]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - lib/rhashtable.c
Merge tag 'for-linus-20151217' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-zesty-kernel.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #define HASH_DEFAULT_SIZE 64UL
32 #define HASH_MIN_SIZE 4U
33 #define BUCKET_LOCKS_PER_CPU 128UL
34
35 static u32 head_hashfn(struct rhashtable *ht,
36 const struct bucket_table *tbl,
37 const struct rhash_head *he)
38 {
39 return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53 spinlock_t *lock = rht_bucket_lock(tbl, hash);
54
55 return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61
62
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64 gfp_t gfp)
65 {
66 unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68 unsigned int nr_pcpus = 2;
69 #else
70 unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72
73 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75
76 /* Never allocate more than 0.5 locks per bucket */
77 size = min_t(unsigned int, size, tbl->size >> 1);
78
79 if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82 gfp == GFP_KERNEL)
83 tbl->locks = vmalloc(size * sizeof(spinlock_t));
84 else
85 #endif
86 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87 gfp);
88 if (!tbl->locks)
89 return -ENOMEM;
90 for (i = 0; i < size; i++)
91 spin_lock_init(&tbl->locks[i]);
92 }
93 tbl->locks_mask = size - 1;
94
95 return 0;
96 }
97
98 static void bucket_table_free(const struct bucket_table *tbl)
99 {
100 if (tbl)
101 kvfree(tbl->locks);
102
103 kvfree(tbl);
104 }
105
106 static void bucket_table_free_rcu(struct rcu_head *head)
107 {
108 bucket_table_free(container_of(head, struct bucket_table, rcu));
109 }
110
111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112 size_t nbuckets,
113 gfp_t gfp)
114 {
115 struct bucket_table *tbl = NULL;
116 size_t size;
117 int i;
118
119 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121 gfp != GFP_KERNEL)
122 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123 if (tbl == NULL && gfp == GFP_KERNEL)
124 tbl = vzalloc(size);
125 if (tbl == NULL)
126 return NULL;
127
128 tbl->size = nbuckets;
129
130 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131 bucket_table_free(tbl);
132 return NULL;
133 }
134
135 INIT_LIST_HEAD(&tbl->walkers);
136
137 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138
139 for (i = 0; i < nbuckets; i++)
140 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141
142 return tbl;
143 }
144
145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146 struct bucket_table *tbl)
147 {
148 struct bucket_table *new_tbl;
149
150 do {
151 new_tbl = tbl;
152 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153 } while (tbl);
154
155 return new_tbl;
156 }
157
158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159 {
160 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161 struct bucket_table *new_tbl = rhashtable_last_table(ht,
162 rht_dereference_rcu(old_tbl->future_tbl, ht));
163 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164 int err = -ENOENT;
165 struct rhash_head *head, *next, *entry;
166 spinlock_t *new_bucket_lock;
167 unsigned int new_hash;
168
169 rht_for_each(entry, old_tbl, old_hash) {
170 err = 0;
171 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172
173 if (rht_is_a_nulls(next))
174 break;
175
176 pprev = &entry->next;
177 }
178
179 if (err)
180 goto out;
181
182 new_hash = head_hashfn(ht, new_tbl, entry);
183
184 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185
186 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188 new_tbl, new_hash);
189
190 RCU_INIT_POINTER(entry->next, head);
191
192 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193 spin_unlock(new_bucket_lock);
194
195 rcu_assign_pointer(*pprev, next);
196
197 out:
198 return err;
199 }
200
201 static void rhashtable_rehash_chain(struct rhashtable *ht,
202 unsigned int old_hash)
203 {
204 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205 spinlock_t *old_bucket_lock;
206
207 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209 spin_lock_bh(old_bucket_lock);
210 while (!rhashtable_rehash_one(ht, old_hash))
211 ;
212 old_tbl->rehash++;
213 spin_unlock_bh(old_bucket_lock);
214 }
215
216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217 struct bucket_table *old_tbl,
218 struct bucket_table *new_tbl)
219 {
220 /* Protect future_tbl using the first bucket lock. */
221 spin_lock_bh(old_tbl->locks);
222
223 /* Did somebody beat us to it? */
224 if (rcu_access_pointer(old_tbl->future_tbl)) {
225 spin_unlock_bh(old_tbl->locks);
226 return -EEXIST;
227 }
228
229 /* Make insertions go into the new, empty table right away. Deletions
230 * and lookups will be attempted in both tables until we synchronize.
