]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/radix-tree.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/export.h>
30 #include <linux/radix-tree.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/kmemleak.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
44 /*
45 * Radix tree node cache.
46 */
47 static struct kmem_cache *radix_tree_node_cachep;
48
49 /*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
62 /*
63 * Per-cpu pool of preloaded nodes
64 */
65 struct radix_tree_preload {
66 unsigned nr;
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71
72 static inline struct radix_tree_node *entry_to_node(void *ptr)
73 {
74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75 }
76
77 static inline void *node_to_entry(void *ptr)
78 {
79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
80 }
81
82 #define RADIX_TREE_RETRY node_to_entry(NULL)
83
84 #ifdef CONFIG_RADIX_TREE_MULTIORDER
85 /* Sibling slots point directly to another slot in the same node */
86 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
87 {
88 void **ptr = node;
89 return (parent->slots <= ptr) &&
90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
91 }
92 #else
93 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94 {
95 return false;
96 }
97 #endif
98
99 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 void **slot)
101 {
102 return slot - parent->slots;
103 }
104
105 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 struct radix_tree_node **nodep, unsigned long index)
107 {
108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
109 void **entry = rcu_dereference_raw(parent->slots[offset]);
110
111 #ifdef CONFIG_RADIX_TREE_MULTIORDER
112 if (radix_tree_is_internal_node(entry)) {
113 if (is_sibling_entry(parent, entry)) {
114 void **sibentry = (void **) entry_to_node(entry);
115 offset = get_slot_offset(parent, sibentry);
116 entry = rcu_dereference_raw(*sibentry);
117 }
118 }
119 #endif
120
121 *nodep = (void *)entry;
122 return offset;
123 }
124
125 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
126 {
127 return root->gfp_mask & __GFP_BITS_MASK;
128 }
129
130 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132 {
133 __set_bit(offset, node->tags[tag]);
134 }
135
136 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138 {
139 __clear_bit(offset, node->tags[tag]);
140 }
141
142 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 int offset)
144 {
145 return test_bit(offset, node->tags[tag]);
146 }
147
148 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
149 {
150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
151 }
152
153 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
154 {
155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
156 }
157
158 static inline void root_tag_clear_all(struct radix_tree_root *root)
159 {
160 root->gfp_mask &= __GFP_BITS_MASK;
161 }
162
163 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
164 {
165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
166 }
167
168 static inline unsigned root_tags_get(struct radix_tree_root *root)
169 {
170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
171 }
172
173 /*
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
176 */
177 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
178 {
179 unsigned idx;
180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 if (node->tags[tag][idx])
182 return 1;
183 }
184 return 0;
185 }
186
187 /**
188 * radix_tree_find_next_bit - find the next set bit in a memory region
189 *
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
193 *
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
197 */
198 static __always_inline unsigned long
199 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 unsigned long offset)
201 {
202 const unsigned long *addr = node->tags[tag];
203
204 if (offset < RADIX_TREE_MAP_SIZE) {
205 unsigned long tmp;
206
207 addr += offset / BITS_PER_LONG;
208 tmp = *addr >> (offset % BITS_PER_LONG);
209 if (tmp)
210 return __ffs(tmp) + offset;
211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
212 while (offset < RADIX_TREE_MAP_SIZE) {
213 tmp = *++addr;
214 if (tmp)
215 return __ffs(tmp) + offset;
216 offset += BITS_PER_LONG;
217 }
218 }
219 return RADIX_TREE_MAP_SIZE;
220 }
221
222 static unsigned int iter_offset(const struct radix_tree_iter *iter)
223 {
224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
225 }
226
227 /*
228 * The maximum index which can be stored in a radix tree
229 */
230 static inline unsigned long shift_maxindex(unsigned int shift)
231 {
232 return (RADIX_TREE_MAP_SIZE << shift) - 1;
233 }
234
235 static inline unsigned long node_maxindex(struct radix_tree_node *node)
236 {
237 return shift_maxindex(node->shift);
238 }
239
240 #ifndef __KERNEL__
241 static void dump_node(struct radix_tree_node *node, unsigned long index)
242 {
243 unsigned long i;
244
245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 node, node->offset, index, index | node_maxindex(node),
247 node->parent,
248 node->tags[0][0], node->tags[1][0], node->tags[2][0],
249 node->shift, node->count, node->exceptional);
250
251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
252 unsigned long first = index | (i << node->shift);
253 unsigned long last = first | ((1UL << node->shift) - 1);
254 void *entry = node->slots[i];
255 if (!entry)
256 continue;
257 if (entry == RADIX_TREE_RETRY) {
258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 i, first, last, node);
260 } else if (!radix_tree_is_internal_node(entry)) {
261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 entry, i, first, last, node);
263 } else if (is_sibling_entry(node, entry)) {
264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 entry, i, first, last, node,
266 *(void **)entry_to_node(entry));
267 } else {
268 dump_node(entry_to_node(entry), first);
269 }
270 }
271 }
272
273 /* For debug */
274 static void radix_tree_dump(struct radix_tree_root *root)
275 {
276 pr_debug("radix root: %p rnode %p tags %x\n",
277 root, root->rnode,
278 root->gfp_mask >> __GFP_BITS_SHIFT);
279 if (!radix_tree_is_internal_node(root->rnode))
280 return;
281 dump_node(entry_to_node(root->rnode), 0);
282 }
283 #endif
284
285 /*
286 * This assumes that the caller has performed appropriate preallocation, and
287 * that the caller has pinned this thread of control to the current CPU.
288 */
289 static struct radix_tree_node *
290 radix_tree_node_alloc(struct radix_tree_root *root,
291 struct radix_tree_node *parent,
292 unsigned int shift, unsigned int offset,
293 unsigned int count, unsigned int exceptional)
294 {
295 struct radix_tree_node *ret = NULL;
296 gfp_t gfp_mask = root_gfp_mask(root);
297
298 /*
299 * Preload code isn't irq safe and it doesn't make sense to use
300 * preloading during an interrupt anyway as all the allocations have
301 * to be atomic. So just do normal allocation when in interrupt.
302 */
303 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
304 struct radix_tree_preload *rtp;
305
306 /*
307 * Even if the caller has preloaded, try to allocate from the
308 * cache first for the new node to get accounted to the memory
309 * cgroup.
310 */
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
312 gfp_mask | __GFP_NOWARN);
313 if (ret)
314 goto out;
315
316 /*
317 * Provided the caller has preloaded here, we will always
318 * succeed in getting a node here (and never reach
319 * kmem_cache_alloc)
320 */
321 rtp = this_cpu_ptr(&radix_tree_preloads);
322 if (rtp->nr) {
323 ret = rtp->nodes;
324 rtp->nodes = ret->private_data;
325 ret->private_data = NULL;
326 rtp->nr--;
327 }
328 /*
329 * Update the allocation stack trace as this is more useful
330 * for debugging.
