]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - lib/rhashtable.c
rhashtable: Allow GFP_ATOMIC bucket table allocation
[mirror_ubuntu-jammy-kernel.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28
29 #define HASH_DEFAULT_SIZE 64UL
30 #define HASH_MIN_SIZE 4U
31 #define BUCKET_LOCKS_PER_CPU 128UL
32
33 static u32 head_hashfn(struct rhashtable *ht,
34 const struct bucket_table *tbl,
35 const struct rhash_head *he)
36 {
37 return rht_head_hashfn(ht, tbl, he, ht->p);
38 }
39
40 #ifdef CONFIG_PROVE_LOCKING
41 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
42
43 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
44 {
45 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
46 }
47 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
48
49 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
50 {
51 spinlock_t *lock = rht_bucket_lock(tbl, hash);
52
53 return (debug_locks) ? lockdep_is_held(lock) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
56 #else
57 #define ASSERT_RHT_MUTEX(HT)
58 #endif
59
60
61 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
62 gfp_t gfp)
63 {
64 unsigned int i, size;
65 #if defined(CONFIG_PROVE_LOCKING)
66 unsigned int nr_pcpus = 2;
67 #else
68 unsigned int nr_pcpus = num_possible_cpus();
69 #endif
70
71 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
72 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
73
74 /* Never allocate more than 0.5 locks per bucket */
75 size = min_t(unsigned int, size, tbl->size >> 1);
76
77 if (sizeof(spinlock_t) != 0) {
78 #ifdef CONFIG_NUMA
79 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
80 gfp == GFP_KERNEL)
81 tbl->locks = vmalloc(size * sizeof(spinlock_t));
82 else
83 #endif
84 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
85 gfp);
86 if (!tbl->locks)
87 return -ENOMEM;
88 for (i = 0; i < size; i++)
89 spin_lock_init(&tbl->locks[i]);
90 }
91 tbl->locks_mask = size - 1;
92
93 return 0;
94 }
95
96 static void bucket_table_free(const struct bucket_table *tbl)
97 {
98 if (tbl)
99 kvfree(tbl->locks);
100
101 kvfree(tbl);
102 }
103
104 static void bucket_table_free_rcu(struct rcu_head *head)
105 {
106 bucket_table_free(container_of(head, struct bucket_table, rcu));
107 }
108
109 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
110 size_t nbuckets,
111 gfp_t gfp)
112 {
113 struct bucket_table *tbl = NULL;
114 size_t size;
115 int i;
116
117 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
118 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
119 gfp != GFP_KERNEL)
120 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
121 if (tbl == NULL && gfp == GFP_KERNEL)
122 tbl = vzalloc(size);
123 if (tbl == NULL)
124 return NULL;
125
126 tbl->size = nbuckets;
127
128 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
129 bucket_table_free(tbl);
130 return NULL;
131 }
132
133 INIT_LIST_HEAD(&tbl->walkers);
134
135 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
136
137 for (i = 0; i < nbuckets; i++)
138 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
139
140 return tbl;
141 }
142
143 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
144 struct bucket_table *tbl)
145 {
146 struct bucket_table *new_tbl;
147
148 do {
149 new_tbl = tbl;
150 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
151 } while (tbl);
152
153 return new_tbl;
154 }
155
156 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
157 {
158 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
159 struct bucket_table *new_tbl = rhashtable_last_table(ht,
160 rht_dereference_rcu(old_tbl->future_tbl, ht));
161 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
162 int err = -ENOENT;
163 struct rhash_head *head, *next, *entry;
164 spinlock_t *new_bucket_lock;
165 unsigned new_hash;
166
167 rht_for_each(entry, old_tbl, old_hash) {
168 err = 0;
169 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
170
171 if (rht_is_a_nulls(next))
172 break;
173
174 pprev = &entry->next;
175 }
176
177 if (err)
178 goto out;
179
180 new_hash = head_hashfn(ht, new_tbl, entry);
181
182 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
183
184 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
185 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
186 new_tbl, new_hash);
187
188 if (rht_is_a_nulls(head))
189 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
190 else
191 RCU_INIT_POINTER(entry->next, head);
192
193 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194 spin_unlock(new_bucket_lock);
195
196 rcu_assign_pointer(*pprev, next);
197
198 out:
199 return err;
200 }
201
202 static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
203 {
204 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205 spinlock_t *old_bucket_lock;
206
207 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209 spin_lock_bh(old_bucket_lock);
210 while (!rhashtable_rehash_one(ht, old_hash))
211 ;
212 old_tbl->rehash++;
213 spin_unlock_bh(old_bucket_lock);
214 }
215
216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217 struct bucket_table *old_tbl,
218 struct bucket_table *new_tbl)
219 {
220 /* Protect future_tbl using the first bucket lock. */
221 spin_lock_bh(old_tbl->locks);
222
223 /* Did somebody beat us to it? */
224 if (rcu_access_pointer(old_tbl->future_tbl)) {
225 spin_unlock_bh(old_tbl->locks);
226 return -EEXIST;
227 }
228
229 /* Make insertions go into the new, empty table right away. Deletions
230 * and lookups will be attempted in both tables until we synchronize.
