]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - lib/rhashtable.c
ARM: dts: socfgpa: remove ethernet aliases from dtsi
[mirror_ubuntu-focal-kernel.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 #include <linux/rhashtable.h>
32
33 #define HASH_DEFAULT_SIZE 64UL
34 #define HASH_MIN_SIZE 4U
35 #define BUCKET_LOCKS_PER_CPU 32UL
36
37 union nested_table {
38 union nested_table __rcu *table;
39 struct rhash_head __rcu *bucket;
40 };
41
42 static u32 head_hashfn(struct rhashtable *ht,
43 const struct bucket_table *tbl,
44 const struct rhash_head *he)
45 {
46 return rht_head_hashfn(ht, tbl, he, ht->p);
47 }
48
49 #ifdef CONFIG_PROVE_LOCKING
50 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
51
52 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
53 {
54 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
55 }
56 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
57
58 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
59 {
60 spinlock_t *lock = rht_bucket_lock(tbl, hash);
61
62 return (debug_locks) ? lockdep_is_held(lock) : 1;
63 }
64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
65 #else
66 #define ASSERT_RHT_MUTEX(HT)
67 #endif
68
69 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 {
71 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
72 const unsigned int len = 1 << shift;
73 unsigned int i;
74
75 ntbl = rcu_dereference_raw(ntbl->table);
76 if (!ntbl)
77 return;
78
79 if (size > len) {
80 size >>= shift;
81 for (i = 0; i < len; i++)
82 nested_table_free(ntbl + i, size);
83 }
84
85 kfree(ntbl);
86 }
87
88 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 {
90 unsigned int size = tbl->size >> tbl->nest;
91 unsigned int len = 1 << tbl->nest;
92 union nested_table *ntbl;
93 unsigned int i;
94
95 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96
97 for (i = 0; i < len; i++)
98 nested_table_free(ntbl + i, size);
99
100 kfree(ntbl);
101 }
102
103 static void bucket_table_free(const struct bucket_table *tbl)
104 {
105 if (tbl->nest)
106 nested_bucket_table_free(tbl);
107
108 free_bucket_spinlocks(tbl->locks);
109 kvfree(tbl);
110 }
111
112 static void bucket_table_free_rcu(struct rcu_head *head)
113 {
114 bucket_table_free(container_of(head, struct bucket_table, rcu));
115 }
116
117 static union nested_table *nested_table_alloc(struct rhashtable *ht,
118 union nested_table __rcu **prev,
119 bool leaf)
120 {
121 union nested_table *ntbl;
122 int i;
123
124 ntbl = rcu_dereference(*prev);
125 if (ntbl)
126 return ntbl;
127
128 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
129
130 if (ntbl && leaf) {
131 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
132 INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
133 }
134
135 rcu_assign_pointer(*prev, ntbl);
136
137 return ntbl;
138 }
139
140 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
141 size_t nbuckets,
142 gfp_t gfp)
143 {
144 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
145 struct bucket_table *tbl;
146 size_t size;
147
148 if (nbuckets < (1 << (shift + 1)))
149 return NULL;
150
151 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
152
153 tbl = kzalloc(size, gfp);
154 if (!tbl)
155 return NULL;
156
157 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
158 false)) {
159 kfree(tbl);
160 return NULL;
161 }
162
163 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
164
165 return tbl;
166 }
167
168 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
169 size_t nbuckets,
170 gfp_t gfp)
171 {
172 struct bucket_table *tbl = NULL;
173 size_t size, max_locks;
174 int i;
175
176 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
177 tbl = kvzalloc(size, gfp);
178
179 size = nbuckets;
180
181 if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
182 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
183 nbuckets = 0;
184 }
185
186 if (tbl == NULL)
187 return NULL;
188
189 tbl->size = size;
190
191 max_locks = size >> 1;
192 if (tbl->nest)
193 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
194
195 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
196 ht->p.locks_mul, gfp) < 0) {
197 bucket_table_free(tbl);
198 return NULL;
199 }
200
201 INIT_LIST_HEAD(&tbl->walkers);
202
203 tbl->hash_rnd = get_random_u32();
204
205 for (i = 0; i < nbuckets; i++)
206 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
207
208 return tbl;
209 }
210
211 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