331 */
332 kmemleak_update_trace(ret);
333 goto out;
334 }
335 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
336 out:
337 BUG_ON(radix_tree_is_internal_node(ret));
338 if (ret) {
339 ret->parent = parent;
340 ret->shift = shift;
341 ret->offset = offset;
342 ret->count = count;
343 ret->exceptional = exceptional;
344 }
345 return ret;
346 }
347
348 static void radix_tree_node_rcu_free(struct rcu_head *head)
349 {
350 struct radix_tree_node *node =
351 container_of(head, struct radix_tree_node, rcu_head);
352
353 /*
354 * Must only free zeroed nodes into the slab. We can be left with
355 * non-NULL entries by radix_tree_free_nodes, so clear the entries
356 * and tags here.
357 */
358 memset(node->slots, 0, sizeof(node->slots));
359 memset(node->tags, 0, sizeof(node->tags));
360 INIT_LIST_HEAD(&node->private_list);
361
362 kmem_cache_free(radix_tree_node_cachep, node);
363 }
364
365 static inline void
366 radix_tree_node_free(struct radix_tree_node *node)
367 {
368 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
369 }
370
371 /*
372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
373 * ensure that the addition of a single element in the tree cannot fail. On
374 * success, return zero, with preemption disabled. On error, return -ENOMEM
375 * with preemption not disabled.
376 *
377 * To make use of this facility, the radix tree must be initialised without
378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
379 */
380 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
381 {
382 struct radix_tree_preload *rtp;
383 struct radix_tree_node *node;
384 int ret = -ENOMEM;
385
386 /*
387 * Nodes preloaded by one cgroup can be be used by another cgroup, so
388 * they should never be accounted to any particular memory cgroup.
389 */
390 gfp_mask &= ~__GFP_ACCOUNT;
391
392 preempt_disable();
393 rtp = this_cpu_ptr(&radix_tree_preloads);
394 while (rtp->nr < nr) {
395 preempt_enable();
396 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
397 if (node == NULL)
398 goto out;
399 preempt_disable();
400 rtp = this_cpu_ptr(&radix_tree_preloads);
401 if (rtp->nr < nr) {
402 node->private_data = rtp->nodes;
403 rtp->nodes = node;
404 rtp->nr++;
405 } else {
406 kmem_cache_free(radix_tree_node_cachep, node);
407 }
408 }
409 ret = 0;
410 out:
411 return ret;
412 }
413
414 /*
415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
416 * ensure that the addition of a single element in the tree cannot fail. On
417 * success, return zero, with preemption disabled. On error, return -ENOMEM
418 * with preemption not disabled.
419 *
420 * To make use of this facility, the radix tree must be initialised without
421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
422 */
423 int radix_tree_preload(gfp_t gfp_mask)
424 {
425 /* Warn on non-sensical use... */
426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
428 }
429 EXPORT_SYMBOL(radix_tree_preload);
430
431 /*
432 * The same as above function, except we don't guarantee preloading happens.
433 * We do it, if we decide it helps. On success, return zero with preemption
434 * disabled. On error, return -ENOMEM with preemption not disabled.
435 */
436 int radix_tree_maybe_preload(gfp_t gfp_mask)
437 {
438 if (gfpflags_allow_blocking(gfp_mask))
439 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
440 /* Preloading doesn't help anything with this gfp mask, skip it */
441 preempt_disable();
442 return 0;
443 }
444 EXPORT_SYMBOL(radix_tree_maybe_preload);
445
446 #ifdef CONFIG_RADIX_TREE_MULTIORDER
447 /*
448 * Preload with enough objects to ensure that we can split a single entry
449 * of order @old_order into many entries of size @new_order
450 */
451 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
452 gfp_t gfp_mask)
453 {
454 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
455 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
456 (new_order / RADIX_TREE_MAP_SHIFT);
457 unsigned nr = 0;
458
459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
460 BUG_ON(new_order >= old_order);
461
462 while (layers--)
463 nr = nr * RADIX_TREE_MAP_SIZE + 1;
464 return __radix_tree_preload(gfp_mask, top * nr);
465 }
466 #endif
467
468 /*
469 * The same as function above, but preload number of nodes required to insert
470 * (1 << order) continuous naturally-aligned elements.
471 */
472 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
473 {
474 unsigned long nr_subtrees;
475 int nr_nodes, subtree_height;
476
477 /* Preloading doesn't help anything with this gfp mask, skip it */
478 if (!gfpflags_allow_blocking(gfp_mask)) {
479 preempt_disable();
480 return 0;
481 }
482
483 /*
484 * Calculate number and height of fully populated subtrees it takes to
485 * store (1 << order) elements.
486 */
487 nr_subtrees = 1 << order;
488 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
489 subtree_height++)
490 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
491
492 /*
493 * The worst case is zero height tree with a single item at index 0 and
494 * then inserting items starting at ULONG_MAX - (1 << order).
495 *
496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
497 * 0-index item.
498 */
499 nr_nodes = RADIX_TREE_MAX_PATH;
500
501 /* Plus branch to fully populated subtrees. */
502 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
503
504 /* Root node is shared. */
505 nr_nodes--;
506
507 /* Plus nodes required to build subtrees. */
508 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
509
510 return __radix_tree_preload(gfp_mask, nr_nodes);
511 }
512
513 static unsigned radix_tree_load_root(struct radix_tree_root *root,
514 struct radix_tree_node **nodep, unsigned long *maxindex)
515 {
516 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
517
518 *nodep = node;
519
520 if (likely(radix_tree_is_internal_node(node))) {
521 node = entry_to_node(node);
522 *maxindex = node_maxindex(node);
523 return node->shift + RADIX_TREE_MAP_SHIFT;
524 }
525
526 *maxindex = 0;
527 return 0;
528 }
529
530 /*
531 * Extend a radix tree so it can store key @index.
532 */
533 static int radix_tree_extend(struct radix_tree_root *root,
534 unsigned long index, unsigned int shift)
535 {
536 struct radix_tree_node *slot;
537 unsigned int maxshift;
538 int tag;
539
540 /* Figure out what the shift should be. */
541 maxshift = shift;
542 while (index > shift_maxindex(maxshift))
543 maxshift += RADIX_TREE_MAP_SHIFT;
544
545 slot = root->rnode;
546 if (!slot)
547 goto out;
548
549 do {
550 struct radix_tree_node *node = radix_tree_node_alloc(root,
551 NULL, shift, 0, 1, 0);
552 if (!node)
553 return -ENOMEM;
554
555 /* Propagate the aggregated tag info into the new root */
556 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
557 if (root_tag_get(root, tag))
558 tag_set(node, tag, 0);
559 }
560
561 BUG_ON(shift > BITS_PER_LONG);
562 if (radix_tree_is_internal_node(slot)) {
563 entry_to_node(slot)->parent = node;
564 } else if (radix_tree_exceptional_entry(slot)) {
565 /* Moving an exceptional root->rnode to a node */
566 node->exceptional = 1;
567 }
568 node->slots[0] = slot;
569 slot = node_to_entry(node);
570 rcu_assign_pointer(root->rnode, slot);
571 shift += RADIX_TREE_MAP_SHIFT;
572 } while (shift <= maxshift);
573 out:
574 return maxshift + RADIX_TREE_MAP_SHIFT;
575 }
576
577 /**
578 * radix_tree_shrink - shrink radix tree to minimum height
579 * @root radix tree root
580 */
581 static inline void radix_tree_shrink(struct radix_tree_root *root,
582 radix_tree_update_node_t update_node,
583 void *private)
584 {
585 for (;;) {
586 struct radix_tree_node *node = root->rnode;
587 struct radix_tree_node *child;
588
589 if (!radix_tree_is_internal_node(node))
590 break;
591 node = entry_to_node(node);
592
593 /*
594 * The candidate node has more than one child, or its child
595 * is not at the leftmost slot, or the child is a multiorder
596 * entry, we cannot shrink.