231 */
232 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234 /* Ensure the new table is visible to readers. */
235 smp_wmb();
236
237 spin_unlock_bh(old_tbl->locks);
238
239 return 0;
240 }
241
242 static int rhashtable_rehash_table(struct rhashtable *ht)
243 {
244 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
245 struct bucket_table *new_tbl;
246 struct rhashtable_walker *walker;
247 unsigned old_hash;
248
249 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
250 if (!new_tbl)
251 return 0;
252
253 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
254 rhashtable_rehash_chain(ht, old_hash);
255
256 /* Publish the new table pointer. */
257 rcu_assign_pointer(ht->tbl, new_tbl);
258
259 list_for_each_entry(walker, &old_tbl->walkers, list)
260 walker->tbl = NULL;
261
262 /* Wait for readers. All new readers will see the new
263 * table, and thus no references to the old table will
264 * remain.
265 */
266 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
267
268 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
269 }
270
271 /**
272 * rhashtable_expand - Expand hash table while allowing concurrent lookups
273 * @ht: the hash table to expand
274 *
275 * A secondary bucket array is allocated and the hash entries are migrated.
276 *
277 * This function may only be called in a context where it is safe to call
278 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
279 *
280 * The caller must ensure that no concurrent resizing occurs by holding
281 * ht->mutex.
282 *
283 * It is valid to have concurrent insertions and deletions protected by per
284 * bucket locks or concurrent RCU protected lookups and traversals.
285 */
286 static int rhashtable_expand(struct rhashtable *ht)
287 {
288 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
289 int err;
290
291 ASSERT_RHT_MUTEX(ht);
292
293 old_tbl = rhashtable_last_table(ht, old_tbl);
294
295 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
296 if (new_tbl == NULL)
297 return -ENOMEM;
298
299 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
300 if (err)
301 bucket_table_free(new_tbl);
302
303 return err;
304 }
305
306 /**
307 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
308 * @ht: the hash table to shrink
309 *
310 * This function shrinks the hash table to fit, i.e., the smallest
311 * size would not cause it to expand right away automatically.
312 *
313 * The caller must ensure that no concurrent resizing occurs by holding
314 * ht->mutex.
315 *
316 * The caller must ensure that no concurrent table mutations take place.
317 * It is however valid to have concurrent lookups if they are RCU protected.
318 *
319 * It is valid to have concurrent insertions and deletions protected by per
320 * bucket locks or concurrent RCU protected lookups and traversals.
321 */
322 static int rhashtable_shrink(struct rhashtable *ht)
323 {
324 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
325 unsigned size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
326 int err;
327
328 ASSERT_RHT_MUTEX(ht);
329
330 if (size < ht->p.min_size)
331 size = ht->p.min_size;
332
333 if (old_tbl->size <= size)
334 return 0;
335
336 if (rht_dereference(old_tbl->future_tbl, ht))
337 return -EEXIST;
338
339 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340 if (new_tbl == NULL)
341 return -ENOMEM;
342
343 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344 if (err)
345 bucket_table_free(new_tbl);
346
347 return err;
348 }
349
350 static void rht_deferred_worker(struct work_struct *work)
351 {
352 struct rhashtable *ht;
353 struct bucket_table *tbl;
354 int err = 0;
355
356 ht = container_of(work, struct rhashtable, run_work);
357 mutex_lock(&ht->mutex);
358 if (ht->being_destroyed)
359 goto unlock;
360
361 tbl = rht_dereference(ht->tbl, ht);
362 tbl = rhashtable_last_table(ht, tbl);
363
364 if (rht_grow_above_75(ht, tbl))
365 rhashtable_expand(ht);
366 else if (rht_shrink_below_30(ht, tbl))
367 rhashtable_shrink(ht);
368
369 err = rhashtable_rehash_table(ht);
370
371 unlock:
372 mutex_unlock(&ht->mutex);
373
374 if (err)
375 schedule_work(&ht->run_work);
376 }
377
378 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
379 struct rhash_head *obj,
380 struct bucket_table *tbl)
381 {
382 struct rhash_head *head;
383 unsigned hash;
384 int err = -EEXIST;
385
386 tbl = rhashtable_last_table(ht, tbl);
387 hash = head_hashfn(ht, tbl, obj);
388 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
389
390 if (key && rhashtable_lookup_fast(ht, key, ht->p))
391 goto exit;
392
393 err = 0;
394
395 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
396
397 RCU_INIT_POINTER(obj->next, head);
398
399 rcu_assign_pointer(tbl->buckets[hash], obj);
400
401 atomic_inc(&ht->nelems);
402
403 exit:
404 spin_unlock(rht_bucket_lock(tbl, hash));
405
406 return err;
407 }
408 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
409
410 /**
411 * rhashtable_walk_init - Initialise an iterator
412 * @ht: Table to walk over
413 * @iter: Hash table Iterator
414 *
415 * This function prepares a hash table walk.