212 struct bucket_table *tbl)
213 {
214 struct bucket_table *new_tbl;
215
216 do {
217 new_tbl = tbl;
218 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
219 } while (tbl);
220
221 return new_tbl;
222 }
223
224 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
225 {
226 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
227 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
228 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
229 int err = -EAGAIN;
230 struct rhash_head *head, *next, *entry;
231 spinlock_t *new_bucket_lock;
232 unsigned int new_hash;
233
234 if (new_tbl->nest)
235 goto out;
236
237 err = -ENOENT;
238
239 rht_for_each(entry, old_tbl, old_hash) {
240 err = 0;
241 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
242
243 if (rht_is_a_nulls(next))
244 break;
245
246 pprev = &entry->next;
247 }
248
249 if (err)
250 goto out;
251
252 new_hash = head_hashfn(ht, new_tbl, entry);
253
254 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
255
256 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
257 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
258 new_tbl, new_hash);
259
260 RCU_INIT_POINTER(entry->next, head);
261
262 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
263 spin_unlock(new_bucket_lock);
264
265 rcu_assign_pointer(*pprev, next);
266
267 out:
268 return err;
269 }
270
271 static int rhashtable_rehash_chain(struct rhashtable *ht,
272 unsigned int old_hash)
273 {
274 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
275 spinlock_t *old_bucket_lock;
276 int err;
277
278 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
279
280 spin_lock_bh(old_bucket_lock);
281 while (!(err = rhashtable_rehash_one(ht, old_hash)))
282 ;
283
284 if (err == -ENOENT) {
285 old_tbl->rehash++;
286 err = 0;
287 }
288 spin_unlock_bh(old_bucket_lock);
289
290 return err;
291 }
292
293 static int rhashtable_rehash_attach(struct rhashtable *ht,
294 struct bucket_table *old_tbl,
295 struct bucket_table *new_tbl)
296 {
297 /* Make insertions go into the new, empty table right away. Deletions
298 * and lookups will be attempted in both tables until we synchronize.
299 * As cmpxchg() provides strong barriers, we do not need
300 * rcu_assign_pointer().
301 */
302
303 if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
304 return -EEXIST;
305
306 return 0;
307 }
308
309 static int rhashtable_rehash_table(struct rhashtable *ht)
310 {
311 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
312 struct bucket_table *new_tbl;
313 struct rhashtable_walker *walker;
314 unsigned int old_hash;
315 int err;
316
317 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
318 if (!new_tbl)
319 return 0;
320
321 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
322 err = rhashtable_rehash_chain(ht, old_hash);
323 if (err)
324 return err;
325 cond_resched();
326 }
327
328 /* Publish the new table pointer. */
329 rcu_assign_pointer(ht->tbl, new_tbl);
330
331 spin_lock(&ht->lock);
332 list_for_each_entry(walker, &old_tbl->walkers, list)
333 walker->tbl = NULL;
334 spin_unlock(&ht->lock);
335
336 /* Wait for readers. All new readers will see the new
337 * table, and thus no references to the old table will
338 * remain.
339 */
340 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
341
342 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
343 }
344
345 static int rhashtable_rehash_alloc(struct rhashtable *ht,
346 struct bucket_table *old_tbl,
347 unsigned int size)
348 {
349 struct bucket_table *new_tbl;
350 int err;
351
352 ASSERT_RHT_MUTEX(ht);
353
354 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
355 if (new_tbl == NULL)
356 return -ENOMEM;
357
358 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
359 if (err)
360 bucket_table_free(new_tbl);
361
362 return err;
363 }
364
365 /**
366 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
367 * @ht: the hash table to shrink
368 *
369 * This function shrinks the hash table to fit, i.e., the smallest
370 * size would not cause it to expand right away automatically.
371 *
372 * The caller must ensure that no concurrent resizing occurs by holding
373 * ht->mutex.
374 *
375 * The caller must ensure that no concurrent table mutations take place.
376 * It is however valid to have concurrent lookups if they are RCU protected.
377 *
378 * It is valid to have concurrent insertions and deletions protected by per
379 * bucket locks or concurrent RCU protected lookups and traversals.