597 */
598 if (node->count != 1)
599 break;
600 child = node->slots[0];
601 if (!child)
602 break;
603 if (!radix_tree_is_internal_node(child) && node->shift)
604 break;
605
606 if (radix_tree_is_internal_node(child))
607 entry_to_node(child)->parent = NULL;
608
609 /*
610 * We don't need rcu_assign_pointer(), since we are simply
611 * moving the node from one part of the tree to another: if it
612 * was safe to dereference the old pointer to it
613 * (node->slots[0]), it will be safe to dereference the new
614 * one (root->rnode) as far as dependent read barriers go.
615 */
616 root->rnode = child;
617
618 /*
619 * We have a dilemma here. The node's slot[0] must not be
620 * NULLed in case there are concurrent lookups expecting to
621 * find the item. However if this was a bottom-level node,
622 * then it may be subject to the slot pointer being visible
623 * to callers dereferencing it. If item corresponding to
624 * slot[0] is subsequently deleted, these callers would expect
625 * their slot to become empty sooner or later.
626 *
627 * For example, lockless pagecache will look up a slot, deref
628 * the page pointer, and if the page has 0 refcount it means it
629 * was concurrently deleted from pagecache so try the deref
630 * again. Fortunately there is already a requirement for logic
631 * to retry the entire slot lookup -- the indirect pointer
632 * problem (replacing direct root node with an indirect pointer
633 * also results in a stale slot). So tag the slot as indirect
634 * to force callers to retry.
635 */
636 node->count = 0;
637 if (!radix_tree_is_internal_node(child)) {
638 node->slots[0] = RADIX_TREE_RETRY;
639 if (update_node)
640 update_node(node, private);
641 }
642
643 WARN_ON_ONCE(!list_empty(&node->private_list));
644 radix_tree_node_free(node);
645 }
646 }
647
648 static void delete_node(struct radix_tree_root *root,
649 struct radix_tree_node *node,
650 radix_tree_update_node_t update_node, void *private)
651 {
652 do {
653 struct radix_tree_node *parent;
654
655 if (node->count) {
656 if (node == entry_to_node(root->rnode))
657 radix_tree_shrink(root, update_node, private);
658 return;
659 }
660
661 parent = node->parent;
662 if (parent) {
663 parent->slots[node->offset] = NULL;
664 parent->count--;
665 } else {
666 root_tag_clear_all(root);
667 root->rnode = NULL;
668 }
669
670 WARN_ON_ONCE(!list_empty(&node->private_list));
671 radix_tree_node_free(node);
672
673 node = parent;
674 } while (node);
675 }
676
677 /**
678 * __radix_tree_create - create a slot in a radix tree
679 * @root: radix tree root
680 * @index: index key
681 * @order: index occupies 2^order aligned slots
682 * @nodep: returns node
683 * @slotp: returns slot
684 *
685 * Create, if necessary, and return the node and slot for an item
686 * at position @index in the radix tree @root.
687 *
688 * Until there is more than one item in the tree, no nodes are
689 * allocated and @root->rnode is used as a direct slot instead of
690 * pointing to a node, in which case *@nodep will be NULL.
691 *
692 * Returns -ENOMEM, or 0 for success.
693 */
694 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
695 unsigned order, struct radix_tree_node **nodep,
696 void ***slotp)
697 {
698 struct radix_tree_node *node = NULL, *child;
699 void **slot = (void **)&root->rnode;
700 unsigned long maxindex;
701 unsigned int shift, offset = 0;
702 unsigned long max = index | ((1UL << order) - 1);
703
704 shift = radix_tree_load_root(root, &child, &maxindex);
705
706 /* Make sure the tree is high enough. */
707 if (order > 0 && max == ((1UL << order) - 1))
708 max++;
709 if (max > maxindex) {
710 int error = radix_tree_extend(root, max, shift);
711 if (error < 0)
712 return error;
713 shift = error;
714 child = root->rnode;
715 }
716
717 while (shift > order) {
718 shift -= RADIX_TREE_MAP_SHIFT;
719 if (child == NULL) {
720 /* Have to add a child node. */
721 child = radix_tree_node_alloc(root, node, shift,
722 offset, 0, 0);
723 if (!child)
724 return -ENOMEM;
725 rcu_assign_pointer(*slot, node_to_entry(child));
726 if (node)
727 node->count++;
728 } else if (!radix_tree_is_internal_node(child))
729 break;
730
731 /* Go a level down */
732 node = entry_to_node(child);
733 offset = radix_tree_descend(node, &child, index);
734 slot = &node->slots[offset];
735 }
736
737 if (nodep)
738 *nodep = node;
739 if (slotp)
740 *slotp = slot;
741 return 0;
742 }
743
744 #ifdef CONFIG_RADIX_TREE_MULTIORDER
745 /*
746 * Free any nodes below this node. The tree is presumed to not need
747 * shrinking, and any user data in the tree is presumed to not need a
748 * destructor called on it. If we need to add a destructor, we can
749 * add that functionality later. Note that we may not clear tags or
750 * slots from the tree as an RCU walker may still have a pointer into
751 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
752 * but we'll still have to clear those in rcu_free.
