834 if (radix_tree_exceptional_entry(item))
835 node->exceptional += n;
836 }
837 return n;
838 }
839 #else
840 static inline int insert_entries(struct radix_tree_node *node, void **slot,
841 void *item, unsigned order, bool replace)
842 {
843 if (*slot)
844 return -EEXIST;
845 rcu_assign_pointer(*slot, item);
846 if (node) {
847 node->count++;
848 if (radix_tree_exceptional_entry(item))
849 node->exceptional++;
850 }
851 return 1;
852 }
853 #endif
854
855 /**
856 * __radix_tree_insert - insert into a radix tree
857 * @root: radix tree root
858 * @index: index key
859 * @order: key covers the 2^order indices around index
860 * @item: item to insert
861 *
862 * Insert an item into the radix tree at position @index.
863 */
864 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
865 unsigned order, void *item)
866 {
867 struct radix_tree_node *node;
868 void **slot;
869 int error;
870
871 BUG_ON(radix_tree_is_internal_node(item));
872
873 error = __radix_tree_create(root, index, order, &node, &slot);
874 if (error)
875 return error;
876
877 error = insert_entries(node, slot, item, order, false);
878 if (error < 0)
879 return error;
880
881 if (node) {
882 unsigned offset = get_slot_offset(node, slot);
883 BUG_ON(tag_get(node, 0, offset));
884 BUG_ON(tag_get(node, 1, offset));
885 BUG_ON(tag_get(node, 2, offset));
886 } else {
887 BUG_ON(root_tags_get(root));
888 }
889
890 return 0;
891 }
892 EXPORT_SYMBOL(__radix_tree_insert);
893
894 /**
895 * __radix_tree_lookup - lookup an item in a radix tree
896 * @root: radix tree root
897 * @index: index key
898 * @nodep: returns node
899 * @slotp: returns slot
900 *
901 * Lookup and return the item at position @index in the radix
902 * tree @root.
903 *
904 * Until there is more than one item in the tree, no nodes are
905 * allocated and @root->rnode is used as a direct slot instead of
906 * pointing to a node, in which case *@nodep will be NULL.
907 */
908 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
909 struct radix_tree_node **nodep, void ***slotp)
910 {
911 struct radix_tree_node *node, *parent;
912 unsigned long maxindex;
913 void **slot;
914
915 restart:
916 parent = NULL;
917 slot = (void **)&root->rnode;
918 radix_tree_load_root(root, &node, &maxindex);
919 if (index > maxindex)
920 return NULL;
921
922 while (radix_tree_is_internal_node(node)) {
923 unsigned offset;
924
925 if (node == RADIX_TREE_RETRY)
926 goto restart;
927 parent = entry_to_node(node);
928 offset = radix_tree_descend(parent, &node, index);
929 slot = parent->slots + offset;
930 }
931
932 if (nodep)
933 *nodep = parent;
934 if (slotp)
935 *slotp = slot;
936 return node;
937 }
938
939 /**
940 * radix_tree_lookup_slot - lookup a slot in a radix tree
941 * @root: radix tree root
942 * @index: index key
943 *
944 * Returns: the slot corresponding to the position @index in the
945 * radix tree @root. This is useful for update-if-exists operations.
946 *
947 * This function can be called under rcu_read_lock iff the slot is not
948 * modified by radix_tree_replace_slot, otherwise it must be called
949 * exclusive from other writers. Any dereference of the slot must be done
950 * using radix_tree_deref_slot.
951 */
952 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
953 {
954 void **slot;
955
956 if (!__radix_tree_lookup(root, index, NULL, &slot))
957 return NULL;
958 return slot;
959 }
960 EXPORT_SYMBOL(radix_tree_lookup_slot);
961
962 /**
963 * radix_tree_lookup - perform lookup operation on a radix tree
964 * @root: radix tree root
965 * @index: index key
966 *
967 * Lookup the item at the position @index in the radix tree @root.
968 *
969 * This function can be called under rcu_read_lock, however the caller
970 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
971 * them safely). No RCU barriers are required to access or modify the
972 * returned item, however.