380 */
381 static int rhashtable_shrink(struct rhashtable *ht)
382 {
383 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
384 unsigned int nelems = atomic_read(&ht->nelems);
385 unsigned int size = 0;
386
387 if (nelems)
388 size = roundup_pow_of_two(nelems * 3 / 2);
389 if (size < ht->p.min_size)
390 size = ht->p.min_size;
391
392 if (old_tbl->size <= size)
393 return 0;
394
395 if (rht_dereference(old_tbl->future_tbl, ht))
396 return -EEXIST;
397
398 return rhashtable_rehash_alloc(ht, old_tbl, size);
399 }
400
401 static void rht_deferred_worker(struct work_struct *work)
402 {
403 struct rhashtable *ht;
404 struct bucket_table *tbl;
405 int err = 0;
406
407 ht = container_of(work, struct rhashtable, run_work);
408 mutex_lock(&ht->mutex);
409
410 tbl = rht_dereference(ht->tbl, ht);
411 tbl = rhashtable_last_table(ht, tbl);
412
413 if (rht_grow_above_75(ht, tbl))
414 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
415 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
416 err = rhashtable_shrink(ht);
417 else if (tbl->nest)
418 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
419
420 if (!err)
421 err = rhashtable_rehash_table(ht);
422
423 mutex_unlock(&ht->mutex);
424
425 if (err)
426 schedule_work(&ht->run_work);
427 }
428
429 static int rhashtable_insert_rehash(struct rhashtable *ht,
430 struct bucket_table *tbl)
431 {
432 struct bucket_table *old_tbl;
433 struct bucket_table *new_tbl;
434 unsigned int size;
435 int err;
436
437 old_tbl = rht_dereference_rcu(ht->tbl, ht);
438
439 size = tbl->size;
440
441 err = -EBUSY;
442
443 if (rht_grow_above_75(ht, tbl))
444 size *= 2;
445 /* Do not schedule more than one rehash */
446 else if (old_tbl != tbl)
447 goto fail;
448
449 err = -ENOMEM;
450
451 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
452 if (new_tbl == NULL)
453 goto fail;
454
455 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
456 if (err) {
457 bucket_table_free(new_tbl);
458 if (err == -EEXIST)
459 err = 0;
460 } else
461 schedule_work(&ht->run_work);
462
463 return err;
464
465 fail:
466 /* Do not fail the insert if someone else did a rehash. */
467 if (likely(rcu_access_pointer(tbl->future_tbl)))
468 return 0;
469
470 /* Schedule async rehash to retry allocation in process context. */
471 if (err == -ENOMEM)
472 schedule_work(&ht->run_work);
473
474 return err;
475 }
476
477 static void *rhashtable_lookup_one(struct rhashtable *ht,
478 struct bucket_table *tbl, unsigned int hash,
479 const void *key, struct rhash_head *obj)
480 {
481 struct rhashtable_compare_arg arg = {
482 .ht = ht,
483 .key = key,
484 };
485 struct rhash_head __rcu **pprev;
486 struct rhash_head *head;
487 int elasticity;
488
489 elasticity = RHT_ELASTICITY;
490 pprev = rht_bucket_var(tbl, hash);
491 rht_for_each_continue(head, *pprev, tbl, hash) {
492 struct rhlist_head *list;
493 struct rhlist_head *plist;
494
495 elasticity--;
496 if (!key ||
497 (ht->p.obj_cmpfn ?
