]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - lib/radix-tree.c
raxix-tree: introduce CONFIG_RADIX_TREE_MULTIORDER
[mirror_ubuntu-zesty-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt.h> /* in_interrupt() */
37
38
39 /*
40 * The height_to_maxindex array needs to be one deeper than the maximum
41 * path as height 0 holds only 1 entry.
42 */
43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
45 /*
46 * Radix tree node cache.
47 */
48 static struct kmem_cache *radix_tree_node_cachep;
49
50 /*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
63 /*
64 * Per-cpu pool of preloaded nodes
65 */
66 struct radix_tree_preload {
67 int nr;
68 /* nodes->private_data points to next preallocated node */
69 struct radix_tree_node *nodes;
70 };
71 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
72
73 static inline void *ptr_to_indirect(void *ptr)
74 {
75 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
76 }
77
78 static inline void *indirect_to_ptr(void *ptr)
79 {
80 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
81 }
82
83 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
84 {
85 return root->gfp_mask & __GFP_BITS_MASK;
86 }
87
88 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
89 int offset)
90 {
91 __set_bit(offset, node->tags[tag]);
92 }
93
94 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
95 int offset)
96 {
97 __clear_bit(offset, node->tags[tag]);
98 }
99
100 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
101 int offset)
102 {
103 return test_bit(offset, node->tags[tag]);
104 }
105
106 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
107 {
108 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
109 }
110
111 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
112 {
113 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
114 }
115
116 static inline void root_tag_clear_all(struct radix_tree_root *root)
117 {
118 root->gfp_mask &= __GFP_BITS_MASK;
119 }
120
121 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
122 {
123 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
124 }
125
126 /*
127 * Returns 1 if any slot in the node has this tag set.
128 * Otherwise returns 0.
129 */
130 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
131 {
132 int idx;
133 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
134 if (node->tags[tag][idx])
135 return 1;
136 }
137 return 0;
138 }
139
140 /**
141 * radix_tree_find_next_bit - find the next set bit in a memory region
142 *
143 * @addr: The address to base the search on
144 * @size: The bitmap size in bits
145 * @offset: The bitnumber to start searching at
146 *
147 * Unrollable variant of find_next_bit() for constant size arrays.
148 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
149 * Returns next bit offset, or size if nothing found.
150 */
151 static __always_inline unsigned long
152 radix_tree_find_next_bit(const unsigned long *addr,
153 unsigned long size, unsigned long offset)
154 {
155 if (!__builtin_constant_p(size))
156 return find_next_bit(addr, size, offset);
157
158 if (offset < size) {
159 unsigned long tmp;
160
161 addr += offset / BITS_PER_LONG;
162 tmp = *addr >> (offset % BITS_PER_LONG);
163 if (tmp)
164 return __ffs(tmp) + offset;
165 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
166 while (offset < size) {
167 tmp = *++addr;
168 if (tmp)
169 return __ffs(tmp) + offset;
170 offset += BITS_PER_LONG;
171 }
172 }
173 return size;
174 }
175
176 #if 0
177 static void dump_node(void *slot, int height, int offset)
178 {
179 struct radix_tree_node *node;
180 int i;
181
182 if (!slot)
183 return;
184
185 if (height == 0) {
186 pr_debug("radix entry %p offset %d\n", slot, offset);
187 return;
188 }
189
190 node = indirect_to_ptr(slot);
191 pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
192 slot, offset, node->tags[0][0], node->tags[1][0],
193 node->tags[2][0], node->path, node->count, node->parent);
194
195 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
196 dump_node(node->slots[i], height - 1, i);
197 }
198
199 /* For debug */
200 static void radix_tree_dump(struct radix_tree_root *root)
201 {
202 pr_debug("radix root: %p height %d rnode %p tags %x\n",
203 root, root->height, root->rnode,
204 root->gfp_mask >> __GFP_BITS_SHIFT);
205 if (!radix_tree_is_indirect_ptr(root->rnode))
206 return;
207 dump_node(root->rnode, root->height, 0);
208 }
209 #endif
210
211 /*
212 * This assumes that the caller has performed appropriate preallocation, and
213 * that the caller has pinned this thread of control to the current CPU.
214 */
215 static struct radix_tree_node *
216 radix_tree_node_alloc(struct radix_tree_root *root)
217 {
218 struct radix_tree_node *ret = NULL;
219 gfp_t gfp_mask = root_gfp_mask(root);
220
221 /*
222 * Preload code isn't irq safe and it doesn't make sence to use
223 * preloading in the interrupt anyway as all the allocations have to
224 * be atomic. So just do normal allocation when in interrupt.
225 */
226 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
227 struct radix_tree_preload *rtp;
228
229 /*
230 * Even if the caller has preloaded, try to allocate from the
231 * cache first for the new node to get accounted.
232 */
233 ret = kmem_cache_alloc(radix_tree_node_cachep,
234 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
235 if (ret)
236 goto out;
237
238 /*
239 * Provided the caller has preloaded here, we will always
240 * succeed in getting a node here (and never reach
241 * kmem_cache_alloc)
242 */
243 rtp = this_cpu_ptr(&radix_tree_preloads);
244 if (rtp->nr) {
245 ret = rtp->nodes;
246 rtp->nodes = ret->private_data;
247 ret->private_data = NULL;
248 rtp->nr--;
249 }
250 /*
251 * Update the allocation stack trace as this is more useful
252 * for debugging.
253 */
254 kmemleak_update_trace(ret);
255 goto out;
256 }
257 ret = kmem_cache_alloc(radix_tree_node_cachep,
258 gfp_mask | __GFP_ACCOUNT);
259 out:
260 BUG_ON(radix_tree_is_indirect_ptr(ret));
261 return ret;
262 }
263
264 static void radix_tree_node_rcu_free(struct rcu_head *head)
265 {
266 struct radix_tree_node *node =
267 container_of(head, struct radix_tree_node, rcu_head);
268 int i;
269
270 /*
271 * must only free zeroed nodes into the slab. radix_tree_shrink
272 * can leave us with a non-NULL entry in the first slot, so clear
273 * that here to make sure.