753 */
754 static void radix_tree_free_nodes(struct radix_tree_node *node)
755 {
756 unsigned offset = 0;
757 struct radix_tree_node *child = entry_to_node(node);
758
759 for (;;) {
760 void *entry = child->slots[offset];
761 if (radix_tree_is_internal_node(entry) &&
762 !is_sibling_entry(child, entry)) {
763 child = entry_to_node(entry);
764 offset = 0;
765 continue;
766 }
767 offset++;
768 while (offset == RADIX_TREE_MAP_SIZE) {
769 struct radix_tree_node *old = child;
770 offset = child->offset + 1;
771 child = child->parent;
772 WARN_ON_ONCE(!list_empty(&old->private_list));
773 radix_tree_node_free(old);
774 if (old == entry_to_node(node))
775 return;
776 }
777 }
778 }
779
780 static inline int insert_entries(struct radix_tree_node *node, void **slot,
781 void *item, unsigned order, bool replace)
782 {
783 struct radix_tree_node *child;
784 unsigned i, n, tag, offset, tags = 0;
785
786 if (node) {
787 if (order > node->shift)
788 n = 1 << (order - node->shift);
789 else
790 n = 1;
791 offset = get_slot_offset(node, slot);
792 } else {
793 n = 1;
794 offset = 0;
795 }
796
797 if (n > 1) {
798 offset = offset & ~(n - 1);
799 slot = &node->slots[offset];
800 }
801 child = node_to_entry(slot);
802
803 for (i = 0; i < n; i++) {
804 if (slot[i]) {
805 if (replace) {
806 node->count--;
807 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
808 if (tag_get(node, tag, offset + i))
809 tags |= 1 << tag;
810 } else
811 return -EEXIST;
812 }
813 }
814
815 for (i = 0; i < n; i++) {
816 struct radix_tree_node *old = slot[i];
817 if (i) {
818 rcu_assign_pointer(slot[i], child);
819 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
820 if (tags & (1 << tag))
821 tag_clear(node, tag, offset + i);
822 } else {
823 rcu_assign_pointer(slot[i], item);
824 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
825 if (tags & (1 << tag))
826 tag_set(node, tag, offset);
827 }
828 if (radix_tree_is_internal_node(old) &&
829 !is_sibling_entry(node, old) &&
830 (old != RADIX_TREE_RETRY))
831 radix_tree_free_nodes(old);
832 if (radix_tree_exceptional_entry(old))
833 node->exceptional--;
834 }
835 if (node) {
836 node->count += n;
837 if (radix_tree_exceptional_entry(item))
838 node->exceptional += n;
839 }
840 return n;
841 }
842 #else
843 static inline int insert_entries(struct radix_tree_node *node, void **slot,
844 void *item, unsigned order, bool replace)
845 {
846 if (*slot)
847 return -EEXIST;
848 rcu_assign_pointer(*slot, item);
849 if (node) {
850 node->count++;
851 if (radix_tree_exceptional_entry(item))
852 node->exceptional++;
853 }
854 return 1;
855 }
856 #endif
857
858 /**
859 * __radix_tree_insert - insert into a radix tree
860 * @root: radix tree root
861 * @index: index key
862 * @order: key covers the 2^order indices around index
863 * @item: item to insert
864 *
865 * Insert an item into the radix tree at position @index.
866 */
867 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
868 unsigned order, void *item)
869 {
870 struct radix_tree_node *node;
871 void **slot;
872 int error;
873
874 BUG_ON(radix_tree_is_internal_node(item));
875
876 error = __radix_tree_create(root, index, order, &node, &slot);
877 if (error)
878 return error;
879
880 error = insert_entries(node, slot, item, order, false);
881 if (error < 0)
882 return error;
883
884 if (node) {
885 unsigned offset = get_slot_offset(node, slot);
886 BUG_ON(tag_get(node, 0, offset));
887 BUG_ON(tag_get(node, 1, offset));
888 BUG_ON(tag_get(node, 2, offset));
889 } else {
890 BUG_ON(root_tags_get(root));
891 }
892
893 return 0;
894 }
895 EXPORT_SYMBOL(__radix_tree_insert);
896
897 /**
898 * __radix_tree_lookup - lookup an item in a radix tree
899 * @root: radix tree root
900 * @index: index key
901 * @nodep: returns node
902 * @slotp: returns slot
903 *
904 * Lookup and return the item at position @index in the radix
905 * tree @root.
906 *
907 * Until there is more than one item in the tree, no nodes are
908 * allocated and @root->rnode is used as a direct slot instead of
909 * pointing to a node, in which case *@nodep will be NULL.
910 */
911 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
912 struct radix_tree_node **nodep, void ***slotp)
913 {
914 struct radix_tree_node *node, *parent;
915 unsigned long maxindex;
916 void **slot;
917
918 restart:
919 parent = NULL;
920 slot = (void **)&root->rnode;
921 radix_tree_load_root(root, &node, &maxindex);
922 if (index > maxindex)
923 return NULL;
924
925 while (radix_tree_is_internal_node(node)) {
926 unsigned offset;
927
928 if (node == RADIX_TREE_RETRY)
929 goto restart;
930 parent = entry_to_node(node);
931 offset = radix_tree_descend(parent, &node, index);
932 slot = parent->slots + offset;
933 }
934
935 if (nodep)
936 *nodep = parent;
937 if (slotp)
938 *slotp = slot;
939 return node;
940 }
941
942 /**
943 * radix_tree_lookup_slot - lookup a slot in a radix tree
944 * @root: radix tree root
945 * @index: index key
946 *
947 * Returns: the slot corresponding to the position @index in the
948 * radix tree @root. This is useful for update-if-exists operations.
949 *
950 * This function can be called under rcu_read_lock iff the slot is not
951 * modified by radix_tree_replace_slot, otherwise it must be called
952 * exclusive from other writers. Any dereference of the slot must be done
953 * using radix_tree_deref_slot.
954 */
955 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
956 {
957 void **slot;
958
959 if (!__radix_tree_lookup(root, index, NULL, &slot))
960 return NULL;
961 return slot;
962 }
963 EXPORT_SYMBOL(radix_tree_lookup_slot);
964
965 /**
966 * radix_tree_lookup - perform lookup operation on a radix tree
967 * @root: radix tree root
968 * @index: index key
969 *
970 * Lookup the item at the position @index in the radix tree @root.
971 *
972 * This function can be called under rcu_read_lock, however the caller
973 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
974 * them safely). No RCU barriers are required to access or modify the
975 * returned item, however.
976 */
977 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
978 {
979 return __radix_tree_lookup(root, index, NULL, NULL);
980 }
981 EXPORT_SYMBOL(radix_tree_lookup);
982
983 static inline int slot_count(struct radix_tree_node *node,
984 void **slot)
985 {
986 int n = 1;
987 #ifdef CONFIG_RADIX_TREE_MULTIORDER
988 void *ptr = node_to_entry(slot);
989 unsigned offset = get_slot_offset(node, slot);
990 int i;
991
992 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
993 if (node->slots[offset + i] != ptr)
994 break;
995 n++;
996 }
997 #endif
998 return n;
999 }
1000
1001 static void replace_slot(struct radix_tree_root *root,
1002 struct radix_tree_node *node,
1003 void **slot, void *item,
1004 bool warn_typeswitch)
1005 {
1006 void *old = rcu_dereference_raw(*slot);
1007 int count, exceptional;
1008
1009 WARN_ON_ONCE(radix_tree_is_internal_node(item));
1010
1011 count = !!item - !!old;
1012 exceptional = !!radix_tree_exceptional_entry(item) -
1013 !!radix_tree_exceptional_entry(old);
1014
1015 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1016
1017 if (node) {
1018 node->count += count;
1019 if (exceptional) {
1020 exceptional *= slot_count(node, slot);
1021 node->exceptional += exceptional;
1022 }
1023 }
1024
1025 rcu_assign_pointer(*slot, item);
1026 }
1027
1028 static inline void delete_sibling_entries(struct radix_tree_node *node,
1029 void **slot)
1030 {
1031 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1032 bool exceptional = radix_tree_exceptional_entry(*slot);
1033 void *ptr = node_to_entry(slot);
1034 unsigned offset = get_slot_offset(node, slot);
1035 int i;
1036
1037 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1038 if (node->slots[offset + i] != ptr)
1039 break;
1040 node->slots[offset + i] = NULL;
1041 node->count--;
1042 if (exceptional)
1043 node->exceptional--;
1044 }
1045 #endif
1046 }
1047
1048 /**
1049 * __radix_tree_replace - replace item in a slot
1050 * @root: radix tree root
1051 * @node: pointer to tree node
1052 * @slot: pointer to slot in @node
1053 * @item: new item to store in the slot.