498 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
499 rhashtable_compare(&arg, rht_obj(ht, head)))) {
500 pprev = &head->next;
501 continue;
502 }
503
504 if (!ht->rhlist)
505 return rht_obj(ht, head);
506
507 list = container_of(obj, struct rhlist_head, rhead);
508 plist = container_of(head, struct rhlist_head, rhead);
509
510 RCU_INIT_POINTER(list->next, plist);
511 head = rht_dereference_bucket(head->next, tbl, hash);
512 RCU_INIT_POINTER(list->rhead.next, head);
513 rcu_assign_pointer(*pprev, obj);
514
515 return NULL;
516 }
517
518 if (elasticity <= 0)
519 return ERR_PTR(-EAGAIN);
520
521 return ERR_PTR(-ENOENT);
522 }
523
524 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
525 struct bucket_table *tbl,
526 unsigned int hash,
527 struct rhash_head *obj,
528 void *data)
529 {
530 struct rhash_head __rcu **pprev;
531 struct bucket_table *new_tbl;
532 struct rhash_head *head;
533
534 if (!IS_ERR_OR_NULL(data))
535 return ERR_PTR(-EEXIST);
536
537 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
538 return ERR_CAST(data);
539
540 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
541 if (new_tbl)
542 return new_tbl;
543
544 if (PTR_ERR(data) != -ENOENT)
545 return ERR_CAST(data);
546
547 if (unlikely(rht_grow_above_max(ht, tbl)))
548 return ERR_PTR(-E2BIG);
549
550 if (unlikely(rht_grow_above_100(ht, tbl)))
551 return ERR_PTR(-EAGAIN);
552
553 pprev = rht_bucket_insert(ht, tbl, hash);
554 if (!pprev)
555 return ERR_PTR(-ENOMEM);
556
557 head = rht_dereference_bucket(*pprev, tbl, hash);
558
559 RCU_INIT_POINTER(obj->next, head);
560 if (ht->rhlist) {
561 struct rhlist_head *list;
562
563 list = container_of(obj, struct rhlist_head, rhead);
564 RCU_INIT_POINTER(list->next, NULL);
565 }
566
567 rcu_assign_pointer(*pprev, obj);
568
569 atomic_inc(&ht->nelems);
570 if (rht_grow_above_75(ht, tbl))
571 schedule_work(&ht->run_work);
572
573 return NULL;
574 }
575
576 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
577 struct rhash_head *obj)
578 {
579 struct bucket_table *new_tbl;
580 struct bucket_table *tbl;
581 unsigned int hash;
582 spinlock_t *lock;
583 void *data;
584
585 tbl = rcu_dereference(ht->tbl);
586
587 /* All insertions must grab the oldest table containing
588 * the hashed bucket that is yet to be rehashed.
589 */
590 for (;;) {
591 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
592 lock = rht_bucket_lock(tbl, hash);
593 spin_lock_bh(lock);
594
595 if (tbl->rehash <= hash)
596 break;
597
598 spin_unlock_bh(lock);
599 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
600 }
601
602 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
603 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
604 if (PTR_ERR(new_tbl) != -EEXIST)
605 data = ERR_CAST(new_tbl);
606
607 while (!IS_ERR_OR_NULL(new_tbl)) {
608 tbl = new_tbl;
609 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
610 spin_lock_nested(rht_bucket_lock(tbl, hash),
611 SINGLE_DEPTH_NESTING);
612
613 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
614 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
615 if (PTR_ERR(new_tbl) != -EEXIST)
616 data = ERR_CAST(new_tbl);
617
618 spin_unlock(rht_bucket_lock(tbl, hash));
619 }
620
621 spin_unlock_bh(lock);
622
623 if (PTR_ERR(data) == -EAGAIN)
624 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
625 -EAGAIN);
626
627 return data;
628 }
629
630 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
631 struct rhash_head *obj)
632 {
633 void *data;
634
635 do {
636 rcu_read_lock();
637 data = rhashtable_try_insert(ht, key, obj);
638 rcu_read_unlock();
639 } while (PTR_ERR(data) == -EAGAIN);
640
641 return data;
642 }
643 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
644
645 /**
646 * rhashtable_walk_enter - Initialise an iterator
647 * @ht: Table to walk over
648 * @iter: Hash table Iterator
649 *
650 * This function prepares a hash table walk.
651 *
652 * Note that if you restart a walk after rhashtable_walk_stop you
653 * may see the same object twice. Also, you may miss objects if
654 * there are removals in between rhashtable_walk_stop and the next
655 * call to rhashtable_walk_start.
656 *
657 * For a completely stable walk you should construct your own data
658 * structure outside the hash table.
659 *
660 * This function may be called from any process context, including
661 * non-preemptable context, but cannot be called from softirq or
662 * hardirq context.
663 *
664 * You must call rhashtable_walk_exit after this function returns.