274 */
275 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
276 tag_clear(node, i, 0);
277
278 node->slots[0] = NULL;
279 node->count = 0;
280
281 kmem_cache_free(radix_tree_node_cachep, node);
282 }
283
284 static inline void
285 radix_tree_node_free(struct radix_tree_node *node)
286 {
287 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
288 }
289
290 /*
291 * Load up this CPU's radix_tree_node buffer with sufficient objects to
292 * ensure that the addition of a single element in the tree cannot fail. On
293 * success, return zero, with preemption disabled. On error, return -ENOMEM
294 * with preemption not disabled.
295 *
296 * To make use of this facility, the radix tree must be initialised without
297 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
298 */
299 static int __radix_tree_preload(gfp_t gfp_mask)
300 {
301 struct radix_tree_preload *rtp;
302 struct radix_tree_node *node;
303 int ret = -ENOMEM;
304
305 preempt_disable();
306 rtp = this_cpu_ptr(&radix_tree_preloads);
307 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
308 preempt_enable();
309 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
310 if (node == NULL)
311 goto out;
312 preempt_disable();
313 rtp = this_cpu_ptr(&radix_tree_preloads);
314 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
315 node->private_data = rtp->nodes;
316 rtp->nodes = node;
317 rtp->nr++;
318 } else {
319 kmem_cache_free(radix_tree_node_cachep, node);
320 }
321 }
322 ret = 0;
323 out:
324 return ret;
325 }
326
327 /*
328 * Load up this CPU's radix_tree_node buffer with sufficient objects to
329 * ensure that the addition of a single element in the tree cannot fail. On
330 * success, return zero, with preemption disabled. On error, return -ENOMEM
331 * with preemption not disabled.
332 *
333 * To make use of this facility, the radix tree must be initialised without
334 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
335 */
336 int radix_tree_preload(gfp_t gfp_mask)
337 {
338 /* Warn on non-sensical use... */
339 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
340 return __radix_tree_preload(gfp_mask);
341 }
342 EXPORT_SYMBOL(radix_tree_preload);
343
344 /*
345 * The same as above function, except we don't guarantee preloading happens.
346 * We do it, if we decide it helps. On success, return zero with preemption
347 * disabled. On error, return -ENOMEM with preemption not disabled.
348 */
349 int radix_tree_maybe_preload(gfp_t gfp_mask)
350 {
351 if (gfpflags_allow_blocking(gfp_mask))
352 return __radix_tree_preload(gfp_mask);
353 /* Preloading doesn't help anything with this gfp mask, skip it */
354 preempt_disable();
355 return 0;
356 }
357 EXPORT_SYMBOL(radix_tree_maybe_preload);
358
359 /*
360 * Return the maximum key which can be store into a
361 * radix tree with height HEIGHT.
362 */
363 static inline unsigned long radix_tree_maxindex(unsigned int height)
364 {
365 return height_to_maxindex[height];
366 }
367
368 /*
369 * Extend a radix tree so it can store key @index.
370 */
371 static int radix_tree_extend(struct radix_tree_root *root,
372 unsigned long index, unsigned order)
373 {
374 struct radix_tree_node *node;
375 struct radix_tree_node *slot;
376 unsigned int height;
377 int tag;
378
379 /* Figure out what the height should be. */
380 height = root->height + 1;
381 while (index > radix_tree_maxindex(height))
382 height++;
383
384 if ((root->rnode == NULL) && (order == 0)) {
385 root->height = height;
386 goto out;
387 }
388
389 do {
390 unsigned int newheight;
391 if (!(node = radix_tree_node_alloc(root)))
392 return -ENOMEM;
393
394 /* Propagate the aggregated tag info into the new root */
395 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
396 if (root_tag_get(root, tag))
397 tag_set(node, tag, 0);
398 }
399
400 /* Increase the height. */
401 newheight = root->height+1;
402 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
403 node->path = newheight;
404 node->count = 1;
405 node->parent = NULL;
406 slot = root->rnode;
407 if (radix_tree_is_indirect_ptr(slot) && newheight > 1) {
408 slot = indirect_to_ptr(slot);
409 slot->parent = node;
410 slot = ptr_to_indirect(slot);
411 }
412 node->slots[0] = slot;
413 node = ptr_to_indirect(node);
414 rcu_assign_pointer(root->rnode, node);
415 root->height = newheight;
416 } while (height > root->height);
417 out:
418 return 0;
419 }
420
421 /**
422 * __radix_tree_create - create a slot in a radix tree
423 * @root: radix tree root
424 * @index: index key
425 * @order: index occupies 2^order aligned slots
426 * @nodep: returns node
427 * @slotp: returns slot
428 *
429 * Create, if necessary, and return the node and slot for an item
430 * at position @index in the radix tree @root.
431 *
432 * Until there is more than one item in the tree, no nodes are
433 * allocated and @root->rnode is used as a direct slot instead of
434 * pointing to a node, in which case *@nodep will be NULL.
435 *
436 * Returns -ENOMEM, or 0 for success.