973 */
974 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
975 {
976 return __radix_tree_lookup(root, index, NULL, NULL);
977 }
978 EXPORT_SYMBOL(radix_tree_lookup);
979
980 static inline int slot_count(struct radix_tree_node *node,
981 void **slot)
982 {
983 int n = 1;
984 #ifdef CONFIG_RADIX_TREE_MULTIORDER
985 void *ptr = node_to_entry(slot);
986 unsigned offset = get_slot_offset(node, slot);
987 int i;
988
989 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
990 if (node->slots[offset + i] != ptr)
991 break;
992 n++;
993 }
994 #endif
995 return n;
996 }
997
998 static void replace_slot(struct radix_tree_root *root,
999 struct radix_tree_node *node,
1000 void **slot, void *item,
1001 bool warn_typeswitch)
1002 {
1003 void *old = rcu_dereference_raw(*slot);
1004 int count, exceptional;
1005
1006 WARN_ON_ONCE(radix_tree_is_internal_node(item));
1007
1008 count = !!item - !!old;
1009 exceptional = !!radix_tree_exceptional_entry(item) -
1010 !!radix_tree_exceptional_entry(old);
1011
1012 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1013
1014 if (node) {
1015 node->count += count;
1016 if (exceptional) {
1017 exceptional *= slot_count(node, slot);
1018 node->exceptional += exceptional;
1019 }
1020 }
1021
1022 rcu_assign_pointer(*slot, item);
1023 }
1024
1025 static inline void delete_sibling_entries(struct radix_tree_node *node,
1026 void **slot)
1027 {
1028 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1029 bool exceptional = radix_tree_exceptional_entry(*slot);
1030 void *ptr = node_to_entry(slot);
1031 unsigned offset = get_slot_offset(node, slot);
1032 int i;
1033
1034 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1035 if (node->slots[offset + i] != ptr)
1036 break;
1037 node->slots[offset + i] = NULL;
1038 node->count--;
1039 if (exceptional)
1040 node->exceptional--;
1041 }
1042 #endif
1043 }
1044
1045 /**
1046 * __radix_tree_replace - replace item in a slot
1047 * @root: radix tree root
1048 * @node: pointer to tree node
1049 * @slot: pointer to slot in @node
1050 * @item: new item to store in the slot.
1051 * @update_node: callback for changing leaf nodes
1052 * @private: private data to pass to @update_node
1053 *
1054 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1055 * across slot lookup and replacement.
1056 */
1057 void __radix_tree_replace(struct radix_tree_root *root,
1058 struct radix_tree_node *node,
1059 void **slot, void *item,
1060 radix_tree_update_node_t update_node, void *private)
1061 {
1062 if (!item)
1063 delete_sibling_entries(node, slot);
1064 /*
1065 * This function supports replacing exceptional entries and
1066 * deleting entries, but that needs accounting against the
1067 * node unless the slot is root->rnode.
1068 */
1069 replace_slot(root, node, slot, item,
1070 !node && slot != (void **)&root->rnode);
1071
1072 if (!node)
1073 return;
1074
1075 if (update_node)
1076 update_node(node, private);
1077
1078 delete_node(root, node, update_node, private);
1079 }
1080
1081 /**
1082 * radix_tree_replace_slot - replace item in a slot
1083 * @root: radix tree root
1084 * @slot: pointer to slot
1085 * @item: new item to store in the slot.
1086 *
1087 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1088 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1089 * across slot lookup and replacement.
1090 *
1091 * NOTE: This cannot be used to switch between non-entries (empty slots),
1092 * regular entries, and exceptional entries, as that requires accounting
1093 * inside the radix tree node. When switching from one type of entry or
1094 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1095 * radix_tree_iter_replace().
1096 */
1097 void radix_tree_replace_slot(struct radix_tree_root *root,
1098 void **slot, void *item)
1099 {
1100 replace_slot(root, NULL, slot, item, true);
1101 }
1102
1103 /**
1104 * radix_tree_iter_replace - replace item in a slot
1105 * @root: radix tree root
1106 * @slot: pointer to slot
1107 * @item: new item to store in the slot.
1108 *
1109 * For use with radix_tree_split() and radix_tree_for_each_slot().
1110 * Caller must hold tree write locked across split and replacement.
1111 */
1112 void radix_tree_iter_replace(struct radix_tree_root *root,
1113 const struct radix_tree_iter *iter, void **slot, void *item)
1114 {
1115 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1116 }
1117
1118 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1119 /**
1120 * radix_tree_join - replace multiple entries with one multiorder entry
1121 * @root: radix tree root
1122 * @index: an index inside the new entry
1123 * @order: order of the new entry
1124 * @item: new entry
1125 *
1126 * Call this function to replace several entries with one larger entry.