665 */
666 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
667 {
668 iter->ht = ht;
669 iter->p = NULL;
670 iter->slot = 0;
671 iter->skip = 0;
672 iter->end_of_table = 0;
673
674 spin_lock(&ht->lock);
675 iter->walker.tbl =
676 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
677 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
678 spin_unlock(&ht->lock);
679 }
680 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
681
682 /**
683 * rhashtable_walk_exit - Free an iterator
684 * @iter: Hash table Iterator
685 *
686 * This function frees resources allocated by rhashtable_walk_init.
687 */
688 void rhashtable_walk_exit(struct rhashtable_iter *iter)
689 {
690 spin_lock(&iter->ht->lock);
691 if (iter->walker.tbl)
692 list_del(&iter->walker.list);
693 spin_unlock(&iter->ht->lock);
694 }
695 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
696
697 /**
698 * rhashtable_walk_start_check - Start a hash table walk
699 * @iter: Hash table iterator
700 *
701 * Start a hash table walk at the current iterator position. Note that we take
702 * the RCU lock in all cases including when we return an error. So you must
703 * always call rhashtable_walk_stop to clean up.
704 *
705 * Returns zero if successful.
706 *
707 * Returns -EAGAIN if resize event occured. Note that the iterator
708 * will rewind back to the beginning and you may use it immediately
709 * by calling rhashtable_walk_next.
710 *
711 * rhashtable_walk_start is defined as an inline variant that returns
712 * void. This is preferred in cases where the caller would ignore
713 * resize events and always continue.
714 */
715 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
716 __acquires(RCU)
717 {
718 struct rhashtable *ht = iter->ht;
719 bool rhlist = ht->rhlist;
720
721 rcu_read_lock();
722
723 spin_lock(&ht->lock);
724 if (iter->walker.tbl)
725 list_del(&iter->walker.list);
726 spin_unlock(&ht->lock);
727
728 if (iter->end_of_table)
729 return 0;
730 if (!iter->walker.tbl) {
731 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
732 iter->slot = 0;
733 iter->skip = 0;
734 return -EAGAIN;
735 }
736
737 if (iter->p && !rhlist) {
738 /*
739 * We need to validate that 'p' is still in the table, and
740 * if so, update 'skip'
741 */
742 struct rhash_head *p;
743 int skip = 0;
744 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
745 skip++;
746 if (p == iter->p) {
747 iter->skip = skip;
748 goto found;
749 }
750 }
751 iter->p = NULL;
752 } else if (iter->p && rhlist) {
753 /* Need to validate that 'list' is still in the table, and
754 * if so, update 'skip' and 'p'.
755 */
756 struct rhash_head *p;
757 struct rhlist_head *list;
758 int skip = 0;
759 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
760 for (list = container_of(p, struct rhlist_head, rhead);
761 list;
762 list = rcu_dereference(list->next)) {
763 skip++;
764 if (list == iter->list) {
765 iter->p = p;
766 iter->skip = skip;
767 goto found;
768 }
769 }
770 }
771 iter->p = NULL;
772 }
773 found:
774 return 0;
775 }
776 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
777
778 /**
779 * __rhashtable_walk_find_next - Find the next element in a table (or the first
780 * one in case of a new walk).
781 *
782 * @iter: Hash table iterator
783 *
784 * Returns the found object or NULL when the end of the table is reached.
785 *
786 * Returns -EAGAIN if resize event occurred.