437 */
438 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
439 unsigned order, struct radix_tree_node **nodep,
440 void ***slotp)
441 {
442 struct radix_tree_node *node = NULL, *slot;
443 unsigned int height, shift, offset;
444 int error;
445
446 BUG_ON((0 < order) && (order < RADIX_TREE_MAP_SHIFT));
447
448 /* Make sure the tree is high enough. */
449 if (index > radix_tree_maxindex(root->height)) {
450 error = radix_tree_extend(root, index, order);
451 if (error)
452 return error;
453 }
454
455 slot = root->rnode;
456
457 height = root->height;
458 shift = height * RADIX_TREE_MAP_SHIFT;
459
460 offset = 0; /* uninitialised var warning */
461 while (shift > order) {
462 if (slot == NULL) {
463 /* Have to add a child node. */
464 if (!(slot = radix_tree_node_alloc(root)))
465 return -ENOMEM;
466 slot->path = height;
467 slot->parent = node;
468 if (node) {
469 rcu_assign_pointer(node->slots[offset],
470 ptr_to_indirect(slot));
471 node->count++;
472 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
473 } else
474 rcu_assign_pointer(root->rnode,
475 ptr_to_indirect(slot));
476 } else if (!radix_tree_is_indirect_ptr(slot))
477 break;
478
479 /* Go a level down */
480 height--;
481 shift -= RADIX_TREE_MAP_SHIFT;
482 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
483 node = indirect_to_ptr(slot);
484 slot = node->slots[offset];
485 }
486
487 #ifdef CONFIG_RADIX_TREE_MULTIORDER
488 /* Insert pointers to the canonical entry */
489 if ((shift - order) > 0) {
490 int i, n = 1 << (shift - order);
491 offset = offset & ~(n - 1);
492 slot = ptr_to_indirect(&node->slots[offset]);
493 for (i = 0; i < n; i++) {
494 if (node->slots[offset + i])
495 return -EEXIST;
496 }
497
498 for (i = 1; i < n; i++) {
499 rcu_assign_pointer(node->slots[offset + i], slot);
500 node->count++;
501 }
502 }
503 #endif
504
505 if (nodep)
506 *nodep = node;
507 if (slotp)
508 *slotp = node ? node->slots + offset : (void **)&root->rnode;
509 return 0;
510 }
511
512 /**
513 * __radix_tree_insert - insert into a radix tree
514 * @root: radix tree root
515 * @index: index key
516 * @order: key covers the 2^order indices around index
517 * @item: item to insert
518 *
519 * Insert an item into the radix tree at position @index.
520 */
521 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
522 unsigned order, void *item)
523 {
524 struct radix_tree_node *node;
525 void **slot;
526 int error;
527
528 BUG_ON(radix_tree_is_indirect_ptr(item));
529
530 error = __radix_tree_create(root, index, order, &node, &slot);
531 if (error)
532 return error;
533 if (*slot != NULL)
534 return -EEXIST;
535 rcu_assign_pointer(*slot, item);
536
537 if (node) {
538 node->count++;
539 BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
540 BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
541 } else {
542 BUG_ON(root_tag_get(root, 0));
543 BUG_ON(root_tag_get(root, 1));
544 }
545
546 return 0;
547 }
548 EXPORT_SYMBOL(__radix_tree_insert);
549
550 /**
551 * __radix_tree_lookup - lookup an item in a radix tree
552 * @root: radix tree root
553 * @index: index key
554 * @nodep: returns node
555 * @slotp: returns slot
556 *
557 * Lookup and return the item at position @index in the radix
558 * tree @root.
559 *
560 * Until there is more than one item in the tree, no nodes are
561 * allocated and @root->rnode is used as a direct slot instead of
562 * pointing to a node, in which case *@nodep will be NULL.
563 */
564 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
565 struct radix_tree_node **nodep, void ***slotp)
566 {
567 struct radix_tree_node *node, *parent;
568 unsigned int height, shift;
569 void **slot;
570
571 node = rcu_dereference_raw(root->rnode);
572 if (node == NULL)
573 return NULL;
574
575 if (!radix_tree_is_indirect_ptr(node)) {
576 if (index > 0)
577 return NULL;
578
579 if (nodep)
580 *nodep = NULL;
581 if (slotp)
582 *slotp = (void **)&root->rnode;
583 return node;
584 }
585 node = indirect_to_ptr(node);
586
587 height = node->path & RADIX_TREE_HEIGHT_MASK;
588 if (index > radix_tree_maxindex(height))
589 return NULL;
590
591 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
592
593 do {
594 parent = node;
595 slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
596 node = rcu_dereference_raw(*slot);
597 if (node == NULL)
598 return NULL;
599 if (!radix_tree_is_indirect_ptr(node))
600 break;
601 node = indirect_to_ptr(node);
602
603 shift -= RADIX_TREE_MAP_SHIFT;
604 height--;
605 } while (height > 0);
606
607 if (nodep)
608 *nodep = parent;
609 if (slotp)
610 *slotp = slot;
611 return node;
612 }
613
614 /**
615 * radix_tree_lookup_slot - lookup a slot in a radix tree
616 * @root: radix tree root
617 * @index: index key
618 *
619 * Returns: the slot corresponding to the position @index in the
620 * radix tree @root. This is useful for update-if-exists operations.
621 *
622 * This function can be called under rcu_read_lock iff the slot is not
623 * modified by radix_tree_replace_slot, otherwise it must be called
624 * exclusive from other writers. Any dereference of the slot must be done
625 * using radix_tree_deref_slot.
626 */
627 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
628 {
629 void **slot;
630
631 if (!__radix_tree_lookup(root, index, NULL, &slot))
632 return NULL;
633 return slot;
634 }
635 EXPORT_SYMBOL(radix_tree_lookup_slot);
636
637 /**
638 * radix_tree_lookup - perform lookup operation on a radix tree
639 * @root: radix tree root
640 * @index: index key
641 *
642 * Lookup the item at the position @index in the radix tree @root.
643 *
644 * This function can be called under rcu_read_lock, however the caller
645 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
646 * them safely). No RCU barriers are required to access or modify the
647 * returned item, however.
648 */
649 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
650 {
651 return __radix_tree_lookup(root, index, NULL, NULL);
652 }
653 EXPORT_SYMBOL(radix_tree_lookup);
654
655 /**
656 * radix_tree_tag_set - set a tag on a radix tree node
657 * @root: radix tree root
658 * @index: index key
659 * @tag: tag index
660 *
661 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
662 * corresponding to @index in the radix tree. From
663 * the root all the way down to the leaf node.