1127 * The existing entries are presumed to not need freeing as a result of
1128 * this call.
1129 *
1130 * The replacement entry will have all the tags set on it that were set
1131 * on any of the entries it is replacing.
1132 */
1133 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1134 unsigned order, void *item)
1135 {
1136 struct radix_tree_node *node;
1137 void **slot;
1138 int error;
1139
1140 BUG_ON(radix_tree_is_internal_node(item));
1141
1142 error = __radix_tree_create(root, index, order, &node, &slot);
1143 if (!error)
1144 error = insert_entries(node, slot, item, order, true);
1145 if (error > 0)
1146 error = 0;
1147
1148 return error;
1149 }
1150
1151 /**
1152 * radix_tree_split - Split an entry into smaller entries
1153 * @root: radix tree root
1154 * @index: An index within the large entry
1155 * @order: Order of new entries
1156 *
1157 * Call this function as the first step in replacing a multiorder entry
1158 * with several entries of lower order. After this function returns,
1159 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1160 * and call radix_tree_iter_replace() to set up each new entry.
1161 *
1162 * The tags from this entry are replicated to all the new entries.
1163 *
1164 * The radix tree should be locked against modification during the entire
1165 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1166 * should prompt RCU walkers to restart the lookup from the root.
1167 */
1168 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1169 unsigned order)
1170 {
1171 struct radix_tree_node *parent, *node, *child;
1172 void **slot;
1173 unsigned int offset, end;
1174 unsigned n, tag, tags = 0;
1175
1176 if (!__radix_tree_lookup(root, index, &parent, &slot))
1177 return -ENOENT;
1178 if (!parent)
1179 return -ENOENT;
1180
1181 offset = get_slot_offset(parent, slot);
1182
1183 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1184 if (tag_get(parent, tag, offset))
1185 tags |= 1 << tag;
1186
1187 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1188 if (!is_sibling_entry(parent, parent->slots[end]))
1189 break;
1190 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1191 if (tags & (1 << tag))
1192 tag_set(parent, tag, end);
1193 /* rcu_assign_pointer ensures tags are set before RETRY */
1194 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1195 }
1196 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1197 parent->exceptional -= (end - offset);
1198
1199 if (order == parent->shift)
1200 return 0;
1201 if (order > parent->shift) {
1202 while (offset < end)
1203 offset += insert_entries(parent, &parent->slots[offset],
1204 RADIX_TREE_RETRY, order, true);
1205 return 0;
1206 }
1207
1208 node = parent;
1209
1210 for (;;) {
1211 if (node->shift > order) {
1212 child = radix_tree_node_alloc(root, node,
1213 node->shift - RADIX_TREE_MAP_SHIFT,
1214 offset, 0, 0);
1215 if (!child)
1216 goto nomem;
1217 if (node != parent) {
1218 node->count++;
1219 node->slots[offset] = node_to_entry(child);
1220 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1221 if (tags & (1 << tag))
1222 tag_set(node, tag, offset);
1223 }
1224
1225 node = child;
1226 offset = 0;
1227 continue;
1228 }
1229
1230 n = insert_entries(node, &node->slots[offset],
1231 RADIX_TREE_RETRY, order, false);
1232 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1233
1234 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1235 if (tags & (1 << tag))
1236 tag_set(node, tag, offset);
1237 offset += n;
1238
1239 while (offset == RADIX_TREE_MAP_SIZE) {
1240 if (node == parent)
1241 break;
1242 offset = node->offset;
1243 child = node;
1244 node = node->parent;
1245 rcu_assign_pointer(node->slots[offset],
1246 node_to_entry(child));
1247 offset++;
1248 }
1249 if ((node == parent) && (offset == end))
1250 return 0;
1251 }
1252
1253 nomem:
1254 /* Shouldn't happen; did user forget to preload? */
1255 /* TODO: free all the allocated nodes */
1256 WARN_ON(1);
1257 return -ENOMEM;
1258 }
1259 #endif
1260
1261 /**
1262 * radix_tree_tag_set - set a tag on a radix tree node
1263 * @root: radix tree root
1264 * @index: index key
1265 * @tag: tag index
1266 *
1267 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1268 * corresponding to @index in the radix tree. From
1269 * the root all the way down to the leaf node.
1270 *
1271 * Returns the address of the tagged item. Setting a tag on a not-present
1272 * item is a bug.