787 */
788 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
789 {
790 struct bucket_table *tbl = iter->walker.tbl;
791 struct rhlist_head *list = iter->list;
792 struct rhashtable *ht = iter->ht;
793 struct rhash_head *p = iter->p;
794 bool rhlist = ht->rhlist;
795
796 if (!tbl)
797 return NULL;
798
799 for (; iter->slot < tbl->size; iter->slot++) {
800 int skip = iter->skip;
801
802 rht_for_each_rcu(p, tbl, iter->slot) {
803 if (rhlist) {
804 list = container_of(p, struct rhlist_head,
805 rhead);
806 do {
807 if (!skip)
808 goto next;
809 skip--;
810 list = rcu_dereference(list->next);
811 } while (list);
812
813 continue;
814 }
815 if (!skip)
816 break;
817 skip--;
818 }
819
820 next:
821 if (!rht_is_a_nulls(p)) {
822 iter->skip++;
823 iter->p = p;
824 iter->list = list;
825 return rht_obj(ht, rhlist ? &list->rhead : p);
826 }
827
828 iter->skip = 0;
829 }
830
831 iter->p = NULL;
832
833 /* Ensure we see any new tables. */
834 smp_rmb();
835
836 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
837 if (iter->walker.tbl) {
838 iter->slot = 0;
839 iter->skip = 0;
840 return ERR_PTR(-EAGAIN);
841 } else {
842 iter->end_of_table = true;
843 }
844
845 return NULL;
846 }
847
848 /**
849 * rhashtable_walk_next - Return the next object and advance the iterator
850 * @iter: Hash table iterator
851 *
852 * Note that you must call rhashtable_walk_stop when you are finished
853 * with the walk.
854 *
855 * Returns the next object or NULL when the end of the table is reached.
856 *
857 * Returns -EAGAIN if resize event occurred. Note that the iterator
858 * will rewind back to the beginning and you may continue to use it.
859 */
860 void *rhashtable_walk_next(struct rhashtable_iter *iter)
861 {
862 struct rhlist_head *list = iter->list;
863 struct rhashtable *ht = iter->ht;
864 struct rhash_head *p = iter->p;
865 bool rhlist = ht->rhlist;
866
867 if (p) {
868 if (!rhlist || !(list = rcu_dereference(list->next))) {
869 p = rcu_dereference(p->next);
870 list = container_of(p, struct rhlist_head, rhead);
871 }
872 if (!rht_is_a_nulls(p)) {
873 iter->skip++;
874 iter->p = p;
875 iter->list = list;
876 return rht_obj(ht, rhlist ? &list->rhead : p);
877 }
878
879 /* At the end of this slot, switch to next one and then find
880 * next entry from that point.
881 */
882 iter->skip = 0;
883 iter->slot++;
884 }
885
886 return __rhashtable_walk_find_next(iter);
887 }
888 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
889
890 /**
891 * rhashtable_walk_peek - Return the next object but don't advance the iterator
892 * @iter: Hash table iterator
893 *
894 * Returns the next object or NULL when the end of the table is reached.
895 *
896 * Returns -EAGAIN if resize event occurred. Note that the iterator
897 * will rewind back to the beginning and you may continue to use it.
898 */
899 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
900 {
901 struct rhlist_head *list = iter->list;
902 struct rhashtable *ht = iter->ht;
903 struct rhash_head *p = iter->p;
904
905 if (p)
906 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
907
908 /* No object found in current iter, find next one in the table. */
909
910 if (iter->skip) {
911 /* A nonzero skip value points to the next entry in the table
912 * beyond that last one that was found. Decrement skip so
913 * we find the current value. __rhashtable_walk_find_next
914 * will restore the original value of skip assuming that
915 * the table hasn't changed.
916 */
917 iter->skip--;
918 }
919
920 return __rhashtable_walk_find_next(iter);
921 }
922 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
923
924 /**
925 * rhashtable_walk_stop - Finish a hash table walk
926 * @iter: Hash table iterator
927 *
928 * Finish a hash table walk. Does not reset the iterator to the start of the
929 * hash table.
930 */
931 void rhashtable_walk_stop(struct rhashtable_iter *iter)
932 __releases(RCU)
933 {
934 struct rhashtable *ht;
935 struct bucket_table *tbl = iter->walker.tbl;
936
937 if (!tbl)
938 goto out;
939
940 ht = iter->ht;
941
942 spin_lock(&ht->lock);
943 if (tbl->rehash < tbl->size)
944 list_add(&iter->walker.list, &tbl->walkers);
945 else
946 iter->walker.tbl = NULL;
947 spin_unlock(&ht->lock);
948
949 out:
950 rcu_read_unlock();
951 }
952 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
953
954 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
955 {
956 size_t retsize;
957
958 if (params->nelem_hint)
959 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
960 (unsigned long)params->min_size);
961 else
962 retsize = max(HASH_DEFAULT_SIZE,
963 (unsigned long)params->min_size);
964
965 return retsize;
966 }
967
968 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
969 {
970 return jhash2(key, length, seed);
971 }
972
973 /**
974 * rhashtable_init - initialize a new hash table
975 * @ht: hash table to be initialized
976 * @params: configuration parameters
977 *
978 * Initializes a new hash table based on the provided configuration
979 * parameters. A table can be configured either with a variable or
980 * fixed length key:
981 *
982 * Configuration Example 1: Fixed length keys
983 * struct test_obj {
984 * int key;
985 * void * my_member;
986 * struct rhash_head node;
987 * };
988 *
989 * struct rhashtable_params params = {
990 * .head_offset = offsetof(struct test_obj, node),
991 * .key_offset = offsetof(struct test_obj, key),
992 * .key_len = sizeof(int),
993 * .hashfn = jhash,
994 * };
995 *
996 * Configuration Example 2: Variable length keys
997 * struct test_obj {
998 * [...]