1054 * @update_node: callback for changing leaf nodes
1055 * @private: private data to pass to @update_node
1056 *
1057 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1058 * across slot lookup and replacement.
1059 */
1060 void __radix_tree_replace(struct radix_tree_root *root,
1061 struct radix_tree_node *node,
1062 void **slot, void *item,
1063 radix_tree_update_node_t update_node, void *private)
1064 {
1065 if (!item)
1066 delete_sibling_entries(node, slot);
1067 /*
1068 * This function supports replacing exceptional entries and
1069 * deleting entries, but that needs accounting against the
1070 * node unless the slot is root->rnode.
1071 */
1072 replace_slot(root, node, slot, item,
1073 !node && slot != (void **)&root->rnode);
1074
1075 if (!node)
1076 return;
1077
1078 if (update_node)
1079 update_node(node, private);
1080
1081 delete_node(root, node, update_node, private);
1082 }
1083
1084 /**
1085 * radix_tree_replace_slot - replace item in a slot
1086 * @root: radix tree root
1087 * @slot: pointer to slot
1088 * @item: new item to store in the slot.
1089 *
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1092 * across slot lookup and replacement.
1093 *
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1099 */
1100 void radix_tree_replace_slot(struct radix_tree_root *root,
1101 void **slot, void *item)
1102 {
1103 replace_slot(root, NULL, slot, item, true);
1104 }
1105 EXPORT_SYMBOL(radix_tree_replace_slot);
1106
1107 /**
1108 * radix_tree_iter_replace - replace item in a slot
1109 * @root: radix tree root
1110 * @slot: pointer to slot
1111 * @item: new item to store in the slot.
1112 *
1113 * For use with radix_tree_split() and radix_tree_for_each_slot().
1114 * Caller must hold tree write locked across split and replacement.
1115 */
1116 void radix_tree_iter_replace(struct radix_tree_root *root,
1117 const struct radix_tree_iter *iter, void **slot, void *item)
1118 {
1119 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1120 }
1121
1122 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1123 /**
1124 * radix_tree_join - replace multiple entries with one multiorder entry
1125 * @root: radix tree root
1126 * @index: an index inside the new entry
1127 * @order: order of the new entry
1128 * @item: new entry
1129 *
1130 * Call this function to replace several entries with one larger entry.
1131 * The existing entries are presumed to not need freeing as a result of
1132 * this call.
1133 *
1134 * The replacement entry will have all the tags set on it that were set
1135 * on any of the entries it is replacing.
1136 */
1137 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1138 unsigned order, void *item)
1139 {
1140 struct radix_tree_node *node;
1141 void **slot;
1142 int error;
1143
1144 BUG_ON(radix_tree_is_internal_node(item));
1145
1146 error = __radix_tree_create(root, index, order, &node, &slot);
1147 if (!error)
1148 error = insert_entries(node, slot, item, order, true);
1149 if (error > 0)
1150 error = 0;
1151
1152 return error;
1153 }
1154
1155 /**
1156 * radix_tree_split - Split an entry into smaller entries
1157 * @root: radix tree root
1158 * @index: An index within the large entry
1159 * @order: Order of new entries
1160 *
1161 * Call this function as the first step in replacing a multiorder entry
1162 * with several entries of lower order. After this function returns,
1163 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1164 * and call radix_tree_iter_replace() to set up each new entry.
1165 *
1166 * The tags from this entry are replicated to all the new entries.
1167 *
1168 * The radix tree should be locked against modification during the entire
1169 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1170 * should prompt RCU walkers to restart the lookup from the root.
1171 */
1172 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1173 unsigned order)
1174 {
1175 struct radix_tree_node *parent, *node, *child;
1176 void **slot;
1177 unsigned int offset, end;
1178 unsigned n, tag, tags = 0;
1179
1180 if (!__radix_tree_lookup(root, index, &parent, &slot))
1181 return -ENOENT;
1182 if (!parent)
1183 return -ENOENT;
1184
1185 offset = get_slot_offset(parent, slot);
1186
1187 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1188 if (tag_get(parent, tag, offset))
1189 tags |= 1 << tag;
1190
1191 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1192 if (!is_sibling_entry(parent, parent->slots[end]))
1193 break;
1194 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1195 if (tags & (1 << tag))
1196 tag_set(parent, tag, end);
1197 /* rcu_assign_pointer ensures tags are set before RETRY */
1198 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1199 }
1200 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1201 parent->exceptional -= (end - offset);
1202
1203 if (order == parent->shift)
1204 return 0;
1205 if (order > parent->shift) {
1206 while (offset < end)
1207 offset += insert_entries(parent, &parent->slots[offset],
1208 RADIX_TREE_RETRY, order, true);
1209 return 0;
1210 }
1211
1212 node = parent;
1213
1214 for (;;) {
1215 if (node->shift > order) {
1216 child = radix_tree_node_alloc(root, node,
1217 node->shift - RADIX_TREE_MAP_SHIFT,
1218 offset, 0, 0);
1219 if (!child)
1220 goto nomem;
1221 if (node != parent) {
1222 node->count++;
1223 node->slots[offset] = node_to_entry(child);
1224 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1225 if (tags & (1 << tag))
1226 tag_set(node, tag, offset);
1227 }
1228
1229 node = child;
1230 offset = 0;
1231 continue;
1232 }
1233
1234 n = insert_entries(node, &node->slots[offset],
1235 RADIX_TREE_RETRY, order, false);
1236 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1237
1238 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1239 if (tags & (1 << tag))
1240 tag_set(node, tag, offset);
1241 offset += n;
1242
1243 while (offset == RADIX_TREE_MAP_SIZE) {
1244 if (node == parent)
1245 break;
1246 offset = node->offset;
1247 child = node;
1248 node = node->parent;
1249 rcu_assign_pointer(node->slots[offset],
1250 node_to_entry(child));
1251 offset++;
1252 }
1253 if ((node == parent) && (offset == end))
1254 return 0;
1255 }
1256
1257 nomem:
1258 /* Shouldn't happen; did user forget to preload? */
1259 /* TODO: free all the allocated nodes */
1260 WARN_ON(1);
1261 return -ENOMEM;
1262 }
1263 #endif
1264
1265 /**
1266 * radix_tree_tag_set - set a tag on a radix tree node
1267 * @root: radix tree root
1268 * @index: index key
1269 * @tag: tag index
1270 *
1271 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1272 * corresponding to @index in the radix tree. From
1273 * the root all the way down to the leaf node.
1274 *
1275 * Returns the address of the tagged item. Setting a tag on a not-present
1276 * item is a bug.