1273 */
1274 void *radix_tree_tag_set(struct radix_tree_root *root,
1275 unsigned long index, unsigned int tag)
1276 {
1277 struct radix_tree_node *node, *parent;
1278 unsigned long maxindex;
1279
1280 radix_tree_load_root(root, &node, &maxindex);
1281 BUG_ON(index > maxindex);
1282
1283 while (radix_tree_is_internal_node(node)) {
1284 unsigned offset;
1285
1286 parent = entry_to_node(node);
1287 offset = radix_tree_descend(parent, &node, index);
1288 BUG_ON(!node);
1289
1290 if (!tag_get(parent, tag, offset))
1291 tag_set(parent, tag, offset);
1292 }
1293
1294 /* set the root's tag bit */
1295 if (!root_tag_get(root, tag))
1296 root_tag_set(root, tag);
1297
1298 return node;
1299 }
1300 EXPORT_SYMBOL(radix_tree_tag_set);
1301
1302 static void node_tag_clear(struct radix_tree_root *root,
1303 struct radix_tree_node *node,
1304 unsigned int tag, unsigned int offset)
1305 {
1306 while (node) {
1307 if (!tag_get(node, tag, offset))
1308 return;
1309 tag_clear(node, tag, offset);
1310 if (any_tag_set(node, tag))
1311 return;
1312
1313 offset = node->offset;
1314 node = node->parent;
1315 }
1316
1317 /* clear the root's tag bit */
1318 if (root_tag_get(root, tag))
1319 root_tag_clear(root, tag);
1320 }
1321
1322 static void node_tag_set(struct radix_tree_root *root,
1323 struct radix_tree_node *node,
1324 unsigned int tag, unsigned int offset)
1325 {
1326 while (node) {
1327 if (tag_get(node, tag, offset))
1328 return;
1329 tag_set(node, tag, offset);
1330 offset = node->offset;
1331 node = node->parent;
1332 }
1333
1334 if (!root_tag_get(root, tag))
1335 root_tag_set(root, tag);
1336 }
1337
1338 /**
1339 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1340 * @root: radix tree root
1341 * @iter: iterator state
1342 * @tag: tag to set
1343 */
1344 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1345 const struct radix_tree_iter *iter, unsigned int tag)
1346 {
1347 node_tag_set(root, iter->node, tag, iter_offset(iter));
1348 }
1349
1350 /**
1351 * radix_tree_tag_clear - clear a tag on a radix tree node
1352 * @root: radix tree root
1353 * @index: index key
1354 * @tag: tag index
1355 *
1356 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1357 * corresponding to @index in the radix tree. If this causes
1358 * the leaf node to have no tags set then clear the tag in the
1359 * next-to-leaf node, etc.
1360 *
1361 * Returns the address of the tagged item on success, else NULL. ie:
1362 * has the same return value and semantics as radix_tree_lookup().
1363 */
1364 void *radix_tree_tag_clear(struct radix_tree_root *root,
1365 unsigned long index, unsigned int tag)
1366 {
1367 struct radix_tree_node *node, *parent;
1368 unsigned long maxindex;
1369 int uninitialized_var(offset);
1370
1371 radix_tree_load_root(root, &node, &maxindex);
1372 if (index > maxindex)
1373 return NULL;
1374
1375 parent = NULL;
1376
1377 while (radix_tree_is_internal_node(node)) {
1378 parent = entry_to_node(node);
1379 offset = radix_tree_descend(parent, &node, index);
1380 }
1381
1382 if (node)
1383 node_tag_clear(root, parent, tag, offset);
1384
1385 return node;
1386 }
1387 EXPORT_SYMBOL(radix_tree_tag_clear);
1388
1389 /**
1390 * radix_tree_tag_get - get a tag on a radix tree node
1391 * @root: radix tree root
1392 * @index: index key
1393 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1394 *
1395 * Return values:
1396 *
1397 * 0: tag not present or not set
1398 * 1: tag set
1399 *
1400 * Note that the return value of this function may not be relied on, even if
1401 * the RCU lock is held, unless tag modification and node deletion are excluded
1402 * from concurrency.