999 * struct rhash_head node;
1000 * };
1001 *
1002 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1003 * {
1004 * struct test_obj *obj = data;
1005 *
1006 * return [... hash ...];
1007 * }
1008 *
1009 * struct rhashtable_params params = {
1010 * .head_offset = offsetof(struct test_obj, node),
1011 * .hashfn = jhash,
1012 * .obj_hashfn = my_hash_fn,
1013 * };
1014 */
1015 int rhashtable_init(struct rhashtable *ht,
1016 const struct rhashtable_params *params)
1017 {
1018 struct bucket_table *tbl;
1019 size_t size;
1020
1021 if ((!params->key_len && !params->obj_hashfn) ||
1022 (params->obj_hashfn && !params->obj_cmpfn))
1023 return -EINVAL;
1024
1025 memset(ht, 0, sizeof(*ht));
1026 mutex_init(&ht->mutex);
1027 spin_lock_init(&ht->lock);
1028 memcpy(&ht->p, params, sizeof(*params));
1029
1030 if (params->min_size)
1031 ht->p.min_size = roundup_pow_of_two(params->min_size);
1032
1033 /* Cap total entries at 2^31 to avoid nelems overflow. */
1034 ht->max_elems = 1u << 31;
1035
1036 if (params->max_size) {
1037 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1038 if (ht->p.max_size < ht->max_elems / 2)
1039 ht->max_elems = ht->p.max_size * 2;
1040 }
1041
1042 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1043
1044 size = rounded_hashtable_size(&ht->p);
1045
1046 if (params->locks_mul)
1047 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1048 else
1049 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1050
1051 ht->key_len = ht->p.key_len;
1052 if (!params->hashfn) {
1053 ht->p.hashfn = jhash;
1054
1055 if (!(ht->key_len & (sizeof(u32) - 1))) {
1056 ht->key_len /= sizeof(u32);
1057 ht->p.hashfn = rhashtable_jhash2;
1058 }
1059 }
1060
1061 /*
1062 * This is api initialization and thus we need to guarantee the
1063 * initial rhashtable allocation. Upon failure, retry with the
1064 * smallest possible size with __GFP_NOFAIL semantics.
1065 */
1066 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1067 if (unlikely(tbl == NULL)) {
1068 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1069 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1070 }
1071
1072 atomic_set(&ht->nelems, 0);
1073
1074 RCU_INIT_POINTER(ht->tbl, tbl);
1075
1076 INIT_WORK(&ht->run_work, rht_deferred_worker);
1077
1078 return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(rhashtable_init);
1081
1082 /**
1083 * rhltable_init - initialize a new hash list table
1084 * @hlt: hash list table to be initialized
1085 * @params: configuration parameters
1086 *
1087 * Initializes a new hash list table.
1088 *
1089 * See documentation for rhashtable_init.
