]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - lib/rhashtable.c
Merge tag 'acpi-5.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-jammy-kernel.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31
32 #define HASH_DEFAULT_SIZE 64UL
33 #define HASH_MIN_SIZE 4U
34
35 union nested_table {
36 union nested_table __rcu *table;
37 struct rhash_lock_head __rcu *bucket;
38 };
39
40 static u32 head_hashfn(struct rhashtable *ht,
41 const struct bucket_table *tbl,
42 const struct rhash_head *he)
43 {
44 return rht_head_hashfn(ht, tbl, he, ht->p);
45 }
46
47 #ifdef CONFIG_PROVE_LOCKING
48 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
49
50 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
51 {
52 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
53 }
54 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
55
56 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
57 {
58 if (!debug_locks)
59 return 1;
60 if (unlikely(tbl->nest))
61 return 1;
62 return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
63 }
64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
65 #else
66 #define ASSERT_RHT_MUTEX(HT)
67 #endif
68
69 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 {
71 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
72 const unsigned int len = 1 << shift;
73 unsigned int i;
74
75 ntbl = rcu_dereference_raw(ntbl->table);
76 if (!ntbl)
77 return;
78
79 if (size > len) {
80 size >>= shift;
81 for (i = 0; i < len; i++)
82 nested_table_free(ntbl + i, size);
83 }
84
85 kfree(ntbl);
86 }
87
88 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 {
90 unsigned int size = tbl->size >> tbl->nest;
91 unsigned int len = 1 << tbl->nest;
92 union nested_table *ntbl;
93 unsigned int i;
94
95 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96
97 for (i = 0; i < len; i++)
98 nested_table_free(ntbl + i, size);
99
100 kfree(ntbl);
101 }
102
103 static void bucket_table_free(const struct bucket_table *tbl)
104 {
105 if (tbl->nest)
106 nested_bucket_table_free(tbl);
107
108 kvfree(tbl);
109 }
110
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 union nested_table __rcu **prev,
118 bool leaf)
119 {
120 union nested_table *ntbl;
121 int i;
122
123 ntbl = rcu_dereference(*prev);
124 if (ntbl)
125 return ntbl;
126
127 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128
129 if (ntbl && leaf) {
130 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131 INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132 }
133
134 if (cmpxchg(prev, NULL, ntbl) == NULL)
135 return ntbl;
136 /* Raced with another thread. */
137 kfree(ntbl);
138 return rcu_dereference(*prev);
139 }
140
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 size_t nbuckets,
143 gfp_t gfp)
144 {
145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 struct bucket_table *tbl;
147 size_t size;
148
149 if (nbuckets < (1 << (shift + 1)))
150 return NULL;
151
152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
153
154 tbl = kzalloc(size, gfp);
155 if (!tbl)
156 return NULL;
157
158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 false)) {
160 kfree(tbl);
161 return NULL;
162 }
163
164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
165
166 return tbl;
167 }
168
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 size_t nbuckets,
171 gfp_t gfp)
172 {
173 struct bucket_table *tbl = NULL;
174 size_t size;
175 int i;
176 static struct lock_class_key __key;
177
178 tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
179
180 size = nbuckets;
181
182 if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
183 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
184 nbuckets = 0;
185 }
186
187 if (tbl == NULL)
188 return NULL;
189
190 lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
191
192 tbl->size = size;
193
194 rcu_head_init(&tbl->rcu);
195 INIT_LIST_HEAD(&tbl->walkers);
196
197 tbl->hash_rnd = get_random_u32();
198
199 for (i = 0; i < nbuckets; i++)
200 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
201
202 return tbl;
203 }
204
205 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
206 struct bucket_table *tbl)
207 {
208 struct bucket_table *new_tbl;
209
210 do {
211 new_tbl = tbl;
212 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
213 } while (tbl);
214
215 return new_tbl;
216 }
217
218 static int rhashtable_rehash_one(struct rhashtable *ht,