664 *
665 * Returns the address of the tagged item. Setting a tag on a not-present
666 * item is a bug.
667 */
668 void *radix_tree_tag_set(struct radix_tree_root *root,
669 unsigned long index, unsigned int tag)
670 {
671 unsigned int height, shift;
672 struct radix_tree_node *slot;
673
674 height = root->height;
675 BUG_ON(index > radix_tree_maxindex(height));
676
677 slot = indirect_to_ptr(root->rnode);
678 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
679
680 while (height > 0) {
681 int offset;
682
683 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
684 if (!tag_get(slot, tag, offset))
685 tag_set(slot, tag, offset);
686 slot = slot->slots[offset];
687 BUG_ON(slot == NULL);
688 if (!radix_tree_is_indirect_ptr(slot))
689 break;
690 slot = indirect_to_ptr(slot);
691 shift -= RADIX_TREE_MAP_SHIFT;
692 height--;
693 }
694
695 /* set the root's tag bit */
696 if (slot && !root_tag_get(root, tag))
697 root_tag_set(root, tag);
698
699 return slot;
700 }
701 EXPORT_SYMBOL(radix_tree_tag_set);
702
703 /**
704 * radix_tree_tag_clear - clear a tag on a radix tree node
705 * @root: radix tree root
706 * @index: index key
707 * @tag: tag index
708 *
709 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
710 * corresponding to @index in the radix tree. If
711 * this causes the leaf node to have no tags set then clear the tag in the
712 * next-to-leaf node, etc.
713 *
714 * Returns the address of the tagged item on success, else NULL. ie:
715 * has the same return value and semantics as radix_tree_lookup().
716 */
717 void *radix_tree_tag_clear(struct radix_tree_root *root,
718 unsigned long index, unsigned int tag)
719 {
720 struct radix_tree_node *node = NULL;
721 struct radix_tree_node *slot = NULL;
722 unsigned int height, shift;
723 int uninitialized_var(offset);
724
725 height = root->height;
726 if (index > radix_tree_maxindex(height))
727 goto out;
728
729 shift = height * RADIX_TREE_MAP_SHIFT;
730 slot = root->rnode;
731
732 while (shift) {
733 if (slot == NULL)
734 goto out;
735 if (!radix_tree_is_indirect_ptr(slot))
736 break;
737 slot = indirect_to_ptr(slot);
738
739 shift -= RADIX_TREE_MAP_SHIFT;
740 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
741 node = slot;
742 slot = slot->slots[offset];
743 }
744
745 if (slot == NULL)
746 goto out;
747
748 while (node) {
749 if (!tag_get(node, tag, offset))
750 goto out;
751 tag_clear(node, tag, offset);
752 if (any_tag_set(node, tag))
753 goto out;
754
755 index >>= RADIX_TREE_MAP_SHIFT;
756 offset = index & RADIX_TREE_MAP_MASK;
757 node = node->parent;
758 }
759
760 /* clear the root's tag bit */
761 if (root_tag_get(root, tag))
762 root_tag_clear(root, tag);
763
764 out:
765 return slot;
766 }
767 EXPORT_SYMBOL(radix_tree_tag_clear);
768
769 /**
770 * radix_tree_tag_get - get a tag on a radix tree node
771 * @root: radix tree root
772 * @index: index key
773 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
774 *
775 * Return values:
776 *
777 * 0: tag not present or not set
778 * 1: tag set
779 *
780 * Note that the return value of this function may not be relied on, even if
781 * the RCU lock is held, unless tag modification and node deletion are excluded
782 * from concurrency.
783 */
784 int radix_tree_tag_get(struct radix_tree_root *root,
785 unsigned long index, unsigned int tag)
786 {
787 unsigned int height, shift;
788 struct radix_tree_node *node;
789
790 /* check the root's tag bit */
791 if (!root_tag_get(root, tag))
792 return 0;
793
794 node = rcu_dereference_raw(root->rnode);
795 if (node == NULL)
796 return 0;
797
798 if (!radix_tree_is_indirect_ptr(node))
799 return (index == 0);
800 node = indirect_to_ptr(node);
801
802 height = node->path & RADIX_TREE_HEIGHT_MASK;
803 if (index > radix_tree_maxindex(height))
804 return 0;
805
806 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
807
808 for ( ; ; ) {
809 int offset;
810
811 if (node == NULL)
812 return 0;
813 node = indirect_to_ptr(node);
814
815 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
816 if (!tag_get(node, tag, offset))
817 return 0;
818 if (height == 1)
819 return 1;
820 node = rcu_dereference_raw(node->slots[offset]);
821 if (!radix_tree_is_indirect_ptr(node))
822 return 1;
823 shift -= RADIX_TREE_MAP_SHIFT;
824 height--;
825 }
826 }
827 EXPORT_SYMBOL(radix_tree_tag_get);
828
829 /**
830 * radix_tree_next_chunk - find next chunk of slots for iteration
831 *
832 * @root: radix tree root
833 * @iter: iterator state
834 * @flags: RADIX_TREE_ITER_* flags and tag index
835 * Returns: pointer to chunk first slot, or NULL if iteration is over
836 */
837 void **radix_tree_next_chunk(struct radix_tree_root *root,
838 struct radix_tree_iter *iter, unsigned flags)
839 {
840 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
841 struct radix_tree_node *rnode, *node;
842 unsigned long index, offset, height;
843
844 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
845 return NULL;
846
847 /*
848 * Catch next_index overflow after ~0UL. iter->index never overflows
849 * during iterating; it can be zero only at the beginning.
850 * And we cannot overflow iter->next_index in a single step,
851 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
852 *
853 * This condition also used by radix_tree_next_slot() to stop
854 * contiguous iterating, and forbid swithing to the next chunk.