1277 */
1278 void *radix_tree_tag_set(struct radix_tree_root *root,
1279 unsigned long index, unsigned int tag)
1280 {
1281 struct radix_tree_node *node, *parent;
1282 unsigned long maxindex;
1283
1284 radix_tree_load_root(root, &node, &maxindex);
1285 BUG_ON(index > maxindex);
1286
1287 while (radix_tree_is_internal_node(node)) {
1288 unsigned offset;
1289
1290 parent = entry_to_node(node);
1291 offset = radix_tree_descend(parent, &node, index);
1292 BUG_ON(!node);
1293
1294 if (!tag_get(parent, tag, offset))
1295 tag_set(parent, tag, offset);
1296 }
1297
1298 /* set the root's tag bit */
1299 if (!root_tag_get(root, tag))
1300 root_tag_set(root, tag);
1301
1302 return node;
1303 }
1304 EXPORT_SYMBOL(radix_tree_tag_set);
1305
1306 static void node_tag_clear(struct radix_tree_root *root,
1307 struct radix_tree_node *node,
1308 unsigned int tag, unsigned int offset)
1309 {
1310 while (node) {
1311 if (!tag_get(node, tag, offset))
1312 return;
1313 tag_clear(node, tag, offset);
1314 if (any_tag_set(node, tag))
1315 return;
1316
1317 offset = node->offset;
1318 node = node->parent;
1319 }
1320
1321 /* clear the root's tag bit */
1322 if (root_tag_get(root, tag))
1323 root_tag_clear(root, tag);
1324 }
1325
1326 static void node_tag_set(struct radix_tree_root *root,
1327 struct radix_tree_node *node,
1328 unsigned int tag, unsigned int offset)
1329 {
1330 while (node) {
1331 if (tag_get(node, tag, offset))
1332 return;
1333 tag_set(node, tag, offset);
1334 offset = node->offset;
1335 node = node->parent;
1336 }
1337
1338 if (!root_tag_get(root, tag))
1339 root_tag_set(root, tag);
1340 }
1341
1342 /**
1343 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1344 * @root: radix tree root
1345 * @iter: iterator state
1346 * @tag: tag to set
1347 */
1348 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1349 const struct radix_tree_iter *iter, unsigned int tag)
1350 {
1351 node_tag_set(root, iter->node, tag, iter_offset(iter));
1352 }
1353
1354 /**
1355 * radix_tree_tag_clear - clear a tag on a radix tree node
1356 * @root: radix tree root
1357 * @index: index key
1358 * @tag: tag index
1359 *
1360 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1361 * corresponding to @index in the radix tree. If this causes
1362 * the leaf node to have no tags set then clear the tag in the
1363 * next-to-leaf node, etc.
1364 *
1365 * Returns the address of the tagged item on success, else NULL. ie:
1366 * has the same return value and semantics as radix_tree_lookup().
1367 */
1368 void *radix_tree_tag_clear(struct radix_tree_root *root,
1369 unsigned long index, unsigned int tag)
1370 {
1371 struct radix_tree_node *node, *parent;
1372 unsigned long maxindex;
1373 int uninitialized_var(offset);
1374
1375 radix_tree_load_root(root, &node, &maxindex);
1376 if (index > maxindex)
1377 return NULL;
1378
1379 parent = NULL;
1380
1381 while (radix_tree_is_internal_node(node)) {
1382 parent = entry_to_node(node);
1383 offset = radix_tree_descend(parent, &node, index);
1384 }
1385
1386 if (node)
1387 node_tag_clear(root, parent, tag, offset);
1388
1389 return node;
1390 }
1391 EXPORT_SYMBOL(radix_tree_tag_clear);
1392
1393 /**
1394 * radix_tree_tag_get - get a tag on a radix tree node
1395 * @root: radix tree root
1396 * @index: index key
1397 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1398 *
1399 * Return values:
1400 *
1401 * 0: tag not present or not set
1402 * 1: tag set
1403 *
1404 * Note that the return value of this function may not be relied on, even if
1405 * the RCU lock is held, unless tag modification and node deletion are excluded
1406 * from concurrency.
1407 */
1408 int radix_tree_tag_get(struct radix_tree_root *root,
1409 unsigned long index, unsigned int tag)
1410 {
1411 struct radix_tree_node *node, *parent;
1412 unsigned long maxindex;
1413
1414 if (!root_tag_get(root, tag))
1415 return 0;
1416
1417 radix_tree_load_root(root, &node, &maxindex);
1418 if (index > maxindex)
1419 return 0;
1420 if (node == NULL)
1421 return 0;
1422
1423 while (radix_tree_is_internal_node(node)) {
1424 unsigned offset;
1425
1426 parent = entry_to_node(node);
1427 offset = radix_tree_descend(parent, &node, index);
1428
1429 if (!node)
1430 return 0;
1431 if (!tag_get(parent, tag, offset))
1432 return 0;
1433 if (node == RADIX_TREE_RETRY)
1434 break;
1435 }
1436
1437 return 1;
1438 }
1439 EXPORT_SYMBOL(radix_tree_tag_get);
1440
1441 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1442 unsigned int shift)
1443 {
1444 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1445 iter->shift = shift;
1446 #endif
1447 }
1448
1449 /* Construct iter->tags bit-mask from node->tags[tag] array */
1450 static void set_iter_tags(struct radix_tree_iter *iter,
1451 struct radix_tree_node *node, unsigned offset,
1452 unsigned tag)
1453 {
1454 unsigned tag_long = offset / BITS_PER_LONG;
1455 unsigned tag_bit = offset % BITS_PER_LONG;
1456
1457 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1458
1459 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1460 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1461 /* Pick tags from next element */
1462 if (tag_bit)
1463 iter->tags |= node->tags[tag][tag_long + 1] <<
1464 (BITS_PER_LONG - tag_bit);
1465 /* Clip chunk size, here only BITS_PER_LONG tags */
1466 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1467 }
1468 }
1469
1470 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1471 static void **skip_siblings(struct radix_tree_node **nodep,
1472 void **slot, struct radix_tree_iter *iter)
1473 {
1474 void *sib = node_to_entry(slot - 1);
1475
1476 while (iter->index < iter->next_index) {
1477 *nodep = rcu_dereference_raw(*slot);
1478 if (*nodep && *nodep != sib)
1479 return slot;
1480 slot++;
1481 iter->index = __radix_tree_iter_add(iter, 1);
1482 iter->tags >>= 1;
1483 }
1484
1485 *nodep = NULL;
1486 return NULL;
1487 }
1488
1489 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1490 unsigned flags)
1491 {
1492 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1493 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1494
1495 slot = skip_siblings(&node, slot, iter);
1496
1497 while (radix_tree_is_internal_node(node)) {
1498 unsigned offset;
1499 unsigned long next_index;
1500
1501 if (node == RADIX_TREE_RETRY)
1502 return slot;
1503 node = entry_to_node(node);
1504 iter->node = node;
1505 iter->shift = node->shift;
1506
1507 if (flags & RADIX_TREE_ITER_TAGGED) {
1508 offset = radix_tree_find_next_bit(node, tag, 0);
1509 if (offset == RADIX_TREE_MAP_SIZE)
1510 return NULL;
1511 slot = &node->slots[offset];
1512 iter->index = __radix_tree_iter_add(iter, offset);
1513 set_iter_tags(iter, node, offset, tag);
1514 node = rcu_dereference_raw(*slot);
1515 } else {
1516 offset = 0;
1517 slot = &node->slots[0];
1518 for (;;) {
1519 node = rcu_dereference_raw(*slot);
1520 if (node)
1521 break;
1522 slot++;
1523 offset++;
1524 if (offset == RADIX_TREE_MAP_SIZE)
1525 return NULL;
1526 }
1527 iter->index = __radix_tree_iter_add(iter, offset);
1528 }
1529 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1530 goto none;
1531 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1532 if (next_index < iter->next_index)
1533 iter->next_index = next_index;
1534 }
1535
1536 return slot;
1537 none:
1538 iter->next_index = 0;
1539 return NULL;
1540 }
1541 EXPORT_SYMBOL(__radix_tree_next_slot);
1542 #else
1543 static void **skip_siblings(struct radix_tree_node **nodep,
1544 void **slot, struct radix_tree_iter *iter)
1545 {
1546 return slot;
1547 }
1548 #endif
1549
1550 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1551 {
1552 struct radix_tree_node *node;
1553
1554 slot++;
1555 iter->index = __radix_tree_iter_add(iter, 1);
1556 node = rcu_dereference_raw(*slot);
1557 skip_siblings(&node, slot, iter);
1558 iter->next_index = iter->index;
1559 iter->tags = 0;
1560 return NULL;
1561 }
1562 EXPORT_SYMBOL(radix_tree_iter_resume);
1563
1564 /**
1565 * radix_tree_next_chunk - find next chunk of slots for iteration
1566 *
1567 * @root: radix tree root
1568 * @iter: iterator state
1569 * @flags: RADIX_TREE_ITER_* flags and tag index
1570 * Returns: pointer to chunk first slot, or NULL if iteration is over
1571 */
1572 void **radix_tree_next_chunk(struct radix_tree_root *root,
1573 struct radix_tree_iter *iter, unsigned flags)
1574 {
1575 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1576 struct radix_tree_node *node, *child;
1577 unsigned long index, offset, maxindex;
1578
1579 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1580 return NULL;
1581
1582 /*
1583 * Catch next_index overflow after ~0UL. iter->index never overflows
1584 * during iterating; it can be zero only at the beginning.
