3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
42 * We shall indicate color with case, where black nodes are uppercase and red
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
48 * Notes on lockless lookups:
50 * All stores to the tree structure (rb_left and rb_right) must be done using
51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52 * tree structure as seen in program order.
54 * These two requirements will allow lockless iteration of the tree -- not
55 * correct iteration mind you, tree rotations are not atomic so a lookup might
56 * miss entire subtrees.
58 * But they do guarantee that any such traversal will only see valid elements
59 * and that it will indeed complete -- does not get stuck in a loop.
61 * It also guarantees that if the lookup returns an element it is the 'correct'
62 * one. But not returning an element does _NOT_ mean it's not present.
66 * Stores to __rb_parent_color are not important for simple lookups so those
67 * are left undone as of now. Nor did I check for loops involving parent
71 static inline void rb_set_black(struct rb_node
*rb
)
73 rb
->__rb_parent_color
|= RB_BLACK
;
76 static inline struct rb_node
*rb_red_parent(struct rb_node
*red
)
78 return (struct rb_node
*)red
->__rb_parent_color
;
82 * Helper function for rotations:
83 * - old's parent and color get assigned to new
84 * - old gets assigned new as a parent and 'color' as a color.
87 __rb_rotate_set_parents(struct rb_node
*old
, struct rb_node
*new,
88 struct rb_root
*root
, int color
)
90 struct rb_node
*parent
= rb_parent(old
);
91 new->__rb_parent_color
= old
->__rb_parent_color
;
92 rb_set_parent_color(old
, new, color
);
93 __rb_change_child(old
, new, parent
, root
);
96 static __always_inline
void
97 __rb_insert(struct rb_node
*node
, struct rb_root
*root
,
98 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
100 struct rb_node
*parent
= rb_red_parent(node
), *gparent
, *tmp
;
104 * Loop invariant: node is red
106 * If there is a black parent, we are done.
107 * Otherwise, take some corrective action as we don't
108 * want a red root or two consecutive red nodes.
111 rb_set_parent_color(node
, NULL
, RB_BLACK
);
113 } else if (rb_is_black(parent
))
116 gparent
= rb_red_parent(parent
);
118 tmp
= gparent
->rb_right
;
119 if (parent
!= tmp
) { /* parent == gparent->rb_left */
120 if (tmp
&& rb_is_red(tmp
)) {
122 * Case 1 - color flips
130 * However, since g's parent might be red, and
131 * 4) does not allow this, we need to recurse
134 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
135 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
137 parent
= rb_parent(node
);
138 rb_set_parent_color(node
, parent
, RB_RED
);
142 tmp
= parent
->rb_right
;
145 * Case 2 - left rotate at parent
153 * This still leaves us in violation of 4), the
154 * continuation into Case 3 will fix that.
157 WRITE_ONCE(parent
->rb_right
, tmp
);
158 WRITE_ONCE(node
->rb_left
, parent
);
160 rb_set_parent_color(tmp
, parent
,
162 rb_set_parent_color(parent
, node
, RB_RED
);
163 augment_rotate(parent
, node
);
165 tmp
= node
->rb_right
;
169 * Case 3 - right rotate at gparent
177 WRITE_ONCE(gparent
->rb_left
, tmp
); /* == parent->rb_right */
178 WRITE_ONCE(parent
->rb_right
, gparent
);
180 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
181 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
182 augment_rotate(gparent
, parent
);
185 tmp
= gparent
->rb_left
;
186 if (tmp
&& rb_is_red(tmp
)) {
187 /* Case 1 - color flips */
188 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
189 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
191 parent
= rb_parent(node
);
192 rb_set_parent_color(node
, parent
, RB_RED
);
196 tmp
= parent
->rb_left
;
198 /* Case 2 - right rotate at parent */
199 tmp
= node
->rb_right
;
200 WRITE_ONCE(parent
->rb_left
, tmp
);
201 WRITE_ONCE(node
->rb_right
, parent
);
203 rb_set_parent_color(tmp
, parent
,
205 rb_set_parent_color(parent
, node
, RB_RED
);
206 augment_rotate(parent
, node
);
211 /* Case 3 - left rotate at gparent */
212 WRITE_ONCE(gparent
->rb_right
, tmp
); /* == parent->rb_left */
213 WRITE_ONCE(parent
->rb_left
, gparent
);
215 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
216 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
217 augment_rotate(gparent
, parent
);
224 * Inline version for rb_erase() use - we want to be able to inline
225 * and eliminate the dummy_rotate callback there
227 static __always_inline
void
228 ____rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
229 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
231 struct rb_node
*node
= NULL
, *sibling
, *tmp1
, *tmp2
;
236 * - node is black (or NULL on first iteration)
237 * - node is not the root (parent is not NULL)
238 * - All leaf paths going through parent and node have a
239 * black node count that is 1 lower than other leaf paths.