855 */
856 index = iter->next_index;
857 if (!index && iter->index)
858 return NULL;
859
860 rnode = rcu_dereference_raw(root->rnode);
861 if (radix_tree_is_indirect_ptr(rnode)) {
862 rnode = indirect_to_ptr(rnode);
863 } else if (rnode && !index) {
864 /* Single-slot tree */
865 iter->index = 0;
866 iter->next_index = 1;
867 iter->tags = 1;
868 return (void **)&root->rnode;
869 } else
870 return NULL;
871
872 restart:
873 height = rnode->path & RADIX_TREE_HEIGHT_MASK;
874 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
875 offset = index >> shift;
876
877 /* Index outside of the tree */
878 if (offset >= RADIX_TREE_MAP_SIZE)
879 return NULL;
880
881 node = rnode;
882 while (1) {
883 struct radix_tree_node *slot;
884 if ((flags & RADIX_TREE_ITER_TAGGED) ?
885 !test_bit(offset, node->tags[tag]) :
886 !node->slots[offset]) {
887 /* Hole detected */
888 if (flags & RADIX_TREE_ITER_CONTIG)
889 return NULL;
890
891 if (flags & RADIX_TREE_ITER_TAGGED)
892 offset = radix_tree_find_next_bit(
893 node->tags[tag],
894 RADIX_TREE_MAP_SIZE,
895 offset + 1);
896 else
897 while (++offset < RADIX_TREE_MAP_SIZE) {
898 if (node->slots[offset])
899 break;
900 }
901 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
902 index += offset << shift;
903 /* Overflow after ~0UL */
904 if (!index)
905 return NULL;
906 if (offset == RADIX_TREE_MAP_SIZE)
907 goto restart;
908 }
909
910 /* This is leaf-node */
911 if (!shift)
912 break;
913
914 slot = rcu_dereference_raw(node->slots[offset]);
915 if (slot == NULL)
916 goto restart;
917 if (!radix_tree_is_indirect_ptr(slot))
918 break;
919 node = indirect_to_ptr(slot);
920 shift -= RADIX_TREE_MAP_SHIFT;
921 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
922 }
923
924 /* Update the iterator state */
925 iter->index = index;
926 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
927
928 /* Construct iter->tags bit-mask from node->tags[tag] array */
929 if (flags & RADIX_TREE_ITER_TAGGED) {
930 unsigned tag_long, tag_bit;
931
932 tag_long = offset / BITS_PER_LONG;
933 tag_bit = offset % BITS_PER_LONG;
934 iter->tags = node->tags[tag][tag_long] >> tag_bit;
935 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
936 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
937 /* Pick tags from next element */
938 if (tag_bit)
939 iter->tags |= node->tags[tag][tag_long + 1] <<
940 (BITS_PER_LONG - tag_bit);
941 /* Clip chunk size, here only BITS_PER_LONG tags */
942 iter->next_index = index + BITS_PER_LONG;
943 }
944 }
945
946 return node->slots + offset;
947 }
948 EXPORT_SYMBOL(radix_tree_next_chunk);
949
950 /**
951 * radix_tree_range_tag_if_tagged - for each item in given range set given
952 * tag if item has another tag set
953 * @root: radix tree root
954 * @first_indexp: pointer to a starting index of a range to scan
955 * @last_index: last index of a range to scan
956 * @nr_to_tag: maximum number items to tag
957 * @iftag: tag index to test
958 * @settag: tag index to set if tested tag is set
959 *
960 * This function scans range of radix tree from first_index to last_index
961 * (inclusive). For each item in the range if iftag is set, the function sets
962 * also settag. The function stops either after tagging nr_to_tag items or
963 * after reaching last_index.
964 *
965 * The tags must be set from the leaf level only and propagated back up the
966 * path to the root. We must do this so that we resolve the full path before
967 * setting any tags on intermediate nodes. If we set tags as we descend, then
968 * we can get to the leaf node and find that the index that has the iftag
969 * set is outside the range we are scanning. This reults in dangling tags and
970 * can lead to problems with later tag operations (e.g. livelocks on lookups).
971 *
972 * The function returns number of leaves where the tag was set and sets
973 * *first_indexp to the first unscanned index.
974 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
975 * be prepared to handle that.
976 */
977 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
978 unsigned long *first_indexp, unsigned long last_index,
979 unsigned long nr_to_tag,
980 unsigned int iftag, unsigned int settag)
981 {
982 unsigned int height = root->height;
983 struct radix_tree_node *node = NULL;
984 struct radix_tree_node *slot;
985 unsigned int shift;
986 unsigned long tagged = 0;
987 unsigned long index = *first_indexp;
988
989 last_index = min(last_index, radix_tree_maxindex(height));
990 if (index > last_index)
991 return 0;
992 if (!nr_to_tag)
993 return 0;
994 if (!root_tag_get(root, iftag)) {
995 *first_indexp = last_index + 1;
996 return 0;
997 }
998 if (height == 0) {
999 *first_indexp = last_index + 1;
1000 root_tag_set(root, settag);
1001 return 1;
1002 }
1003
1004 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1005 slot = indirect_to_ptr(root->rnode);
1006
1007 for (;;) {
1008 unsigned long upindex;
1009 int offset;
1010
1011 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1012 if (!slot->slots[offset])
1013 goto next;
1014 if (!tag_get(slot, iftag, offset))
1015 goto next;
1016 if (shift) {
1017 node = slot;
1018 slot = slot->slots[offset];
1019 if (radix_tree_is_indirect_ptr(slot)) {
1020 slot = indirect_to_ptr(slot);
1021 shift -= RADIX_TREE_MAP_SHIFT;
1022 continue;
1023 } else {
1024 slot = node;
1025 node = node->parent;
1026 }
1027 }
1028
1029 /* tag the leaf */
1030 tagged += 1 << shift;
1031 tag_set(slot, settag, offset);
1032
1033 /* walk back up the path tagging interior nodes */
1034 upindex = index;
1035 while (node) {
1036 upindex >>= RADIX_TREE_MAP_SHIFT;
1037 offset = upindex & RADIX_TREE_MAP_MASK;
1038
1039 /* stop if we find a node with the tag already set */
1040 if (tag_get(node, settag, offset))
1041 break;
1042 tag_set(node, settag, offset);
1043 node = node->parent;
1044 }
1045
1046 /*
1047 * Small optimization: now clear that node pointer.