1403 */
1404 int radix_tree_tag_get(struct radix_tree_root *root,
1405 unsigned long index, unsigned int tag)
1406 {
1407 struct radix_tree_node *node, *parent;
1408 unsigned long maxindex;
1409
1410 if (!root_tag_get(root, tag))
1411 return 0;
1412
1413 radix_tree_load_root(root, &node, &maxindex);
1414 if (index > maxindex)
1415 return 0;
1416 if (node == NULL)
1417 return 0;
1418
1419 while (radix_tree_is_internal_node(node)) {
1420 unsigned offset;
1421
1422 parent = entry_to_node(node);
1423 offset = radix_tree_descend(parent, &node, index);
1424
1425 if (!node)
1426 return 0;
1427 if (!tag_get(parent, tag, offset))
1428 return 0;
1429 if (node == RADIX_TREE_RETRY)
1430 break;
1431 }
1432
1433 return 1;
1434 }
1435 EXPORT_SYMBOL(radix_tree_tag_get);
1436
1437 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1438 unsigned int shift)
1439 {
1440 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1441 iter->shift = shift;
1442 #endif
1443 }
1444
1445 /* Construct iter->tags bit-mask from node->tags[tag] array */
1446 static void set_iter_tags(struct radix_tree_iter *iter,
1447 struct radix_tree_node *node, unsigned offset,
1448 unsigned tag)
1449 {
1450 unsigned tag_long = offset / BITS_PER_LONG;
1451 unsigned tag_bit = offset % BITS_PER_LONG;
1452
1453 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1454
1455 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1456 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1457 /* Pick tags from next element */
1458 if (tag_bit)
1459 iter->tags |= node->tags[tag][tag_long + 1] <<
1460 (BITS_PER_LONG - tag_bit);
1461 /* Clip chunk size, here only BITS_PER_LONG tags */
1462 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1463 }
1464 }
1465
1466 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1467 static void **skip_siblings(struct radix_tree_node **nodep,
1468 void **slot, struct radix_tree_iter *iter)
1469 {
1470 void *sib = node_to_entry(slot - 1);
1471
1472 while (iter->index < iter->next_index) {
1473 *nodep = rcu_dereference_raw(*slot);
1474 if (*nodep && *nodep != sib)
1475 return slot;
1476 slot++;
1477 iter->index = __radix_tree_iter_add(iter, 1);
1478 iter->tags >>= 1;
1479 }
1480
1481 *nodep = NULL;
1482 return NULL;
1483 }
1484
1485 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1486 unsigned flags)
1487 {
1488 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1489 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1490
1491 slot = skip_siblings(&node, slot, iter);
1492
1493 while (radix_tree_is_internal_node(node)) {
1494 unsigned offset;
1495 unsigned long next_index;
1496
1497 if (node == RADIX_TREE_RETRY)
1498 return slot;
1499 node = entry_to_node(node);
1500 iter->node = node;
1501 iter->shift = node->shift;
1502
1503 if (flags & RADIX_TREE_ITER_TAGGED) {
1504 offset = radix_tree_find_next_bit(node, tag, 0);
1505 if (offset == RADIX_TREE_MAP_SIZE)
1506 return NULL;
1507 slot = &node->slots[offset];
1508 iter->index = __radix_tree_iter_add(iter, offset);
1509 set_iter_tags(iter, node, offset, tag);
1510 node = rcu_dereference_raw(*slot);
1511 } else {
1512 offset = 0;
1513 slot = &node->slots[0];
1514 for (;;) {
1515 node = rcu_dereference_raw(*slot);
1516 if (node)
1517 break;
1518 slot++;
1519 offset++;
1520 if (offset == RADIX_TREE_MAP_SIZE)
1521 return NULL;
1522 }
1523 iter->index = __radix_tree_iter_add(iter, offset);
1524 }
1525 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1526 goto none;
1527 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1528 if (next_index < iter->next_index)
1529 iter->next_index = next_index;
1530 }
1531
1532 return slot;
1533 none:
1534 iter->next_index = 0;
1535 return NULL;
1536 }
1537 EXPORT_SYMBOL(__radix_tree_next_slot);
1538 #else
1539 static void **skip_siblings(struct radix_tree_node **nodep,
1540 void **slot, struct radix_tree_iter *iter)
1541 {
1542 return slot;
1543 }
1544 #endif
1545
1546 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1547 {
1548 struct radix_tree_node *node;
1549
1550 slot++;
1551 iter->index = __radix_tree_iter_add(iter, 1);
1552 node = rcu_dereference_raw(*slot);
1553 skip_siblings(&node, slot, iter);
1554 iter->next_index = iter->index;
1555 iter->tags = 0;
1556 return NULL;
1557 }
1558 EXPORT_SYMBOL(radix_tree_iter_resume);
1559
1560 /**
1561 * radix_tree_next_chunk - find next chunk of slots for iteration
1562 *
1563 * @root: radix tree root
1564 * @iter: iterator state
1565 * @flags: RADIX_TREE_ITER_* flags and tag index
1566 * Returns: pointer to chunk first slot, or NULL if iteration is over
1567 */
1568 void **radix_tree_next_chunk(struct radix_tree_root *root,
1569 struct radix_tree_iter *iter, unsigned flags)
1570 {
1571 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1572 struct radix_tree_node *node, *child;
1573 unsigned long index, offset, maxindex;
1574
1575 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1576 return NULL;
1577
1578 /*
1579 * Catch next_index overflow after ~0UL. iter->index never overflows
1580 * during iterating; it can be zero only at the beginning.