241 sibling
= parent
->rb_right
;
242 if (node
!= sibling
) { /* node == parent->rb_left */
243 if (rb_is_red(sibling
)) {
245 * Case 1 - left rotate at parent
253 tmp1
= sibling
->rb_left
;
254 WRITE_ONCE(parent
->rb_right
, tmp1
);
255 WRITE_ONCE(sibling
->rb_left
, parent
);
256 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
257 __rb_rotate_set_parents(parent
, sibling
, root
,
259 augment_rotate(parent
, sibling
);
262 tmp1
= sibling
->rb_right
;
263 if (!tmp1
|| rb_is_black(tmp1
)) {
264 tmp2
= sibling
->rb_left
;
265 if (!tmp2
|| rb_is_black(tmp2
)) {
267 * Case 2 - sibling color flip
268 * (p could be either color here)
276 * This leaves us violating 5) which
277 * can be fixed by flipping p to black
278 * if it was red, or by recursing at p.
279 * p is red when coming from Case 1.
281 rb_set_parent_color(sibling
, parent
,
283 if (rb_is_red(parent
))
284 rb_set_black(parent
);
287 parent
= rb_parent(node
);
294 * Case 3 - right rotate at sibling
295 * (p could be either color here)
305 tmp1
= tmp2
->rb_right
;
306 WRITE_ONCE(sibling
->rb_left
, tmp1
);
307 WRITE_ONCE(tmp2
->rb_right
, sibling
);
308 WRITE_ONCE(parent
->rb_right
, tmp2
);
310 rb_set_parent_color(tmp1
, sibling
,
312 augment_rotate(sibling
, tmp2
);
317 * Case 4 - left rotate at parent + color flips
318 * (p and sl could be either color here.
319 * After rotation, p becomes black, s acquires
320 * p's color, and sl keeps its color)
328 tmp2
= sibling
->rb_left
;
329 WRITE_ONCE(parent
->rb_right
, tmp2
);
330 WRITE_ONCE(sibling
->rb_left
, parent
);
331 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
333 rb_set_parent(tmp2
, parent
);
334 __rb_rotate_set_parents(parent
, sibling
, root
,
336 augment_rotate(parent
, sibling
);
339 sibling
= parent
->rb_left
;
340 if (rb_is_red(sibling
)) {
341 /* Case 1 - right rotate at parent */
342 tmp1
= sibling
->rb_right
;
343 WRITE_ONCE(parent
->rb_left
, tmp1
);
344 WRITE_ONCE(sibling
->rb_right
, parent
);
345 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
346 __rb_rotate_set_parents(parent
, sibling
, root
,
348 augment_rotate(parent
, sibling
);
351 tmp1
= sibling
->rb_left
;
352 if (!tmp1
|| rb_is_black(tmp1
)) {
353 tmp2
= sibling
->rb_right
;
354 if (!tmp2
|| rb_is_black(tmp2
)) {
355 /* Case 2 - sibling color flip */
356 rb_set_parent_color(sibling
, parent
,
358 if (rb_is_red(parent
))
359 rb_set_black(parent
);
362 parent
= rb_parent(node
);
368 /* Case 3 - right rotate at sibling */
369 tmp1
= tmp2
->rb_left
;
370 WRITE_ONCE(sibling
->rb_right
, tmp1
);
371 WRITE_ONCE(tmp2
->rb_left
, sibling
);
372 WRITE_ONCE(parent
->rb_left
, tmp2
);
374 rb_set_parent_color(tmp1
, sibling
,
376 augment_rotate(sibling
, tmp2
);
380 /* Case 4 - left rotate at parent + color flips */
381 tmp2
= sibling
->rb_right
;
382 WRITE_ONCE(parent
->rb_left
, tmp2
);
383 WRITE_ONCE(sibling
->rb_right
, parent
);
384 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
386 rb_set_parent(tmp2
, parent
);
387 __rb_rotate_set_parents(parent
, sibling
, root
,
389 augment_rotate(parent
, sibling
);
395 /* Non-inline version for rb_erase_augmented() use */
396 void __rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
397 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
399 ____rb_erase_color(parent
, root
, augment_rotate
);
401 EXPORT_SYMBOL(__rb_erase_color
);
404 * Non-augmented rbtree manipulation functions.
406 * We use dummy augmented callbacks here, and have the compiler optimize them
407 * out of the rb_insert_color() and rb_erase() function definitions.