1048 * Since all of this slot's ancestors now have the tag set
1049 * from setting it above, we have no further need to walk
1050 * back up the tree setting tags, until we update slot to
1051 * point to another radix_tree_node.
1052 */
1053 node = NULL;
1054
1055 next:
1056 /* Go to next item at level determined by 'shift' */
1057 index = ((index >> shift) + 1) << shift;
1058 /* Overflow can happen when last_index is ~0UL... */
1059 if (index > last_index || !index)
1060 break;
1061 if (tagged >= nr_to_tag)
1062 break;
1063 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
1064 /*
1065 * We've fully scanned this node. Go up. Because
1066 * last_index is guaranteed to be in the tree, what
1067 * we do below cannot wander astray.
1068 */
1069 slot = slot->parent;
1070 shift += RADIX_TREE_MAP_SHIFT;
1071 }
1072 }
1073 /*
1074 * We need not to tag the root tag if there is no tag which is set with
1075 * settag within the range from *first_indexp to last_index.
1076 */
1077 if (tagged > 0)
1078 root_tag_set(root, settag);
1079 *first_indexp = index;
1080
1081 return tagged;
1082 }
1083 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1084
1085 /**
1086 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1087 * @root: radix tree root
1088 * @results: where the results of the lookup are placed
1089 * @first_index: start the lookup from this key
1090 * @max_items: place up to this many items at *results
1091 *
1092 * Performs an index-ascending scan of the tree for present items. Places
1093 * them at *@results and returns the number of items which were placed at
1094 * *@results.
1095 *
1096 * The implementation is naive.
1097 *
1098 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1099 * rcu_read_lock. In this case, rather than the returned results being
1100 * an atomic snapshot of the tree at a single point in time, the semantics
1101 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1102 * have been issued in individual locks, and results stored in 'results'.
1103 */
1104 unsigned int
1105 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1106 unsigned long first_index, unsigned int max_items)
1107 {
1108 struct radix_tree_iter iter;
1109 void **slot;
1110 unsigned int ret = 0;
1111
1112 if (unlikely(!max_items))
1113 return 0;
1114
1115 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1116 results[ret] = rcu_dereference_raw(*slot);
1117 if (!results[ret])
1118 continue;
1119 if (radix_tree_is_indirect_ptr(results[ret])) {
1120 slot = radix_tree_iter_retry(&iter);
1121 continue;
1122 }
1123 if (++ret == max_items)
1124 break;
1125 }
1126
1127 return ret;
1128 }
1129 EXPORT_SYMBOL(radix_tree_gang_lookup);
1130
1131 /**
1132 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1133 * @root: radix tree root
1134 * @results: where the results of the lookup are placed
1135 * @indices: where their indices should be placed (but usually NULL)
1136 * @first_index: start the lookup from this key
1137 * @max_items: place up to this many items at *results
1138 *
1139 * Performs an index-ascending scan of the tree for present items. Places
1140 * their slots at *@results and returns the number of items which were
1141 * placed at *@results.
1142 *
1143 * The implementation is naive.
1144 *
1145 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1146 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1147 * protection, radix_tree_deref_slot may fail requiring a retry.
1148 */
1149 unsigned int
1150 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1151 void ***results, unsigned long *indices,
1152 unsigned long first_index, unsigned int max_items)
1153 {
1154 struct radix_tree_iter iter;
1155 void **slot;
1156 unsigned int ret = 0;
1157
1158 if (unlikely(!max_items))
1159 return 0;
1160
1161 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1162 results[ret] = slot;
1163 if (indices)
1164 indices[ret] = iter.index;
1165 if (++ret == max_items)
1166 break;
1167 }
1168
1169 return ret;
1170 }
1171 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1172
1173 /**
1174 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1175 * based on a tag
1176 * @root: radix tree root
1177 * @results: where the results of the lookup are placed
1178 * @first_index: start the lookup from this key
1179 * @max_items: place up to this many items at *results
1180 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1181 *
1182 * Performs an index-ascending scan of the tree for present items which
1183 * have the tag indexed by @tag set. Places the items at *@results and
1184 * returns the number of items which were placed at *@results.
1185 */
1186 unsigned int
1187 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1188 unsigned long first_index, unsigned int max_items,
1189 unsigned int tag)
1190 {
1191 struct radix_tree_iter iter;
1192 void **slot;
1193 unsigned int ret = 0;
1194
1195 if (unlikely(!max_items))
1196 return 0;
1197
1198 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1199 results[ret] = rcu_dereference_raw(*slot);
1200 if (!results[ret])
1201 continue;
1202 if (radix_tree_is_indirect_ptr(results[ret])) {
1203 slot = radix_tree_iter_retry(&iter);
1204 continue;
1205 }
1206 if (++ret == max_items)
1207 break;
1208 }
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1213
1214 /**
1215 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1216 * radix tree based on a tag
1217 * @root: radix tree root
1218 * @results: where the results of the lookup are placed
1219 * @first_index: start the lookup from this key
1220 * @max_items: place up to this many items at *results
1221 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1222 *
1223 * Performs an index-ascending scan of the tree for present items which
1224 * have the tag indexed by @tag set. Places the slots at *@results and
1225 * returns the number of slots which were placed at *@results.