231 */
232 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234 /* Ensure the new table is visible to readers. */
235 smp_wmb();
236
237 spin_unlock_bh(old_tbl->locks);
238
239 return 0;
240 }
241
242 static int rhashtable_rehash_table(struct rhashtable *ht)
243 {
244 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
245 struct bucket_table *new_tbl;
246 struct rhashtable_walker *walker;
247 unsigned int old_hash;
248
249 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
250 if (!new_tbl)
251 return 0;
252
253 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
254 rhashtable_rehash_chain(ht, old_hash);
255
256 /* Publish the new table pointer. */
257 rcu_assign_pointer(ht->tbl, new_tbl);
258
259 spin_lock(&ht->lock);
260 list_for_each_entry(walker, &old_tbl->walkers, list)
261 walker->tbl = NULL;
262 spin_unlock(&ht->lock);
263
264 /* Wait for readers. All new readers will see the new
265 * table, and thus no references to the old table will
266 * remain.
267 */
268 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
269
270 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
271 }
272
273 /**
274 * rhashtable_expand - Expand hash table while allowing concurrent lookups
275 * @ht: the hash table to expand
276 *
277 * A secondary bucket array is allocated and the hash entries are migrated.
278 *
279 * This function may only be called in a context where it is safe to call
280 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
281 *
282 * The caller must ensure that no concurrent resizing occurs by holding
283 * ht->mutex.
284 *
285 * It is valid to have concurrent insertions and deletions protected by per
286 * bucket locks or concurrent RCU protected lookups and traversals.
287 */
288 static int rhashtable_expand(struct rhashtable *ht)
289 {
290 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
291 int err;
292
293 ASSERT_RHT_MUTEX(ht);
294
295 old_tbl = rhashtable_last_table(ht, old_tbl);
296
297 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
298 if (new_tbl == NULL)
299 return -ENOMEM;
300
301 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
302 if (err)
303 bucket_table_free(new_tbl);
304
305 return err;
306 }
307
308 /**
309 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
310 * @ht: the hash table to shrink
311 *
312 * This function shrinks the hash table to fit, i.e., the smallest
313 * size would not cause it to expand right away automatically.
314 *
315 * The caller must ensure that no concurrent resizing occurs by holding
316 * ht->mutex.
317 *
318 * The caller must ensure that no concurrent table mutations take place.
319 * It is however valid to have concurrent lookups if they are RCU protected.
320 *
321 * It is valid to have concurrent insertions and deletions protected by per
322 * bucket locks or concurrent RCU protected lookups and traversals.
323 */
324 static int rhashtable_shrink(struct rhashtable *ht)
325 {
326 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
327 unsigned int size;
328 int err;
329
330 ASSERT_RHT_MUTEX(ht);
331
332 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
333 if (size < ht->p.min_size)
334 size = ht->p.min_size;
335
336 if (old_tbl->size <= size)
337 return 0;
338
339 if (rht_dereference(old_tbl->future_tbl, ht))
340 return -EEXIST;
341
342 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
343 if (new_tbl == NULL)
344 return -ENOMEM;
345
346 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
347 if (err)
348 bucket_table_free(new_tbl);
349
350 return err;
351 }
352
353 static void rht_deferred_worker(struct work_struct *work)
354 {
355 struct rhashtable *ht;
356 struct bucket_table *tbl;
357 int err = 0;
358
359 ht = container_of(work, struct rhashtable, run_work);
360 mutex_lock(&ht->mutex);
361
362 tbl = rht_dereference(ht->tbl, ht);
363 tbl = rhashtable_last_table(ht, tbl);
364
365 if (rht_grow_above_75(ht, tbl))
366 rhashtable_expand(ht);
367 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
368 rhashtable_shrink(ht);
369
370 err = rhashtable_rehash_table(ht);
371
372 mutex_unlock(&ht->mutex);
373
374 if (err)
375 schedule_work(&ht->run_work);
376 }
377
378 static bool rhashtable_check_elasticity(struct rhashtable *ht,
379 struct bucket_table *tbl,
380 unsigned int hash)
381 {
382 unsigned int elasticity = ht->elasticity;
383 struct rhash_head *head;
384
385 rht_for_each(head, tbl, hash)
386 if (!--elasticity)
387 return true;
388
389 return false;
390 }
391