416 *
417 * Note that if you restart a walk after rhashtable_walk_stop you
418 * may see the same object twice. Also, you may miss objects if
419 * there are removals in between rhashtable_walk_stop and the next
420 * call to rhashtable_walk_start.
421 *
422 * For a completely stable walk you should construct your own data
423 * structure outside the hash table.
424 *
425 * This function may sleep so you must not call it from interrupt
426 * context or with spin locks held.
427 *
428 * You must call rhashtable_walk_exit if this function returns
429 * successfully.
430 */
431 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
432 {
433 iter->ht = ht;
434 iter->p = NULL;
435 iter->slot = 0;
436 iter->skip = 0;
437
438 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
439 if (!iter->walker)
440 return -ENOMEM;
441
442 mutex_lock(&ht->mutex);
443 iter->walker->tbl = rht_dereference(ht->tbl, ht);
444 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
445 mutex_unlock(&ht->mutex);
446
447 return 0;
448 }
449 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
450
451 /**
452 * rhashtable_walk_exit - Free an iterator
453 * @iter: Hash table Iterator
454 *
455 * This function frees resources allocated by rhashtable_walk_init.
456 */
457 void rhashtable_walk_exit(struct rhashtable_iter *iter)
458 {
459 mutex_lock(&iter->ht->mutex);
460 if (iter->walker->tbl)
461 list_del(&iter->walker->list);
462 mutex_unlock(&iter->ht->mutex);
463 kfree(iter->walker);
464 }
465 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
466
467 /**
468 * rhashtable_walk_start - Start a hash table walk
469 * @iter: Hash table iterator
470 *
471 * Start a hash table walk. Note that we take the RCU lock in all
472 * cases including when we return an error. So you must always call
473 * rhashtable_walk_stop to clean up.
474 *
475 * Returns zero if successful.
476 *
477 * Returns -EAGAIN if resize event occured. Note that the iterator
478 * will rewind back to the beginning and you may use it immediately
479 * by calling rhashtable_walk_next.
480 */
481 int rhashtable_walk_start(struct rhashtable_iter *iter)
482 __acquires(RCU)
483 {
484 struct rhashtable *ht = iter->ht;
485
486 mutex_lock(&ht->mutex);
487
488 if (iter->walker->tbl)
489 list_del(&iter->walker->list);
490
491 rcu_read_lock();
492
493 mutex_unlock(&ht->mutex);
494
495 if (!iter->walker->tbl) {
496 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
497 return -EAGAIN;
498 }
499
500 return 0;
501 }
502 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
503
504 /**
505 * rhashtable_walk_next - Return the next object and advance the iterator
506 * @iter: Hash table iterator
507 *
508 * Note that you must call rhashtable_walk_stop when you are finished
509 * with the walk.
510 *
511 * Returns the next object or NULL when the end of the table is reached.
512 *
513 * Returns -EAGAIN if resize event occured. Note that the iterator
514 * will rewind back to the beginning and you may continue to use it.
515 */
516 void *rhashtable_walk_next(struct rhashtable_iter *iter)
517 {
518 struct bucket_table *tbl = iter->walker->tbl;
519 struct rhashtable *ht = iter->ht;
520 struct rhash_head *p = iter->p;
521 void *obj = NULL;
522
523 if (p) {
524 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
525 goto next;
526 }
527
528 for (; iter->slot < tbl->size; iter->slot++) {
529 int skip = iter->skip;
530
531 rht_for_each_rcu(p, tbl, iter->slot) {
532 if (!skip)
533 break;
534 skip--;
535 }
536
537 next:
538 if (!rht_is_a_nulls(p)) {
539 iter->skip++;
540 iter->p = p;
541 obj = rht_obj(ht, p);
542 goto out;
543 }
544
545 iter->skip = 0;
546 }
547
548 /* Ensure we see any new tables. */
549 smp_rmb();
550
551 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
552 if (iter->walker->tbl) {
553 iter->slot = 0;
554 iter->skip = 0;
555 return ERR_PTR(-EAGAIN);
556 }
557
558 iter->p = NULL;
559
560 out:
561
562 return obj;
563 }
564 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
565
566 /**
567 * rhashtable_walk_stop - Finish a hash table walk
568 * @iter: Hash table iterator
569 *
570 * Finish a hash table walk.