219 struct rhash_lock_head __rcu **bkt,
220 unsigned int old_hash)
221 {
222 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
223 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
224 int err = -EAGAIN;
225 struct rhash_head *head, *next, *entry;
226 struct rhash_head __rcu **pprev = NULL;
227 unsigned int new_hash;
228
229 if (new_tbl->nest)
230 goto out;
231
232 err = -ENOENT;
233
234 rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
235 old_tbl, old_hash) {
236 err = 0;
237 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
238
239 if (rht_is_a_nulls(next))
240 break;
241
242 pprev = &entry->next;
243 }
244
245 if (err)
246 goto out;
247
248 new_hash = head_hashfn(ht, new_tbl, entry);
249
250 rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);
251
252 head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
253
254 RCU_INIT_POINTER(entry->next, head);
255
256 rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);
257
258 if (pprev)
259 rcu_assign_pointer(*pprev, next);
260 else
261 /* Need to preserved the bit lock. */
262 rht_assign_locked(bkt, next);
263
264 out:
265 return err;
266 }
267
268 static int rhashtable_rehash_chain(struct rhashtable *ht,
269 unsigned int old_hash)
270 {
271 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
272 struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
273 int err;
274
275 if (!bkt)
276 return 0;
277 rht_lock(old_tbl, bkt);
278
279 while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
280 ;
281
282 if (err == -ENOENT)
283 err = 0;
284 rht_unlock(old_tbl, bkt);
285
286 return err;
287 }
288
289 static int rhashtable_rehash_attach(struct rhashtable *ht,
290 struct bucket_table *old_tbl,
291 struct bucket_table *new_tbl)
292 {
293 /* Make insertions go into the new, empty table right away. Deletions
294 * and lookups will be attempted in both tables until we synchronize.
295 * As cmpxchg() provides strong barriers, we do not need
296 * rcu_assign_pointer().
297 */
298
299 if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
300 return -EEXIST;
301
302 return 0;
303 }
304
305 static int rhashtable_rehash_table(struct rhashtable *ht)
306 {
307 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
308 struct bucket_table *new_tbl;
309 struct rhashtable_walker *walker;
310 unsigned int old_hash;
311 int err;
312
313 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
314 if (!new_tbl)
315 return 0;
316
317 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
318 err = rhashtable_rehash_chain(ht, old_hash);
319 if (err)
320 return err;
321 cond_resched();
322 }
323
324 /* Publish the new table pointer. */
325 rcu_assign_pointer(ht->tbl, new_tbl);
326
327 spin_lock(&ht->lock);
328 list_for_each_entry(walker, &old_tbl->walkers, list)
329 walker->tbl = NULL;
330
331 /* Wait for readers. All new readers will see the new
332 * table, and thus no references to the old table will
333 * remain.
334 * We do this inside the locked region so that
335 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
336 * to check if it should not re-link the table.
337 */
338 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
339 spin_unlock(&ht->lock);
340
341 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
342 }
343
344 static int rhashtable_rehash_alloc(struct rhashtable *ht,
345 struct bucket_table *old_tbl,
346 unsigned int size)
347 {
348 struct bucket_table *new_tbl;
349 int err;
350
351 ASSERT_RHT_MUTEX(ht);
352
353 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
354 if (new_tbl == NULL)
355 return -ENOMEM;
356
357 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
358 if (err)
359 bucket_table_free(new_tbl);
360
361 return err;
362 }
363
364 /**
365 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
366 * @ht: the hash table to shrink
367 *
368 * This function shrinks the hash table to fit, i.e., the smallest
369 * size would not cause it to expand right away automatically.
370 *
371 * The caller must ensure that no concurrent resizing occurs by holding
372 * ht->mutex.
373 *
374 * The caller must ensure that no concurrent table mutations take place.
375 * It is however valid to have concurrent lookups if they are RCU protected.
376 *
377 * It is valid to have concurrent insertions and deletions protected by per
378 * bucket locks or concurrent RCU protected lookups and traversals.