1585 * And we cannot overflow iter->next_index in a single step,
1586 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1587 *
1588 * This condition also used by radix_tree_next_slot() to stop
1589 * contiguous iterating, and forbid switching to the next chunk.
1590 */
1591 index = iter->next_index;
1592 if (!index && iter->index)
1593 return NULL;
1594
1595 restart:
1596 radix_tree_load_root(root, &child, &maxindex);
1597 if (index > maxindex)
1598 return NULL;
1599 if (!child)
1600 return NULL;
1601
1602 if (!radix_tree_is_internal_node(child)) {
1603 /* Single-slot tree */
1604 iter->index = index;
1605 iter->next_index = maxindex + 1;
1606 iter->tags = 1;
1607 iter->node = NULL;
1608 __set_iter_shift(iter, 0);
1609 return (void **)&root->rnode;
1610 }
1611
1612 do {
1613 node = entry_to_node(child);
1614 offset = radix_tree_descend(node, &child, index);
1615
1616 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1617 !tag_get(node, tag, offset) : !child) {
1618 /* Hole detected */
1619 if (flags & RADIX_TREE_ITER_CONTIG)
1620 return NULL;
1621
1622 if (flags & RADIX_TREE_ITER_TAGGED)
1623 offset = radix_tree_find_next_bit(node, tag,
1624 offset + 1);
1625 else
1626 while (++offset < RADIX_TREE_MAP_SIZE) {
1627 void *slot = node->slots[offset];
1628 if (is_sibling_entry(node, slot))
1629 continue;
1630 if (slot)
1631 break;
1632 }
1633 index &= ~node_maxindex(node);
1634 index += offset << node->shift;
1635 /* Overflow after ~0UL */
1636 if (!index)
1637 return NULL;
1638 if (offset == RADIX_TREE_MAP_SIZE)
1639 goto restart;
1640 child = rcu_dereference_raw(node->slots[offset]);
1641 }
1642
1643 if (!child)
1644 goto restart;
1645 if (child == RADIX_TREE_RETRY)
1646 break;
1647 } while (radix_tree_is_internal_node(child));
1648
1649 /* Update the iterator state */
1650 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1651 iter->next_index = (index | node_maxindex(node)) + 1;
1652 iter->node = node;
1653 __set_iter_shift(iter, node->shift);
1654
1655 if (flags & RADIX_TREE_ITER_TAGGED)
1656 set_iter_tags(iter, node, offset, tag);
1657
1658 return node->slots + offset;
1659 }
1660 EXPORT_SYMBOL(radix_tree_next_chunk);
1661
1662 /**
1663 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1664 * @root: radix tree root
1665 * @results: where the results of the lookup are placed
1666 * @first_index: start the lookup from this key
1667 * @max_items: place up to this many items at *results
1668 *
1669 * Performs an index-ascending scan of the tree for present items. Places
1670 * them at *@results and returns the number of items which were placed at
1671 * *@results.
1672 *
1673 * The implementation is naive.
1674 *
1675 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1676 * rcu_read_lock. In this case, rather than the returned results being
1677 * an atomic snapshot of the tree at a single point in time, the
1678 * semantics of an RCU protected gang lookup are as though multiple
1679 * radix_tree_lookups have been issued in individual locks, and results
1680 * stored in 'results'.
1681 */
1682 unsigned int
1683 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1684 unsigned long first_index, unsigned int max_items)
1685 {
1686 struct radix_tree_iter iter;
1687 void **slot;
1688 unsigned int ret = 0;
1689
1690 if (unlikely(!max_items))
1691 return 0;
1692
1693 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1694 results[ret] = rcu_dereference_raw(*slot);
1695 if (!results[ret])
1696 continue;
1697 if (radix_tree_is_internal_node(results[ret])) {
1698 slot = radix_tree_iter_retry(&iter);
1699 continue;
1700 }
1701 if (++ret == max_items)
1702 break;
1703 }
1704
1705 return ret;
1706 }
1707 EXPORT_SYMBOL(radix_tree_gang_lookup);
1708
1709 /**
1710 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1711 * @root: radix tree root
1712 * @results: where the results of the lookup are placed
1713 * @indices: where their indices should be placed (but usually NULL)
1714 * @first_index: start the lookup from this key
1715 * @max_items: place up to this many items at *results
1716 *
1717 * Performs an index-ascending scan of the tree for present items. Places
1718 * their slots at *@results and returns the number of items which were
1719 * placed at *@results.
1720 *
1721 * The implementation is naive.
1722 *
1723 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1724 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1725 * protection, radix_tree_deref_slot may fail requiring a retry.
1726 */
1727 unsigned int
1728 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1729 void ***results, unsigned long *indices,
1730 unsigned long first_index, unsigned int max_items)
1731 {
1732 struct radix_tree_iter iter;
1733 void **slot;
1734 unsigned int ret = 0;
1735
1736 if (unlikely(!max_items))
1737 return 0;
1738
1739 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1740 results[ret] = slot;
1741 if (indices)
1742 indices[ret] = iter.index;
1743 if (++ret == max_items)
1744 break;
1745 }
1746
1747 return ret;
1748 }
1749 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1750
1751 /**
1752 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1753 * based on a tag
1754 * @root: radix tree root
1755 * @results: where the results of the lookup are placed
1756 * @first_index: start the lookup from this key
1757 * @max_items: place up to this many items at *results
1758 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1759 *
1760 * Performs an index-ascending scan of the tree for present items which
1761 * have the tag indexed by @tag set. Places the items at *@results and
1762 * returns the number of items which were placed at *@results.