571 */
572 void rhashtable_walk_stop(struct rhashtable_iter *iter)
573 __releases(RCU)
574 {
575 struct rhashtable *ht;
576 struct bucket_table *tbl = iter->walker->tbl;
577
578 if (!tbl)
579 goto out;
580
581 ht = iter->ht;
582
583 mutex_lock(&ht->mutex);
584 if (tbl->rehash < tbl->size)
585 list_add(&iter->walker->list, &tbl->walkers);
586 else
587 iter->walker->tbl = NULL;
588 mutex_unlock(&ht->mutex);
589
590 iter->p = NULL;
591
592 out:
593 rcu_read_unlock();
594 }
595 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
596
597 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
598 {
599 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
600 (unsigned long)params->min_size);
601 }
602
603 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
604 {
605 return jhash2(key, length, seed);
606 }
607
608 /**
609 * rhashtable_init - initialize a new hash table
610 * @ht: hash table to be initialized
611 * @params: configuration parameters
612 *
613 * Initializes a new hash table based on the provided configuration
614 * parameters. A table can be configured either with a variable or
615 * fixed length key:
616 *
617 * Configuration Example 1: Fixed length keys
618 * struct test_obj {
619 * int key;
620 * void * my_member;
621 * struct rhash_head node;
622 * };
623 *
624 * struct rhashtable_params params = {
625 * .head_offset = offsetof(struct test_obj, node),
626 * .key_offset = offsetof(struct test_obj, key),
627 * .key_len = sizeof(int),
628 * .hashfn = jhash,
629 * .nulls_base = (1U << RHT_BASE_SHIFT),
630 * };
631 *
632 * Configuration Example 2: Variable length keys
633 * struct test_obj {
634 * [...]
635 * struct rhash_head node;
636 * };
637 *
638 * u32 my_hash_fn(const void *data, u32 seed)
639 * {
640 * struct test_obj *obj = data;
641 *
642 * return [... hash ...];
643 * }
644 *
645 * struct rhashtable_params params = {
646 * .head_offset = offsetof(struct test_obj, node),
647 * .hashfn = jhash,
648 * .obj_hashfn = my_hash_fn,
649 * };
650 */
651 int rhashtable_init(struct rhashtable *ht,
652 const struct rhashtable_params *params)
653 {
654 struct bucket_table *tbl;
655 size_t size;
656
657 size = HASH_DEFAULT_SIZE;
658
659 if ((!params->key_len && !params->obj_hashfn) ||
660 (params->obj_hashfn && !params->obj_cmpfn))
661 return -EINVAL;
662
663 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
664 return -EINVAL;
665
666 if (params->nelem_hint)
667 size = rounded_hashtable_size(params);
668
669 memset(ht, 0, sizeof(*ht));
670 mutex_init(&ht->mutex);
671 memcpy(&ht->p, params, sizeof(*params));
672
673 if (params->min_size)
674 ht->p.min_size = roundup_pow_of_two(params->min_size);
675
676 if (params->max_size)
677 ht->p.max_size = rounddown_pow_of_two(params->max_size);
678
679 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
680
681 if (params->locks_mul)
682 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
683 else
684 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
685
686 ht->key_len = ht->p.key_len;
687 if (!params->hashfn) {
688 ht->p.hashfn = jhash;
689
690 if (!(ht->key_len & (sizeof(u32) - 1))) {
691 ht->key_len /= sizeof(u32);
692 ht->p.hashfn = rhashtable_jhash2;
693 }
694 }
695
696 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
697 if (tbl == NULL)
698 return -ENOMEM;
699
700 atomic_set(&ht->nelems, 0);
701
702 RCU_INIT_POINTER(ht->tbl, tbl);
703
704 INIT_WORK(&ht->run_work, rht_deferred_worker);
705
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(rhashtable_init);
709
710 /**
711 * rhashtable_destroy - destroy hash table
712 * @ht: the hash table to destroy
713 *
714 * Frees the bucket array. This function is not rcu safe, therefore the caller
715 * has to make sure that no resizing may happen by unpublishing the hashtable
716 * and waiting for the quiescent cycle before releasing the bucket array.
717 */
718 void rhashtable_destroy(struct rhashtable *ht)
719 {
720 ht->being_destroyed = true;
721
722 cancel_work_sync(&ht->run_work);
723
724 mutex_lock(&ht->mutex);
725 bucket_table_free(rht_dereference(ht->tbl, ht));
726 mutex_unlock(&ht->mutex);
727 }
728 EXPORT_SYMBOL_GPL(rhashtable_destroy);