379 */
380 static int rhashtable_shrink(struct rhashtable *ht)
381 {
382 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
383 unsigned int nelems = atomic_read(&ht->nelems);
384 unsigned int size = 0;
385
386 if (nelems)
387 size = roundup_pow_of_two(nelems * 3 / 2);
388 if (size < ht->p.min_size)
389 size = ht->p.min_size;
390
391 if (old_tbl->size <= size)
392 return 0;
393
394 if (rht_dereference(old_tbl->future_tbl, ht))
395 return -EEXIST;
396
397 return rhashtable_rehash_alloc(ht, old_tbl, size);
398 }
399
400 static void rht_deferred_worker(struct work_struct *work)
401 {
402 struct rhashtable *ht;
403 struct bucket_table *tbl;
404 int err = 0;
405
406 ht = container_of(work, struct rhashtable, run_work);
407 mutex_lock(&ht->mutex);
408
409 tbl = rht_dereference(ht->tbl, ht);
410 tbl = rhashtable_last_table(ht, tbl);
411
412 if (rht_grow_above_75(ht, tbl))
413 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
414 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
415 err = rhashtable_shrink(ht);
416 else if (tbl->nest)
417 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
418
419 if (!err || err == -EEXIST) {
420 int nerr;
421
422 nerr = rhashtable_rehash_table(ht);
423 err = err ?: nerr;
424 }
425
426 mutex_unlock(&ht->mutex);
427
428 if (err)
429 schedule_work(&ht->run_work);
430 }
431
432 static int rhashtable_insert_rehash(struct rhashtable *ht,
433 struct bucket_table *tbl)
434 {
435 struct bucket_table *old_tbl;
436 struct bucket_table *new_tbl;
437 unsigned int size;
438 int err;
439
440 old_tbl = rht_dereference_rcu(ht->tbl, ht);
441
442 size = tbl->size;
443
444 err = -EBUSY;
445
446 if (rht_grow_above_75(ht, tbl))
447 size *= 2;
448 /* Do not schedule more than one rehash */
449 else if (old_tbl != tbl)
450 goto fail;
451
452 err = -ENOMEM;
453
454 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
455 if (new_tbl == NULL)
456 goto fail;
457
458 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
459 if (err) {
460 bucket_table_free(new_tbl);
461 if (err == -EEXIST)
462 err = 0;
463 } else
464 schedule_work(&ht->run_work);
465
466 return err;
467
468 fail:
469 /* Do not fail the insert if someone else did a rehash. */
470 if (likely(rcu_access_pointer(tbl->future_tbl)))
471 return 0;
472
473 /* Schedule async rehash to retry allocation in process context. */
474 if (err == -ENOMEM)
475 schedule_work(&ht->run_work);
476
477 return err;
478 }
479
480 static void *rhashtable_lookup_one(struct rhashtable *ht,
481 struct rhash_lock_head __rcu **bkt,
482 struct bucket_table *tbl, unsigned int hash,
483 const void *key, struct rhash_head *obj)
484 {
485 struct rhashtable_compare_arg arg = {
486 .ht = ht,
487 .key = key,
488 };
489 struct rhash_head __rcu **pprev = NULL;
490 struct rhash_head *head;
491 int elasticity;
492
493 elasticity = RHT_ELASTICITY;
494 rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
495 struct rhlist_head *list;
496 struct rhlist_head *plist;
497
498 elasticity--;
499 if (!key ||
500 (ht->p.obj_cmpfn ?