1226 */
1227 unsigned int
1228 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1229 unsigned long first_index, unsigned int max_items,
1230 unsigned int tag)
1231 {
1232 struct radix_tree_iter iter;
1233 void **slot;
1234 unsigned int ret = 0;
1235
1236 if (unlikely(!max_items))
1237 return 0;
1238
1239 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1240 results[ret] = slot;
1241 if (++ret == max_items)
1242 break;
1243 }
1244
1245 return ret;
1246 }
1247 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1248
1249 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1250 #include <linux/sched.h> /* for cond_resched() */
1251
1252 /*
1253 * This linear search is at present only useful to shmem_unuse_inode().
1254 */
1255 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1256 unsigned long index, unsigned long *found_index)
1257 {
1258 unsigned int shift, height;
1259 unsigned long i;
1260
1261 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1262 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1263
1264 for ( ; height > 1; height--) {
1265 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1266 for (;;) {
1267 if (slot->slots[i] != NULL)
1268 break;
1269 index &= ~((1UL << shift) - 1);
1270 index += 1UL << shift;
1271 if (index == 0)
1272 goto out; /* 32-bit wraparound */
1273 i++;
1274 if (i == RADIX_TREE_MAP_SIZE)
1275 goto out;
1276 }
1277
1278 slot = rcu_dereference_raw(slot->slots[i]);
1279 if (slot == NULL)
1280 goto out;
1281 if (!radix_tree_is_indirect_ptr(slot)) {
1282 if (slot == item) {
1283 *found_index = index + i;
1284 index = 0;
1285 } else {
1286 index += shift;
1287 }
1288 goto out;
1289 }
1290 slot = indirect_to_ptr(slot);
1291 shift -= RADIX_TREE_MAP_SHIFT;
1292 }
1293
1294 /* Bottom level: check items */
1295 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1296 if (slot->slots[i] == item) {
1297 *found_index = index + i;
1298 index = 0;
1299 goto out;
1300 }
1301 }
1302 index += RADIX_TREE_MAP_SIZE;
1303 out:
1304 return index;
1305 }
1306
1307 /**
1308 * radix_tree_locate_item - search through radix tree for item
1309 * @root: radix tree root
1310 * @item: item to be found
1311 *
1312 * Returns index where item was found, or -1 if not found.
1313 * Caller must hold no lock (since this time-consuming function needs
1314 * to be preemptible), and must check afterwards if item is still there.
1315 */
1316 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1317 {
1318 struct radix_tree_node *node;
1319 unsigned long max_index;
1320 unsigned long cur_index = 0;
1321 unsigned long found_index = -1;
1322
1323 do {
1324 rcu_read_lock();
1325 node = rcu_dereference_raw(root->rnode);
1326 if (!radix_tree_is_indirect_ptr(node)) {
1327 rcu_read_unlock();
1328 if (node == item)
1329 found_index = 0;
1330 break;
1331 }
1332
1333 node = indirect_to_ptr(node);
1334 max_index = radix_tree_maxindex(node->path &
1335 RADIX_TREE_HEIGHT_MASK);
1336 if (cur_index > max_index) {
1337 rcu_read_unlock();
1338 break;
1339 }
1340
1341 cur_index = __locate(node, item, cur_index, &found_index);
1342 rcu_read_unlock();
1343 cond_resched();
1344 } while (cur_index != 0 && cur_index <= max_index);
1345
1346 return found_index;
1347 }
1348 #else
1349 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1350 {
1351 return -1;
1352 }
1353 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1354
1355 /**
1356 * radix_tree_shrink - shrink height of a radix tree to minimal
1357 * @root radix tree root
1358 */
1359 static inline void radix_tree_shrink(struct radix_tree_root *root)
1360 {
1361 /* try to shrink tree height */
1362 while (root->height > 0) {
1363 struct radix_tree_node *to_free = root->rnode;
1364 struct radix_tree_node *slot;
1365
1366 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1367 to_free = indirect_to_ptr(to_free);
1368
1369 /*
1370 * The candidate node has more than one child, or its child
1371 * is not at the leftmost slot, or it is a multiorder entry,
1372 * we cannot shrink.
1373 */
1374 if (to_free->count != 1)
1375 break;
1376 slot = to_free->slots[0];
1377 if (!slot)
1378 break;
1379
1380 /*
1381 * We don't need rcu_assign_pointer(), since we are simply
1382 * moving the node from one part of the tree to another: if it
1383 * was safe to dereference the old pointer to it
1384 * (to_free->slots[0]), it will be safe to dereference the new
1385 * one (root->rnode) as far as dependent read barriers go.
1386 */
1387 if (root->height > 1) {
1388 if (!radix_tree_is_indirect_ptr(slot))
1389 break;
1390
1391 slot = indirect_to_ptr(slot);
1392 slot->parent = NULL;
1393 slot = ptr_to_indirect(slot);
1394 }
1395 root->rnode = slot;
1396 root->height--;
1397
1398 /*
1399 * We have a dilemma here. The node's slot[0] must not be
1400 * NULLed in case there are concurrent lookups expecting to
1401 * find the item. However if this was a bottom-level node,
1402 * then it may be subject to the slot pointer being visible
1403 * to callers dereferencing it. If item corresponding to
1404 * slot[0] is subsequently deleted, these callers would expect
1405 * their slot to become empty sooner or later.
1406 *
1407 * For example, lockless pagecache will look up a slot, deref
1408 * the page pointer, and if the page is 0 refcount it means it
1409 * was concurrently deleted from pagecache so try the deref
1410 * again. Fortunately there is already a requirement for logic
1411 * to retry the entire slot lookup -- the indirect pointer
1412 * problem (replacing direct root node with an indirect pointer
1413 * also results in a stale slot). So tag the slot as indirect
1414 * to force callers to retry.
1415 */
1416 if (root->height == 0)
1417 *((unsigned long *)&to_free->slots[0]) |=
1418 RADIX_TREE_INDIRECT_PTR;
1419
1420 radix_tree_node_free(to_free);
1421 }
1422 }
1423
1424 /**
1425 * __radix_tree_delete_node - try to free node after clearing a slot
1426 * @root: radix tree root
1427 * @node: node containing @index
1428 *
1429 * After clearing the slot at @index in @node from radix tree
1430 * rooted at @root, call this function to attempt freeing the
1431 * node and shrinking the tree.