410 static inline void dummy_propagate(struct rb_node
*node
, struct rb_node
*stop
) {}
411 static inline void dummy_copy(struct rb_node
*old
, struct rb_node
*new) {}
412 static inline void dummy_rotate(struct rb_node
*old
, struct rb_node
*new) {}
414 static const struct rb_augment_callbacks dummy_callbacks
= {
415 dummy_propagate
, dummy_copy
, dummy_rotate
418 void rb_insert_color(struct rb_node
*node
, struct rb_root
*root
)
420 __rb_insert(node
, root
, dummy_rotate
);
422 EXPORT_SYMBOL(rb_insert_color
);
424 void rb_erase(struct rb_node
*node
, struct rb_root
*root
)
426 struct rb_node
*rebalance
;
427 rebalance
= __rb_erase_augmented(node
, root
, &dummy_callbacks
);
429 ____rb_erase_color(rebalance
, root
, dummy_rotate
);
431 EXPORT_SYMBOL(rb_erase
);
434 * Augmented rbtree manipulation functions.
436 * This instantiates the same __always_inline functions as in the non-augmented
437 * case, but this time with user-defined callbacks.
440 void __rb_insert_augmented(struct rb_node
*node
, struct rb_root
*root
,
441 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
443 __rb_insert(node
, root
, augment_rotate
);
445 EXPORT_SYMBOL(__rb_insert_augmented
);
448 * This function returns the first node (in sort order) of the tree.
450 struct rb_node
*rb_first(const struct rb_root
*root
)
461 EXPORT_SYMBOL(rb_first
);
463 struct rb_node
*rb_last(const struct rb_root
*root
)
474 EXPORT_SYMBOL(rb_last
);
476 struct rb_node
*rb_next(const struct rb_node
*node
)
478 struct rb_node
*parent
;
480 if (RB_EMPTY_NODE(node
))
484 * If we have a right-hand child, go down and then left as far
487 if (node
->rb_right
) {
488 node
= node
->rb_right
;
489 while (node
->rb_left
)
491 return (struct rb_node
*)node
;
495 * No right-hand children. Everything down and left is smaller than us,
496 * so any 'next' node must be in the general direction of our parent.
497 * Go up the tree; any time the ancestor is a right-hand child of its
498 * parent, keep going up. First time it's a left-hand child of its
499 * parent, said parent is our 'next' node.
501 while ((parent
= rb_parent(node
)) && node
== parent
->rb_right
)
506 EXPORT_SYMBOL(rb_next
);
508 struct rb_node
*rb_prev(const struct rb_node
*node
)
510 struct rb_node
*parent
;
512 if (RB_EMPTY_NODE(node
))
516 * If we have a left-hand child, go down and then right as far
520 node
= node
->rb_left
;
521 while (node
->rb_right
)
523 return (struct rb_node
*)node
;
527 * No left-hand children. Go up till we find an ancestor which
528 * is a right-hand child of its parent.
530 while ((parent
= rb_parent(node
)) && node
== parent
->rb_left
)
535 EXPORT_SYMBOL(rb_prev
);
537 void rb_replace_node(struct rb_node
*victim
, struct rb_node
*new,
538 struct rb_root
*root
)
540 struct rb_node
*parent
= rb_parent(victim
);
542 /* Set the surrounding nodes to point to the replacement */
543 __rb_change_child(victim
, new, parent
, root
);
545 rb_set_parent(victim
->rb_left
, new);
546 if (victim
->rb_right
)
547 rb_set_parent(victim
->rb_right
, new);
549 /* Copy the pointers/colour from the victim to the replacement */
552 EXPORT_SYMBOL(rb_replace_node
);
554 static struct rb_node
*rb_left_deepest_node(const struct rb_node
*node
)
558 node
= node
->rb_left
;
559 else if (node
->rb_right
)
560 node
= node
->rb_right
;
562 return (struct rb_node
*)node
;
566 struct rb_node
*rb_next_postorder(const struct rb_node
*node
)
568 const struct rb_node
*parent
;
571 parent
= rb_parent(node
);
573 /* If we're sitting on node, we've already seen our children */
574 if (parent
&& node
== parent
->rb_left
&& parent
->rb_right
) {
575 /* If we are the parent's left node, go to the parent's right
576 * node then all the way down to the left */
577 return rb_left_deepest_node(parent
->rb_right
);
579 /* Otherwise we are the parent's right node, and the parent
581 return (struct rb_node
*)parent
;
583 EXPORT_SYMBOL(rb_next_postorder
);
585 struct rb_node
*rb_first_postorder(const struct rb_root
*root
)
590 return rb_left_deepest_node(root
->rb_node
);
592 EXPORT_SYMBOL(rb_first_postorder
);