1090 */
1091 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1092 {
1093 int err;
1094
1095 err = rhashtable_init(&hlt->ht, params);
1096 hlt->ht.rhlist = true;
1097 return err;
1098 }
1099 EXPORT_SYMBOL_GPL(rhltable_init);
1100
1101 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1102 void (*free_fn)(void *ptr, void *arg),
1103 void *arg)
1104 {
1105 struct rhlist_head *list;
1106
1107 if (!ht->rhlist) {
1108 free_fn(rht_obj(ht, obj), arg);
1109 return;
1110 }
1111
1112 list = container_of(obj, struct rhlist_head, rhead);
1113 do {
1114 obj = &list->rhead;
1115 list = rht_dereference(list->next, ht);
1116 free_fn(rht_obj(ht, obj), arg);
1117 } while (list);
1118 }
1119
1120 /**
1121 * rhashtable_free_and_destroy - free elements and destroy hash table
1122 * @ht: the hash table to destroy
1123 * @free_fn: callback to release resources of element
1124 * @arg: pointer passed to free_fn
1125 *
1126 * Stops an eventual async resize. If defined, invokes free_fn for each
1127 * element to releasal resources. Please note that RCU protected
1128 * readers may still be accessing the elements. Releasing of resources
1129 * must occur in a compatible manner. Then frees the bucket array.
1130 *
1131 * This function will eventually sleep to wait for an async resize
1132 * to complete. The caller is responsible that no further write operations
1133 * occurs in parallel.
1134 */
1135 void rhashtable_free_and_destroy(struct rhashtable *ht,
1136 void (*free_fn)(void *ptr, void *arg),
1137 void *arg)
1138 {
1139 struct bucket_table *tbl, *next_tbl;
1140 unsigned int i;
1141
1142 cancel_work_sync(&ht->run_work);
1143
1144 mutex_lock(&ht->mutex);
1145 tbl = rht_dereference(ht->tbl, ht);
1146 restart:
1147 if (free_fn) {
1148 for (i = 0; i < tbl->size; i++) {
1149 struct rhash_head *pos, *next;
1150
1151 cond_resched();
1152 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1153 next = !rht_is_a_nulls(pos) ?
1154 rht_dereference(pos->next, ht) : NULL;
1155 !rht_is_a_nulls(pos);
1156 pos = next,
1157 next = !rht_is_a_nulls(pos) ?
1158 rht_dereference(pos->next, ht) : NULL)
1159 rhashtable_free_one(ht, pos, free_fn, arg);
1160 }
1161 }
1162
1163 next_tbl = rht_dereference(tbl->future_tbl, ht);
1164 bucket_table_free(tbl);
1165 if (next_tbl) {
1166 tbl = next_tbl;
1167 goto restart;
1168 }
1169 mutex_unlock(&ht->mutex);
1170 }
1171 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1172
1173 void rhashtable_destroy(struct rhashtable *ht)
1174 {
1175 return rhashtable_free_and_destroy(ht, NULL, NULL);
1176 }
1177 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1178
1179 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1180 unsigned int hash)
1181 {
1182 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1183 static struct rhash_head __rcu *rhnull =
1184 (struct rhash_head __rcu *)NULLS_MARKER(0);
1185 unsigned int index = hash & ((1 << tbl->nest) - 1);
1186 unsigned int size = tbl->size >> tbl->nest;
1187 unsigned int subhash = hash;
1188 union nested_table *ntbl;
1189
1190 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1191 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1192 subhash >>= tbl->nest;
1193
1194 while (ntbl && size > (1 << shift)) {
1195 index = subhash & ((1 << shift) - 1);
1196 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1197 tbl, hash);
1198 size >>= shift;
1199 subhash >>= shift;
1200 }
1201
1202 if (!ntbl)
1203 return &rhnull;
1204
1205 return &ntbl[subhash].bucket;
1206
1207 }
1208 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1209
1210 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1211 struct bucket_table *tbl,
1212 unsigned int hash)
1213 {
1214 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1215 unsigned int index = hash & ((1 << tbl->nest) - 1);
1216 unsigned int size = tbl->size >> tbl->nest;
1217 union nested_table *ntbl;
1218
1219 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1220 hash >>= tbl->nest;
1221 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1222 size <= (1 << shift));
1223
1224 while (ntbl && size > (1 << shift)) {
1225 index = hash & ((1 << shift) - 1);
1226 size >>= shift;
1227 hash >>= shift;
1228 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1229 size <= (1 << shift));
1230 }
1231
1232 if (!ntbl)
1233 return NULL;
1234
1235 return &ntbl[hash].bucket;
1236
1237 }
1238 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);