1581 * And we cannot overflow iter->next_index in a single step,
1582 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1583 *
1584 * This condition also used by radix_tree_next_slot() to stop
1585 * contiguous iterating, and forbid switching to the next chunk.
1586 */
1587 index = iter->next_index;
1588 if (!index && iter->index)
1589 return NULL;
1590
1591 restart:
1592 radix_tree_load_root(root, &child, &maxindex);
1593 if (index > maxindex)
1594 return NULL;
1595 if (!child)
1596 return NULL;
1597
1598 if (!radix_tree_is_internal_node(child)) {
1599 /* Single-slot tree */
1600 iter->index = index;
1601 iter->next_index = maxindex + 1;
1602 iter->tags = 1;
1603 iter->node = NULL;
1604 __set_iter_shift(iter, 0);
1605 return (void **)&root->rnode;
1606 }
1607
1608 do {
1609 node = entry_to_node(child);
1610 offset = radix_tree_descend(node, &child, index);
1611
1612 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1613 !tag_get(node, tag, offset) : !child) {
1614 /* Hole detected */
1615 if (flags & RADIX_TREE_ITER_CONTIG)
1616 return NULL;
1617
1618 if (flags & RADIX_TREE_ITER_TAGGED)
1619 offset = radix_tree_find_next_bit(node, tag,
1620 offset + 1);
1621 else
1622 while (++offset < RADIX_TREE_MAP_SIZE) {
1623 void *slot = node->slots[offset];
1624 if (is_sibling_entry(node, slot))
1625 continue;
1626 if (slot)
1627 break;
1628 }
1629 index &= ~node_maxindex(node);
1630 index += offset << node->shift;
1631 /* Overflow after ~0UL */
1632 if (!index)
1633 return NULL;
1634 if (offset == RADIX_TREE_MAP_SIZE)
1635 goto restart;
1636 child = rcu_dereference_raw(node->slots[offset]);
1637 }
1638
1639 if (!child)
1640 goto restart;
1641 if (child == RADIX_TREE_RETRY)
1642 break;
1643 } while (radix_tree_is_internal_node(child));
1644
1645 /* Update the iterator state */
1646 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1647 iter->next_index = (index | node_maxindex(node)) + 1;
1648 iter->node = node;
1649 __set_iter_shift(iter, node->shift);
1650
1651 if (flags & RADIX_TREE_ITER_TAGGED)
1652 set_iter_tags(iter, node, offset, tag);
1653
1654 return node->slots + offset;
1655 }
1656 EXPORT_SYMBOL(radix_tree_next_chunk);
1657
1658 /**
1659 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1660 * @root: radix tree root
1661 * @results: where the results of the lookup are placed
1662 * @first_index: start the lookup from this key
1663 * @max_items: place up to this many items at *results
1664 *
1665 * Performs an index-ascending scan of the tree for present items. Places
1666 * them at *@results and returns the number of items which were placed at
1667 * *@results.
1668 *
1669 * The implementation is naive.
1670 *
1671 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1672 * rcu_read_lock. In this case, rather than the returned results being
1673 * an atomic snapshot of the tree at a single point in time, the
1674 * semantics of an RCU protected gang lookup are as though multiple
1675 * radix_tree_lookups have been issued in individual locks, and results
1676 * stored in 'results'.