392 int rhashtable_insert_rehash(struct rhashtable *ht,
393 struct bucket_table *tbl)
394 {
395 struct bucket_table *old_tbl;
396 struct bucket_table *new_tbl;
397 unsigned int size;
398 int err;
399
400 old_tbl = rht_dereference_rcu(ht->tbl, ht);
401
402 size = tbl->size;
403
404 err = -EBUSY;
405
406 if (rht_grow_above_75(ht, tbl))
407 size *= 2;
408 /* Do not schedule more than one rehash */
409 else if (old_tbl != tbl)
410 goto fail;
411
412 err = -ENOMEM;
413
414 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
415 if (new_tbl == NULL)
416 goto fail;
417
418 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
419 if (err) {
420 bucket_table_free(new_tbl);
421 if (err == -EEXIST)
422 err = 0;
423 } else
424 schedule_work(&ht->run_work);
425
426 return err;
427
428 fail:
429 /* Do not fail the insert if someone else did a rehash. */
430 if (likely(rcu_dereference_raw(tbl->future_tbl)))
431 return 0;
432
433 /* Schedule async rehash to retry allocation in process context. */
434 if (err == -ENOMEM)
435 schedule_work(&ht->run_work);
436
437 return err;
438 }
439 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
440
441 struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
442 const void *key,
443 struct rhash_head *obj,
444 struct bucket_table *tbl)
445 {
446 struct rhash_head *head;
447 unsigned int hash;
448 int err;
449
450 tbl = rhashtable_last_table(ht, tbl);
451 hash = head_hashfn(ht, tbl, obj);
452 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
453
454 err = -EEXIST;
455 if (key && rhashtable_lookup_fast(ht, key, ht->p))
456 goto exit;
457
458 err = -E2BIG;
459 if (unlikely(rht_grow_above_max(ht, tbl)))
460 goto exit;
461
462 err = -EAGAIN;
463 if (rhashtable_check_elasticity(ht, tbl, hash) ||
464 rht_grow_above_100(ht, tbl))
465 goto exit;
466
467 err = 0;
468
469 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
470
471 RCU_INIT_POINTER(obj->next, head);
472
473 rcu_assign_pointer(tbl->buckets[hash], obj);
474
475 atomic_inc(&ht->nelems);
476
477 exit:
478 spin_unlock(rht_bucket_lock(tbl, hash));
479
480 if (err == 0)
481 return NULL;
482 else if (err == -EAGAIN)
483 return tbl;
484 else
485 return ERR_PTR(err);
486 }
487 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
488
489 /**
490 * rhashtable_walk_init - Initialise an iterator
491 * @ht: Table to walk over
492 * @iter: Hash table Iterator
493 *
494 * This function prepares a hash table walk.
495 *
496 * Note that if you restart a walk after rhashtable_walk_stop you
497 * may see the same object twice. Also, you may miss objects if
498 * there are removals in between rhashtable_walk_stop and the next
499 * call to rhashtable_walk_start.
500 *
501 * For a completely stable walk you should construct your own data
502 * structure outside the hash table.
503 *
504 * This function may sleep so you must not call it from interrupt
505 * context or with spin locks held.
506 *
507 * You must call rhashtable_walk_exit if this function returns
508 * successfully.
509 */
510 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
511 {
512 iter->ht = ht;
513 iter->p = NULL;
514 iter->slot = 0;
515 iter->skip = 0;
516
517 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
518 if (!iter->walker)
519 return -ENOMEM;
520
521 spin_lock(&ht->lock);
522 iter->walker->tbl = rht_dereference(ht->tbl, ht);
523 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
524 spin_unlock(&ht->lock);
525
526 return 0;
527 }
528 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
529
530 /**
531 * rhashtable_walk_exit - Free an iterator
532 * @iter: Hash table Iterator
533 *
534 * This function frees resources allocated by rhashtable_walk_init.
535 */
536 void rhashtable_walk_exit(struct rhashtable_iter *iter)
537 {
538 spin_lock(&iter->ht->lock);
539 if (iter->walker->tbl)
540 list_del(&iter->walker->list);
541 spin_unlock(&iter->ht->lock);
542 kfree(iter->walker);
543 }
544 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
545
546 /**
547 * rhashtable_walk_start - Start a hash table walk
548 * @iter: Hash table iterator
549 *
550 * Start a hash table walk. Note that we take the RCU lock in all
551 * cases including when we return an error. So you must always call
552 * rhashtable_walk_stop to clean up.
553 *
554 * Returns zero if successful.
555 *
556 * Returns -EAGAIN if resize event occured. Note that the iterator
557 * will rewind back to the beginning and you may use it immediately
558 * by calling rhashtable_walk_next.