1432 *
1433 * Returns %true if @node was freed, %false otherwise.
1434 */
1435 bool __radix_tree_delete_node(struct radix_tree_root *root,
1436 struct radix_tree_node *node)
1437 {
1438 bool deleted = false;
1439
1440 do {
1441 struct radix_tree_node *parent;
1442
1443 if (node->count) {
1444 if (node == indirect_to_ptr(root->rnode)) {
1445 radix_tree_shrink(root);
1446 if (root->height == 0)
1447 deleted = true;
1448 }
1449 return deleted;
1450 }
1451
1452 parent = node->parent;
1453 if (parent) {
1454 unsigned int offset;
1455
1456 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1457 parent->slots[offset] = NULL;
1458 parent->count--;
1459 } else {
1460 root_tag_clear_all(root);
1461 root->height = 0;
1462 root->rnode = NULL;
1463 }
1464
1465 radix_tree_node_free(node);
1466 deleted = true;
1467
1468 node = parent;
1469 } while (node);
1470
1471 return deleted;
1472 }
1473
1474 static inline void delete_sibling_entries(struct radix_tree_node *node,
1475 void *ptr, unsigned offset)
1476 {
1477 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1478 int i;
1479 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1480 if (node->slots[offset + i] != ptr)
1481 break;
1482 node->slots[offset + i] = NULL;
1483 node->count--;
1484 }
1485 #endif
1486 }
1487
1488 /**
1489 * radix_tree_delete_item - delete an item from a radix tree
1490 * @root: radix tree root
1491 * @index: index key
1492 * @item: expected item
1493 *
1494 * Remove @item at @index from the radix tree rooted at @root.
1495 *
1496 * Returns the address of the deleted item, or NULL if it was not present
1497 * or the entry at the given @index was not @item.
1498 */
1499 void *radix_tree_delete_item(struct radix_tree_root *root,
1500 unsigned long index, void *item)
1501 {
1502 struct radix_tree_node *node;
1503 unsigned int offset;
1504 void **slot;
1505 void *entry;
1506 int tag;
1507
1508 entry = __radix_tree_lookup(root, index, &node, &slot);
1509 if (!entry)
1510 return NULL;
1511
1512 if (item && entry != item)
1513 return NULL;
1514
1515 if (!node) {
1516 root_tag_clear_all(root);
1517 root->rnode = NULL;
1518 return entry;
1519 }
1520
1521 offset = index & RADIX_TREE_MAP_MASK;
1522
1523 /*
1524 * Clear all tags associated with the item to be deleted.
1525 * This way of doing it would be inefficient, but seldom is any set.
1526 */
1527 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1528 if (tag_get(node, tag, offset))
1529 radix_tree_tag_clear(root, index, tag);
1530 }
1531
1532 delete_sibling_entries(node, ptr_to_indirect(slot), offset);
1533 node->slots[offset] = NULL;
1534 node->count--;
1535
1536 __radix_tree_delete_node(root, node);
1537
1538 return entry;
1539 }
1540 EXPORT_SYMBOL(radix_tree_delete_item);
1541
1542 /**
1543 * radix_tree_delete - delete an item from a radix tree
1544 * @root: radix tree root
1545 * @index: index key
1546 *
1547 * Remove the item at @index from the radix tree rooted at @root.
1548 *
1549 * Returns the address of the deleted item, or NULL if it was not present.
1550 */
1551 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1552 {
1553 return radix_tree_delete_item(root, index, NULL);
1554 }
1555 EXPORT_SYMBOL(radix_tree_delete);
1556
1557 /**
1558 * radix_tree_tagged - test whether any items in the tree are tagged
1559 * @root: radix tree root
1560 * @tag: tag to test
1561 */
1562 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1563 {
1564 return root_tag_get(root, tag);
1565 }
1566 EXPORT_SYMBOL(radix_tree_tagged);
1567
1568 static void
1569 radix_tree_node_ctor(void *arg)
1570 {
1571 struct radix_tree_node *node = arg;
1572
1573 memset(node, 0, sizeof(*node));
1574 INIT_LIST_HEAD(&node->private_list);
1575 }
1576
1577 static __init unsigned long __maxindex(unsigned int height)
1578 {
1579 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1580 int shift = RADIX_TREE_INDEX_BITS - width;
1581
1582 if (shift < 0)
1583 return ~0UL;
1584 if (shift >= BITS_PER_LONG)
1585 return 0UL;
1586 return ~0UL >> shift;
1587 }
1588
1589 static __init void radix_tree_init_maxindex(void)
1590 {
1591 unsigned int i;
1592
1593 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1594 height_to_maxindex[i] = __maxindex(i);
1595 }
1596
1597 static int radix_tree_callback(struct notifier_block *nfb,
1598 unsigned long action,
1599 void *hcpu)
1600 {
1601 int cpu = (long)hcpu;
1602 struct radix_tree_preload *rtp;
1603 struct radix_tree_node *node;
1604
1605 /* Free per-cpu pool of perloaded nodes */
1606 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1607 rtp = &per_cpu(radix_tree_preloads, cpu);
1608 while (rtp->nr) {
1609 node = rtp->nodes;
1610 rtp->nodes = node->private_data;
1611 kmem_cache_free(radix_tree_node_cachep, node);
1612 rtp->nr--;
1613 }
1614 }
1615 return NOTIFY_OK;
1616 }
1617
1618 void __init radix_tree_init(void)
1619 {
1620 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1621 sizeof(struct radix_tree_node), 0,
1622 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1623 radix_tree_node_ctor);
1624 radix_tree_init_maxindex();
1625 hotcpu_notifier(radix_tree_callback, 0);
1626 }