501 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
502 rhashtable_compare(&arg, rht_obj(ht, head)))) {
503 pprev = &head->next;
504 continue;
505 }
506
507 if (!ht->rhlist)
508 return rht_obj(ht, head);
509
510 list = container_of(obj, struct rhlist_head, rhead);
511 plist = container_of(head, struct rhlist_head, rhead);
512
513 RCU_INIT_POINTER(list->next, plist);
514 head = rht_dereference_bucket(head->next, tbl, hash);
515 RCU_INIT_POINTER(list->rhead.next, head);
516 if (pprev)
517 rcu_assign_pointer(*pprev, obj);
518 else
519 /* Need to preserve the bit lock */
520 rht_assign_locked(bkt, obj);
521
522 return NULL;
523 }
524
525 if (elasticity <= 0)
526 return ERR_PTR(-EAGAIN);
527
528 return ERR_PTR(-ENOENT);
529 }
530
531 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
532 struct rhash_lock_head __rcu **bkt,
533 struct bucket_table *tbl,
534 unsigned int hash,
535 struct rhash_head *obj,
536 void *data)
537 {
538 struct bucket_table *new_tbl;
539 struct rhash_head *head;
540
541 if (!IS_ERR_OR_NULL(data))
542 return ERR_PTR(-EEXIST);
543
544 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
545 return ERR_CAST(data);
546
547 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
548 if (new_tbl)
549 return new_tbl;
550
551 if (PTR_ERR(data) != -ENOENT)
552 return ERR_CAST(data);
553
554 if (unlikely(rht_grow_above_max(ht, tbl)))
555 return ERR_PTR(-E2BIG);
556
557 if (unlikely(rht_grow_above_100(ht, tbl)))
558 return ERR_PTR(-EAGAIN);
559
560 head = rht_ptr(bkt, tbl, hash);
561
562 RCU_INIT_POINTER(obj->next, head);
563 if (ht->rhlist) {
564 struct rhlist_head *list;
565
566 list = container_of(obj, struct rhlist_head, rhead);
567 RCU_INIT_POINTER(list->next, NULL);
568 }
569
570 /* bkt is always the head of the list, so it holds
571 * the lock, which we need to preserve
572 */
573 rht_assign_locked(bkt, obj);
574
575 atomic_inc(&ht->nelems);
576 if (rht_grow_above_75(ht, tbl))
577 schedule_work(&ht->run_work);
578
579 return NULL;
580 }
581
582 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
583 struct rhash_head *obj)
584 {
585 struct bucket_table *new_tbl;
586 struct bucket_table *tbl;
587 struct rhash_lock_head __rcu **bkt;
588 unsigned int hash;
589 void *data;
590
591 new_tbl = rcu_dereference(ht->tbl);
592
593 do {
594 tbl = new_tbl;
595 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
596 if (rcu_access_pointer(tbl->future_tbl))
597 /* Failure is OK */
598 bkt = rht_bucket_var(tbl, hash);
599 else
600 bkt = rht_bucket_insert(ht, tbl, hash);
601 if (bkt == NULL) {
602 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
603 data = ERR_PTR(-EAGAIN);
604 } else {
605 rht_lock(tbl, bkt);
606 data = rhashtable_lookup_one(ht, bkt, tbl,
607 hash, key, obj);
608 new_tbl = rhashtable_insert_one(ht, bkt, tbl,
609 hash, obj, data);
610 if (PTR_ERR(new_tbl) != -EEXIST)
611 data = ERR_CAST(new_tbl);
612
613 rht_unlock(tbl, bkt);
614 }
615 } while (!IS_ERR_OR_NULL(new_tbl));
616
617 if (PTR_ERR(data) == -EAGAIN)
618 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
619 -EAGAIN);
620
621 return data;
622 }
623
624 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
625 struct rhash_head *obj)
626 {
627 void *data;
628
629 do {
630 rcu_read_lock();
631 data = rhashtable_try_insert(ht, key, obj);
632 rcu_read_unlock();
633 } while (PTR_ERR(data) == -EAGAIN);
634
635 return data;
636 }
637 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
638
639 /**
640 * rhashtable_walk_enter - Initialise an iterator
641 * @ht: Table to walk over
642 * @iter: Hash table Iterator
643 *
644 * This function prepares a hash table walk.
645 *
646 * Note that if you restart a walk after rhashtable_walk_stop you
647 * may see the same object twice. Also, you may miss objects if
648 * there are removals in between rhashtable_walk_stop and the next
649 * call to rhashtable_walk_start.
650 *
651 * For a completely stable walk you should construct your own data
652 * structure outside the hash table.