559 */
560 int rhashtable_walk_start(struct rhashtable_iter *iter)
561 __acquires(RCU)
562 {
563 struct rhashtable *ht = iter->ht;
564
565 rcu_read_lock();
566
567 spin_lock(&ht->lock);
568 if (iter->walker->tbl)
569 list_del(&iter->walker->list);
570 spin_unlock(&ht->lock);
571
572 if (!iter->walker->tbl) {
573 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
574 return -EAGAIN;
575 }
576
577 return 0;
578 }
579 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
580
581 /**
582 * rhashtable_walk_next - Return the next object and advance the iterator
583 * @iter: Hash table iterator
584 *
585 * Note that you must call rhashtable_walk_stop when you are finished
586 * with the walk.
587 *
588 * Returns the next object or NULL when the end of the table is reached.
589 *
590 * Returns -EAGAIN if resize event occured. Note that the iterator
591 * will rewind back to the beginning and you may continue to use it.
592 */
593 void *rhashtable_walk_next(struct rhashtable_iter *iter)
594 {
595 struct bucket_table *tbl = iter->walker->tbl;
596 struct rhashtable *ht = iter->ht;
597 struct rhash_head *p = iter->p;
598
599 if (p) {
600 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
601 goto next;
602 }
603
604 for (; iter->slot < tbl->size; iter->slot++) {
605 int skip = iter->skip;
606
607 rht_for_each_rcu(p, tbl, iter->slot) {
608 if (!skip)
609 break;
610 skip--;
611 }
612
613 next:
614 if (!rht_is_a_nulls(p)) {
615 iter->skip++;
616 iter->p = p;
617 return rht_obj(ht, p);
618 }
619
620 iter->skip = 0;
621 }
622
623 iter->p = NULL;
624
625 /* Ensure we see any new tables. */
626 smp_rmb();
627
628 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
629 if (iter->walker->tbl) {
630 iter->slot = 0;
631 iter->skip = 0;
632 return ERR_PTR(-EAGAIN);
633 }
634
635 return NULL;
636 }
637 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
638
639 /**
640 * rhashtable_walk_stop - Finish a hash table walk
641 * @iter: Hash table iterator
642 *
643 * Finish a hash table walk.
644 */
645 void rhashtable_walk_stop(struct rhashtable_iter *iter)
646 __releases(RCU)
647 {
648 struct rhashtable *ht;
649 struct bucket_table *tbl = iter->walker->tbl;
650
651 if (!tbl)
652 goto out;
653
654 ht = iter->ht;
655
656 spin_lock(&ht->lock);
657 if (tbl->rehash < tbl->size)
658 list_add(&iter->walker->list, &tbl->walkers);
659 else
660 iter->walker->tbl = NULL;
661 spin_unlock(&ht->lock);
662
663 iter->p = NULL;
664
665 out:
666 rcu_read_unlock();
667 }
668 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
669
670 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
671 {
672 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
673 (unsigned long)params->min_size);
674 }
675
676 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
677 {
678 return jhash2(key, length, seed);
679 }
680
681 /**
682 * rhashtable_init - initialize a new hash table
683 * @ht: hash table to be initialized
684 * @params: configuration parameters
685 *
686 * Initializes a new hash table based on the provided configuration
687 * parameters. A table can be configured either with a variable or
688 * fixed length key:
689 *
690 * Configuration Example 1: Fixed length keys
691 * struct test_obj {
692 * int key;
693 * void * my_member;
694 * struct rhash_head node;
695 * };
696 *
697 * struct rhashtable_params params = {
698 * .head_offset = offsetof(struct test_obj, node),
699 * .key_offset = offsetof(struct test_obj, key),
700 * .key_len = sizeof(int),
701 * .hashfn = jhash,
702 * .nulls_base = (1U << RHT_BASE_SHIFT),
703 * };
704 *
705 * Configuration Example 2: Variable length keys
706 * struct test_obj {
707 * [...]