1677 */
1678 unsigned int
1679 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1680 unsigned long first_index, unsigned int max_items)
1681 {
1682 struct radix_tree_iter iter;
1683 void **slot;
1684 unsigned int ret = 0;
1685
1686 if (unlikely(!max_items))
1687 return 0;
1688
1689 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1690 results[ret] = rcu_dereference_raw(*slot);
1691 if (!results[ret])
1692 continue;
1693 if (radix_tree_is_internal_node(results[ret])) {
1694 slot = radix_tree_iter_retry(&iter);
1695 continue;
1696 }
1697 if (++ret == max_items)
1698 break;
1699 }
1700
1701 return ret;
1702 }
1703 EXPORT_SYMBOL(radix_tree_gang_lookup);
1704
1705 /**
1706 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1707 * @root: radix tree root
1708 * @results: where the results of the lookup are placed
1709 * @indices: where their indices should be placed (but usually NULL)
1710 * @first_index: start the lookup from this key
1711 * @max_items: place up to this many items at *results
1712 *
1713 * Performs an index-ascending scan of the tree for present items. Places
1714 * their slots at *@results and returns the number of items which were
1715 * placed at *@results.
1716 *
1717 * The implementation is naive.
1718 *
1719 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1720 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1721 * protection, radix_tree_deref_slot may fail requiring a retry.
1722 */
1723 unsigned int
1724 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1725 void ***results, unsigned long *indices,
1726 unsigned long first_index, unsigned int max_items)
1727 {
1728 struct radix_tree_iter iter;
1729 void **slot;
1730 unsigned int ret = 0;
1731
1732 if (unlikely(!max_items))
1733 return 0;
1734
1735 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1736 results[ret] = slot;
1737 if (indices)
1738 indices[ret] = iter.index;
1739 if (++ret == max_items)
1740 break;
1741 }
1742
1743 return ret;
1744 }
1745 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1746
1747 /**
1748 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1749 * based on a tag
1750 * @root: radix tree root
1751 * @results: where the results of the lookup are placed
1752 * @first_index: start the lookup from this key
1753 * @max_items: place up to this many items at *results
1754 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1755 *
1756 * Performs an index-ascending scan of the tree for present items which
1757 * have the tag indexed by @tag set. Places the items at *@results and
1758 * returns the number of items which were placed at *@results.
1759 */
1760 unsigned int
1761 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1762 unsigned long first_index, unsigned int max_items,
1763 unsigned int tag)
1764 {
1765 struct radix_tree_iter iter;
1766 void **slot;
1767 unsigned int ret = 0;
1768
1769 if (unlikely(!max_items))
1770 return 0;
1771
1772 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1773 results[ret] = rcu_dereference_raw(*slot);
1774 if (!results[ret])
1775 continue;
1776 if (radix_tree_is_internal_node(results[ret])) {
1777 slot = radix_tree_iter_retry(&iter);
1778 continue;
1779 }
1780 if (++ret == max_items)
1781 break;
1782 }
1783
1784 return ret;
1785 }
1786 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1787
1788 /**
1789 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1790 * radix tree based on a tag
1791 * @root: radix tree root
1792 * @results: where the results of the lookup are placed
1793 * @first_index: start the lookup from this key
1794 * @max_items: place up to this many items at *results
1795 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1796 *
1797 * Performs an index-ascending scan of the tree for present items which
1798 * have the tag indexed by @tag set. Places the slots at *@results and
1799 * returns the number of slots which were placed at *@results.
1800 */
1801 unsigned int
1802 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1803 unsigned long first_index, unsigned int max_items,
1804 unsigned int tag)
1805 {
1806 struct radix_tree_iter iter;
1807 void **slot;
1808 unsigned int ret = 0;
1809
1810 if (unlikely(!max_items))
1811 return 0;
1812
1813 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1814 results[ret] = slot;
1815 if (++ret == max_items)
1816 break;
1817 }
1818
1819 return ret;
1820 }
1821 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1822
1823 /**
1824 * __radix_tree_delete_node - try to free node after clearing a slot
1825 * @root: radix tree root
1826 * @node: node containing @index
1827 *
1828 * After clearing the slot at @index in @node from radix tree
1829 * rooted at @root, call this function to attempt freeing the
1830 * node and shrinking the tree.
1831 */
1832 void __radix_tree_delete_node(struct radix_tree_root *root,
1833 struct radix_tree_node *node)
1834 {
1835 delete_node(root, node, NULL, NULL);
1836 }
1837
1838 /**
1839 * radix_tree_delete_item - delete an item from a radix tree
1840 * @root: radix tree root
1841 * @index: index key
1842 * @item: expected item
1843 *
1844 * Remove @item at @index from the radix tree rooted at @root.