653 *
654 * This function may be called from any process context, including
655 * non-preemptable context, but cannot be called from softirq or
656 * hardirq context.
657 *
658 * You must call rhashtable_walk_exit after this function returns.
659 */
660 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
661 {
662 iter->ht = ht;
663 iter->p = NULL;
664 iter->slot = 0;
665 iter->skip = 0;
666 iter->end_of_table = 0;
667
668 spin_lock(&ht->lock);
669 iter->walker.tbl =
670 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
671 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
672 spin_unlock(&ht->lock);
673 }
674 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
675
676 /**
677 * rhashtable_walk_exit - Free an iterator
678 * @iter: Hash table Iterator
679 *
680 * This function frees resources allocated by rhashtable_walk_enter.
681 */
682 void rhashtable_walk_exit(struct rhashtable_iter *iter)
683 {
684 spin_lock(&iter->ht->lock);
685 if (iter->walker.tbl)
686 list_del(&iter->walker.list);
687 spin_unlock(&iter->ht->lock);
688 }
689 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
690
691 /**
692 * rhashtable_walk_start_check - Start a hash table walk
693 * @iter: Hash table iterator
694 *
695 * Start a hash table walk at the current iterator position. Note that we take
696 * the RCU lock in all cases including when we return an error. So you must
697 * always call rhashtable_walk_stop to clean up.
698 *
699 * Returns zero if successful.
700 *
701 * Returns -EAGAIN if resize event occured. Note that the iterator
702 * will rewind back to the beginning and you may use it immediately
703 * by calling rhashtable_walk_next.
704 *
705 * rhashtable_walk_start is defined as an inline variant that returns
706 * void. This is preferred in cases where the caller would ignore
707 * resize events and always continue.
708 */
709 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
710 __acquires(RCU)
711 {
712 struct rhashtable *ht = iter->ht;
713 bool rhlist = ht->rhlist;
714
715 rcu_read_lock();
716
717 spin_lock(&ht->lock);
718 if (iter->walker.tbl)
719 list_del(&iter->walker.list);
720 spin_unlock(&ht->lock);
721
722 if (iter->end_of_table)
723 return 0;
724 if (!iter->walker.tbl) {
725 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
726 iter->slot = 0;
727 iter->skip = 0;
728 return -EAGAIN;
729 }
730
731 if (iter->p && !rhlist) {
732 /*
733 * We need to validate that 'p' is still in the table, and
734 * if so, update 'skip'
735 */
736 struct rhash_head *p;
737 int skip = 0;
738 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
739 skip++;
740 if (p == iter->p) {
741 iter->skip = skip;
742 goto found;
743 }
744 }
745 iter->p = NULL;
746 } else if (iter->p && rhlist) {
747 /* Need to validate that 'list' is still in the table, and
748 * if so, update 'skip' and 'p'.
749 */
750 struct rhash_head *p;
751 struct rhlist_head *list;
752 int skip = 0;
753 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
754 for (list = container_of(p, struct rhlist_head, rhead);
755 list;
756 list = rcu_dereference(list->next)) {
757 skip++;
758 if (list == iter->list) {
759 iter->p = p;
760 iter->skip = skip;
761 goto found;
762 }
763 }
764 }
765 iter->p = NULL;
766 }
767 found:
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
771
772 /**
773 * __rhashtable_walk_find_next - Find the next element in a table (or the first
774 * one in case of a new walk).
775 *
776 * @iter: Hash table iterator
777 *
778 * Returns the found object or NULL when the end of the table is reached.
779 *
780 * Returns -EAGAIN if resize event occurred.