1763 */
1764 unsigned int
1765 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1766 unsigned long first_index, unsigned int max_items,
1767 unsigned int tag)
1768 {
1769 struct radix_tree_iter iter;
1770 void **slot;
1771 unsigned int ret = 0;
1772
1773 if (unlikely(!max_items))
1774 return 0;
1775
1776 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1777 results[ret] = rcu_dereference_raw(*slot);
1778 if (!results[ret])
1779 continue;
1780 if (radix_tree_is_internal_node(results[ret])) {
1781 slot = radix_tree_iter_retry(&iter);
1782 continue;
1783 }
1784 if (++ret == max_items)
1785 break;
1786 }
1787
1788 return ret;
1789 }
1790 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1791
1792 /**
1793 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1794 * radix tree based on a tag
1795 * @root: radix tree root
1796 * @results: where the results of the lookup are placed
1797 * @first_index: start the lookup from this key
1798 * @max_items: place up to this many items at *results
1799 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1800 *
1801 * Performs an index-ascending scan of the tree for present items which
1802 * have the tag indexed by @tag set. Places the slots at *@results and
1803 * returns the number of slots which were placed at *@results.
1804 */
1805 unsigned int
1806 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1807 unsigned long first_index, unsigned int max_items,
1808 unsigned int tag)
1809 {
1810 struct radix_tree_iter iter;
1811 void **slot;
1812 unsigned int ret = 0;
1813
1814 if (unlikely(!max_items))
1815 return 0;
1816
1817 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1818 results[ret] = slot;
1819 if (++ret == max_items)
1820 break;
1821 }
1822
1823 return ret;
1824 }
1825 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1826
1827 /**
1828 * __radix_tree_delete_node - try to free node after clearing a slot
1829 * @root: radix tree root
1830 * @node: node containing @index
1831 * @update_node: callback for changing leaf nodes
1832 * @private: private data to pass to @update_node
1833 *
1834 * After clearing the slot at @index in @node from radix tree
1835 * rooted at @root, call this function to attempt freeing the
1836 * node and shrinking the tree.
1837 */
1838 void __radix_tree_delete_node(struct radix_tree_root *root,
1839 struct radix_tree_node *node,
1840 radix_tree_update_node_t update_node,
1841 void *private)
1842 {
1843 delete_node(root, node, update_node, private);
1844 }
1845
1846 /**
1847 * radix_tree_delete_item - delete an item from a radix tree
1848 * @root: radix tree root
1849 * @index: index key
1850 * @item: expected item
1851 *
1852 * Remove @item at @index from the radix tree rooted at @root.
1853 *
1854 * Returns the address of the deleted item, or NULL if it was not present
1855 * or the entry at the given @index was not @item.
1856 */
1857 void *radix_tree_delete_item(struct radix_tree_root *root,
1858 unsigned long index, void *item)
1859 {
1860 struct radix_tree_node *node;
1861 unsigned int offset;
1862 void **slot;
1863 void *entry;
1864 int tag;
1865
1866 entry = __radix_tree_lookup(root, index, &node, &slot);
1867 if (!entry)
1868 return NULL;
1869
1870 if (item && entry != item)
1871 return NULL;
1872
1873 if (!node) {
1874 root_tag_clear_all(root);
1875 root->rnode = NULL;
1876 return entry;
1877 }
1878
1879 offset = get_slot_offset(node, slot);
1880
1881 /* Clear all tags associated with the item to be deleted. */
1882 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1883 node_tag_clear(root, node, tag, offset);
1884
1885 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1886
1887 return entry;
1888 }
1889 EXPORT_SYMBOL(radix_tree_delete_item);
1890
1891 /**
1892 * radix_tree_delete - delete an item from a radix tree
1893 * @root: radix tree root
1894 * @index: index key
1895 *
1896 * Remove the item at @index from the radix tree rooted at @root.
1897 *
1898 * Returns the address of the deleted item, or NULL if it was not present.
1899 */
1900 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1901 {
1902 return radix_tree_delete_item(root, index, NULL);
1903 }
1904 EXPORT_SYMBOL(radix_tree_delete);
1905
1906 void radix_tree_clear_tags(struct radix_tree_root *root,
1907 struct radix_tree_node *node,
1908 void **slot)
1909 {
1910 if (node) {
1911 unsigned int tag, offset = get_slot_offset(node, slot);
1912 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1913 node_tag_clear(root, node, tag, offset);
1914 } else {
1915 /* Clear root node tags */
1916 root->gfp_mask &= __GFP_BITS_MASK;
1917 }
1918 }
1919
1920 /**
1921 * radix_tree_tagged - test whether any items in the tree are tagged
1922 * @root: radix tree root
1923 * @tag: tag to test
1924 */
1925 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1926 {
1927 return root_tag_get(root, tag);
1928 }
1929 EXPORT_SYMBOL(radix_tree_tagged);
1930
1931 static void
1932 radix_tree_node_ctor(void *arg)
1933 {
1934 struct radix_tree_node *node = arg;
1935
1936 memset(node, 0, sizeof(*node));
1937 INIT_LIST_HEAD(&node->private_list);
1938 }
1939
1940 static __init unsigned long __maxindex(unsigned int height)
1941 {
1942 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1943 int shift = RADIX_TREE_INDEX_BITS - width;
1944
1945 if (shift < 0)
1946 return ~0UL;
1947 if (shift >= BITS_PER_LONG)
1948 return 0UL;
1949 return ~0UL >> shift;
1950 }
1951
1952 static __init void radix_tree_init_maxnodes(void)
1953 {
1954 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1955 unsigned int i, j;
1956
1957 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1958 height_to_maxindex[i] = __maxindex(i);
1959 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1960 for (j = i; j > 0; j--)
1961 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1962 }
1963 }
1964
1965 static int radix_tree_cpu_dead(unsigned int cpu)
1966 {
1967 struct radix_tree_preload *rtp;
1968 struct radix_tree_node *node;
1969
1970 /* Free per-cpu pool of preloaded nodes */
1971 rtp = &per_cpu(radix_tree_preloads, cpu);
1972 while (rtp->nr) {
1973 node = rtp->nodes;
1974 rtp->nodes = node->private_data;
1975 kmem_cache_free(radix_tree_node_cachep, node);
1976 rtp->nr--;
1977 }
1978 return 0;
1979 }
1980
1981 void __init radix_tree_init(void)
1982 {
1983 int ret;
1984 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1985 sizeof(struct radix_tree_node), 0,
1986 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1987 radix_tree_node_ctor);
1988 radix_tree_init_maxnodes();
1989 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1990 NULL, radix_tree_cpu_dead);
1991 WARN_ON(ret < 0);
1992 }