708 * struct rhash_head node;
709 * };
710 *
711 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
712 * {
713 * struct test_obj *obj = data;
714 *
715 * return [... hash ...];
716 * }
717 *
718 * struct rhashtable_params params = {
719 * .head_offset = offsetof(struct test_obj, node),
720 * .hashfn = jhash,
721 * .obj_hashfn = my_hash_fn,
722 * };
723 */
724 int rhashtable_init(struct rhashtable *ht,
725 const struct rhashtable_params *params)
726 {
727 struct bucket_table *tbl;
728 size_t size;
729
730 size = HASH_DEFAULT_SIZE;
731
732 if ((!params->key_len && !params->obj_hashfn) ||
733 (params->obj_hashfn && !params->obj_cmpfn))
734 return -EINVAL;
735
736 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
737 return -EINVAL;
738
739 memset(ht, 0, sizeof(*ht));
740 mutex_init(&ht->mutex);
741 spin_lock_init(&ht->lock);
742 memcpy(&ht->p, params, sizeof(*params));
743
744 if (params->min_size)
745 ht->p.min_size = roundup_pow_of_two(params->min_size);
746
747 if (params->max_size)
748 ht->p.max_size = rounddown_pow_of_two(params->max_size);
749
750 if (params->insecure_max_entries)
751 ht->p.insecure_max_entries =
752 rounddown_pow_of_two(params->insecure_max_entries);
753 else
754 ht->p.insecure_max_entries = ht->p.max_size * 2;
755
756 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
757
758 if (params->nelem_hint)
759 size = rounded_hashtable_size(&ht->p);
760
761 /* The maximum (not average) chain length grows with the
762 * size of the hash table, at a rate of (log N)/(log log N).
763 * The value of 16 is selected so that even if the hash
764 * table grew to 2^32 you would not expect the maximum
765 * chain length to exceed it unless we are under attack
766 * (or extremely unlucky).
767 *
768 * As this limit is only to detect attacks, we don't need
769 * to set it to a lower value as you'd need the chain
770 * length to vastly exceed 16 to have any real effect
771 * on the system.
772 */
773 if (!params->insecure_elasticity)
774 ht->elasticity = 16;
775
776 if (params->locks_mul)
777 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
778 else
779 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
780
781 ht->key_len = ht->p.key_len;
782 if (!params->hashfn) {
783 ht->p.hashfn = jhash;
784
785 if (!(ht->key_len & (sizeof(u32) - 1))) {
786 ht->key_len /= sizeof(u32);
787 ht->p.hashfn = rhashtable_jhash2;
788 }
789 }
790
791 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
792 if (tbl == NULL)
793 return -ENOMEM;
794
795 atomic_set(&ht->nelems, 0);
796
797 RCU_INIT_POINTER(ht->tbl, tbl);
798
799 INIT_WORK(&ht->run_work, rht_deferred_worker);
800
801 return 0;
802 }
803 EXPORT_SYMBOL_GPL(rhashtable_init);
804
805 /**
806 * rhashtable_free_and_destroy - free elements and destroy hash table
807 * @ht: the hash table to destroy
808 * @free_fn: callback to release resources of element
809 * @arg: pointer passed to free_fn
810 *
811 * Stops an eventual async resize. If defined, invokes free_fn for each
812 * element to releasal resources. Please note that RCU protected
813 * readers may still be accessing the elements. Releasing of resources
814 * must occur in a compatible manner. Then frees the bucket array.
815 *
816 * This function will eventually sleep to wait for an async resize
817 * to complete. The caller is responsible that no further write operations
818 * occurs in parallel.
819 */
820 void rhashtable_free_and_destroy(struct rhashtable *ht,
821 void (*free_fn)(void *ptr, void *arg),
822 void *arg)
823 {
824 const struct bucket_table *tbl;
825 unsigned int i;
826
827 cancel_work_sync(&ht->run_work);
828
829 mutex_lock(&ht->mutex);
830 tbl = rht_dereference(ht->tbl, ht);
831 if (free_fn) {
832 for (i = 0; i < tbl->size; i++) {
833 struct rhash_head *pos, *next;
834
835 for (pos = rht_dereference(tbl->buckets[i], ht),
836 next = !rht_is_a_nulls(pos) ?
837 rht_dereference(pos->next, ht) : NULL;
838 !rht_is_a_nulls(pos);
839 pos = next,
840 next = !rht_is_a_nulls(pos) ?
841 rht_dereference(pos->next, ht) : NULL)
842 free_fn(rht_obj(ht, pos), arg);
843 }
844 }
845
846 bucket_table_free(tbl);
847 mutex_unlock(&ht->mutex);
848 }
849 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
850
851 void rhashtable_destroy(struct rhashtable *ht)
852 {
853 return rhashtable_free_and_destroy(ht, NULL, NULL);
854 }
855 EXPORT_SYMBOL_GPL(rhashtable_destroy);