781 */
782 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
783 {
784 struct bucket_table *tbl = iter->walker.tbl;
785 struct rhlist_head *list = iter->list;
786 struct rhashtable *ht = iter->ht;
787 struct rhash_head *p = iter->p;
788 bool rhlist = ht->rhlist;
789
790 if (!tbl)
791 return NULL;
792
793 for (; iter->slot < tbl->size; iter->slot++) {
794 int skip = iter->skip;
795
796 rht_for_each_rcu(p, tbl, iter->slot) {
797 if (rhlist) {
798 list = container_of(p, struct rhlist_head,
799 rhead);
800 do {
801 if (!skip)
802 goto next;
803 skip--;
804 list = rcu_dereference(list->next);
805 } while (list);
806
807 continue;
808 }
809 if (!skip)
810 break;
811 skip--;
812 }
813
814 next:
815 if (!rht_is_a_nulls(p)) {
816 iter->skip++;
817 iter->p = p;
818 iter->list = list;
819 return rht_obj(ht, rhlist ? &list->rhead : p);
820 }
821
822 iter->skip = 0;
823 }
824
825 iter->p = NULL;
826
827 /* Ensure we see any new tables. */
828 smp_rmb();
829
830 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
831 if (iter->walker.tbl) {
832 iter->slot = 0;
833 iter->skip = 0;
834 return ERR_PTR(-EAGAIN);
835 } else {
836 iter->end_of_table = true;
837 }
838
839 return NULL;
840 }
841
842 /**
843 * rhashtable_walk_next - Return the next object and advance the iterator
844 * @iter: Hash table iterator
845 *
846 * Note that you must call rhashtable_walk_stop when you are finished
847 * with the walk.
848 *
849 * Returns the next object or NULL when the end of the table is reached.
850 *
851 * Returns -EAGAIN if resize event occurred. Note that the iterator
852 * will rewind back to the beginning and you may continue to use it.
853 */
854 void *rhashtable_walk_next(struct rhashtable_iter *iter)
855 {
856 struct rhlist_head *list = iter->list;
857 struct rhashtable *ht = iter->ht;
858 struct rhash_head *p = iter->p;
859 bool rhlist = ht->rhlist;
860
861 if (p) {
862 if (!rhlist || !(list = rcu_dereference(list->next))) {
863 p = rcu_dereference(p->next);
864 list = container_of(p, struct rhlist_head, rhead);
865 }
866 if (!rht_is_a_nulls(p)) {
867 iter->skip++;
868 iter->p = p;
869 iter->list = list;
870 return rht_obj(ht, rhlist ? &list->rhead : p);
871 }
872
873 /* At the end of this slot, switch to next one and then find
874 * next entry from that point.
875 */
876 iter->skip = 0;
877 iter->slot++;
878 }
879
880 return __rhashtable_walk_find_next(iter);
881 }
882 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
883
884 /**
885 * rhashtable_walk_peek - Return the next object but don't advance the iterator
886 * @iter: Hash table iterator
887 *
888 * Returns the next object or NULL when the end of the table is reached.
889 *
890 * Returns -EAGAIN if resize event occurred. Note that the iterator
891 * will rewind back to the beginning and you may continue to use it.
892 */
893 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
894 {
895 struct rhlist_head *list = iter->list;
896 struct rhashtable *ht = iter->ht;
897 struct rhash_head *p = iter->p;
898
899 if (p)
900 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
901
902 /* No object found in current iter, find next one in the table. */
903
904 if (iter->skip) {
905 /* A nonzero skip value points to the next entry in the table
906 * beyond that last one that was found. Decrement skip so
907 * we find the current value. __rhashtable_walk_find_next
908 * will restore the original value of skip assuming that
909 * the table hasn't changed.
910 */
911 iter->skip--;
912 }
913
914 return __rhashtable_walk_find_next(iter);
915 }
916 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
917
918 /**
919 * rhashtable_walk_stop - Finish a hash table walk
920 * @iter: Hash table iterator
921 *
922 * Finish a hash table walk. Does not reset the iterator to the start of the
923 * hash table.