1845 *
1846 * Returns the address of the deleted item, or NULL if it was not present
1847 * or the entry at the given @index was not @item.
1848 */
1849 void *radix_tree_delete_item(struct radix_tree_root *root,
1850 unsigned long index, void *item)
1851 {
1852 struct radix_tree_node *node;
1853 unsigned int offset;
1854 void **slot;
1855 void *entry;
1856 int tag;
1857
1858 entry = __radix_tree_lookup(root, index, &node, &slot);
1859 if (!entry)
1860 return NULL;
1861
1862 if (item && entry != item)
1863 return NULL;
1864
1865 if (!node) {
1866 root_tag_clear_all(root);
1867 root->rnode = NULL;
1868 return entry;
1869 }
1870
1871 offset = get_slot_offset(node, slot);
1872
1873 /* Clear all tags associated with the item to be deleted. */
1874 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1875 node_tag_clear(root, node, tag, offset);
1876
1877 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1878
1879 return entry;
1880 }
1881 EXPORT_SYMBOL(radix_tree_delete_item);
1882
1883 /**
1884 * radix_tree_delete - delete an item from a radix tree
1885 * @root: radix tree root
1886 * @index: index key
1887 *
1888 * Remove the item at @index from the radix tree rooted at @root.
1889 *
1890 * Returns the address of the deleted item, or NULL if it was not present.
1891 */
1892 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1893 {
1894 return radix_tree_delete_item(root, index, NULL);
1895 }
1896 EXPORT_SYMBOL(radix_tree_delete);
1897
1898 void radix_tree_clear_tags(struct radix_tree_root *root,
1899 struct radix_tree_node *node,
1900 void **slot)
1901 {
1902 if (node) {
1903 unsigned int tag, offset = get_slot_offset(node, slot);
1904 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1905 node_tag_clear(root, node, tag, offset);
1906 } else {
1907 /* Clear root node tags */
1908 root->gfp_mask &= __GFP_BITS_MASK;
1909 }
1910 }
1911
1912 /**
1913 * radix_tree_tagged - test whether any items in the tree are tagged
1914 * @root: radix tree root
1915 * @tag: tag to test
1916 */
1917 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1918 {
1919 return root_tag_get(root, tag);
1920 }
1921 EXPORT_SYMBOL(radix_tree_tagged);
1922
1923 static void
1924 radix_tree_node_ctor(void *arg)
1925 {
1926 struct radix_tree_node *node = arg;
1927
1928 memset(node, 0, sizeof(*node));
1929 INIT_LIST_HEAD(&node->private_list);
1930 }
1931
1932 static __init unsigned long __maxindex(unsigned int height)
1933 {
1934 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1935 int shift = RADIX_TREE_INDEX_BITS - width;
1936
1937 if (shift < 0)
1938 return ~0UL;
1939 if (shift >= BITS_PER_LONG)
1940 return 0UL;
1941 return ~0UL >> shift;
1942 }
1943
1944 static __init void radix_tree_init_maxnodes(void)
1945 {
1946 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1947 unsigned int i, j;
1948
1949 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1950 height_to_maxindex[i] = __maxindex(i);
1951 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1952 for (j = i; j > 0; j--)
1953 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1954 }
1955 }
1956
1957 static int radix_tree_cpu_dead(unsigned int cpu)
1958 {
1959 struct radix_tree_preload *rtp;
1960 struct radix_tree_node *node;
1961
1962 /* Free per-cpu pool of preloaded nodes */
1963 rtp = &per_cpu(radix_tree_preloads, cpu);
1964 while (rtp->nr) {
1965 node = rtp->nodes;
1966 rtp->nodes = node->private_data;
1967 kmem_cache_free(radix_tree_node_cachep, node);
1968 rtp->nr--;
1969 }
1970 return 0;
1971 }
1972
1973 void __init radix_tree_init(void)
1974 {
1975 int ret;
1976 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1977 sizeof(struct radix_tree_node), 0,
1978 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1979 radix_tree_node_ctor);
1980 radix_tree_init_maxnodes();
1981 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1982 NULL, radix_tree_cpu_dead);
1983 WARN_ON(ret < 0);
1984 }