924 */
925 void rhashtable_walk_stop(struct rhashtable_iter *iter)
926 __releases(RCU)
927 {
928 struct rhashtable *ht;
929 struct bucket_table *tbl = iter->walker.tbl;
930
931 if (!tbl)
932 goto out;
933
934 ht = iter->ht;
935
936 spin_lock(&ht->lock);
937 if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
938 /* This bucket table is being freed, don't re-link it. */
939 iter->walker.tbl = NULL;
940 else
941 list_add(&iter->walker.list, &tbl->walkers);
942 spin_unlock(&ht->lock);
943
944 out:
945 rcu_read_unlock();
946 }
947 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
948
949 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
950 {
951 size_t retsize;
952
953 if (params->nelem_hint)
954 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
955 (unsigned long)params->min_size);
956 else
957 retsize = max(HASH_DEFAULT_SIZE,
958 (unsigned long)params->min_size);
959
960 return retsize;
961 }
962
963 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
964 {
965 return jhash2(key, length, seed);
966 }
967
968 /**
969 * rhashtable_init - initialize a new hash table
970 * @ht: hash table to be initialized
971 * @params: configuration parameters
972 *
973 * Initializes a new hash table based on the provided configuration
974 * parameters. A table can be configured either with a variable or
975 * fixed length key:
976 *
977 * Configuration Example 1: Fixed length keys
978 * struct test_obj {
979 * int key;
980 * void * my_member;
981 * struct rhash_head node;
982 * };
983 *
984 * struct rhashtable_params params = {
985 * .head_offset = offsetof(struct test_obj, node),
986 * .key_offset = offsetof(struct test_obj, key),
987 * .key_len = sizeof(int),
988 * .hashfn = jhash,
989 * };
990 *
991 * Configuration Example 2: Variable length keys
992 * struct test_obj {
993 * [...]
994 * struct rhash_head node;
995 * };
996 *
997 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
998 * {
999 * struct test_obj *obj = data;
1000 *
1001 * return [... hash ...];
1002 * }
1003 *
1004 * struct rhashtable_params params = {
1005 * .head_offset = offsetof(struct test_obj, node),
1006 * .hashfn = jhash,
1007 * .obj_hashfn = my_hash_fn,
1008 * };
1009 */
1010 int rhashtable_init(struct rhashtable *ht,
1011 const struct rhashtable_params *params)
1012 {
1013 struct bucket_table *tbl;
1014 size_t size;
1015
1016 if ((!params->key_len && !params->obj_hashfn) ||
1017 (params->obj_hashfn && !params->obj_cmpfn))
1018 return -EINVAL;
1019
1020 memset(ht, 0, sizeof(*ht));
1021 mutex_init(&ht->mutex);
1022 spin_lock_init(&ht->lock);
1023 memcpy(&ht->p, params, sizeof(*params));
1024
1025 if (params->min_size)
1026 ht->p.min_size = roundup_pow_of_two(params->min_size);
1027
1028 /* Cap total entries at 2^31 to avoid nelems overflow. */
1029 ht->max_elems = 1u << 31;
1030
1031 if (params->max_size) {
1032 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1033 if (ht->p.max_size < ht->max_elems / 2)
1034 ht->max_elems = ht->p.max_size * 2;
1035 }
1036
1037 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1038
1039 size = rounded_hashtable_size(&ht->p);
1040
1041 ht->key_len = ht->p.key_len;
1042 if (!params->hashfn) {
1043 ht->p.hashfn = jhash;
1044
1045 if (!(ht->key_len & (sizeof(u32) - 1))) {
1046 ht->key_len /= sizeof(u32);
1047 ht->p.hashfn = rhashtable_jhash2;
1048 }
1049 }
1050
1051 /*
1052 * This is api initialization and thus we need to guarantee the
1053 * initial rhashtable allocation. Upon failure, retry with the
1054 * smallest possible size with __GFP_NOFAIL semantics.
1055 */
1056 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1057 if (unlikely(tbl == NULL)) {
1058 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1059 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1060 }
1061
1062 atomic_set(&ht->nelems, 0);
1063
1064 RCU_INIT_POINTER(ht->tbl, tbl);
1065
1066 INIT_WORK(&ht->run_work, rht_deferred_worker);
1067
1068 return 0;
1069 }
1070 EXPORT_SYMBOL_GPL(rhashtable_init);
1071
1072 /**
1073 * rhltable_init - initialize a new hash list table
1074 * @hlt: hash list table to be initialized
1075 * @params: configuration parameters
1076 *
1077 * Initializes a new hash list table.
1078 *
1079 * See documentation for rhashtable_init.
1080 */
1081 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1082 {
1083 int err;
1084
1085 err = rhashtable_init(&hlt->ht, params);
1086 hlt->ht.rhlist = true;
1087 return err;
1088 }
1089 EXPORT_SYMBOL_GPL(rhltable_init);
1090
1091 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1092 void (*free_fn)(void *ptr, void *arg),
1093 void *arg)
1094 {
1095 struct rhlist_head *list;
1096
1097 if (!ht->rhlist) {
1098 free_fn(rht_obj(ht, obj), arg);
1099 return;
1100 }
1101
1102 list = container_of(obj, struct rhlist_head, rhead);
1103 do {
1104 obj = &list->rhead;
1105 list = rht_dereference(list->next, ht);
1106 free_fn(rht_obj(ht, obj), arg);
1107 } while (list);
1108 }
1109
1110 /**
1111 * rhashtable_free_and_destroy - free elements and destroy hash table
1112 * @ht: the hash table to destroy
1113 * @free_fn: callback to release resources of element
1114 * @arg: pointer passed to free_fn
1115 *
1116 * Stops an eventual async resize. If defined, invokes free_fn for each
1117 * element to releasal resources. Please note that RCU protected
1118 * readers may still be accessing the elements. Releasing of resources
1119 * must occur in a compatible manner. Then frees the bucket array.
1120 *
1121 * This function will eventually sleep to wait for an async resize
1122 * to complete. The caller is responsible that no further write operations
1123 * occurs in parallel.
1124 */
1125 void rhashtable_free_and_destroy(struct rhashtable *ht,
1126 void (*free_fn)(void *ptr, void *arg),
1127 void *arg)
1128 {
1129 struct bucket_table *tbl, *next_tbl;
1130 unsigned int i;
1131
1132 cancel_work_sync(&ht->run_work);
1133
1134 mutex_lock(&ht->mutex);
1135 tbl = rht_dereference(ht->tbl, ht);
1136 restart:
1137 if (free_fn) {
1138 for (i = 0; i < tbl->size; i++) {
1139 struct rhash_head *pos, *next;
1140
1141 cond_resched();
1142 for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1143 next = !rht_is_a_nulls(pos) ?
1144 rht_dereference(pos->next, ht) : NULL;
1145 !rht_is_a_nulls(pos);
1146 pos = next,
1147 next = !rht_is_a_nulls(pos) ?
1148 rht_dereference(pos->next, ht) : NULL)
1149 rhashtable_free_one(ht, pos, free_fn, arg);
1150 }
1151 }
1152
1153 next_tbl = rht_dereference(tbl->future_tbl, ht);
1154 bucket_table_free(tbl);
1155 if (next_tbl) {
1156 tbl = next_tbl;
1157 goto restart;
1158 }
1159 mutex_unlock(&ht->mutex);
1160 }
1161 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1162
1163 void rhashtable_destroy(struct rhashtable *ht)
1164 {
1165 return rhashtable_free_and_destroy(ht, NULL, NULL);
1166 }
1167 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1168
1169 struct rhash_lock_head __rcu **__rht_bucket_nested(const struct bucket_table *tbl,
1170 unsigned int hash)
1171 {
1172 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1173 unsigned int index = hash & ((1 << tbl->nest) - 1);
1174 unsigned int size = tbl->size >> tbl->nest;
1175 unsigned int subhash = hash;
1176 union nested_table *ntbl;
1177
1178 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1179 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1180 subhash >>= tbl->nest;
1181
1182 while (ntbl && size > (1 << shift)) {
1183 index = subhash & ((1 << shift) - 1);
1184 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1185 tbl, hash);
1186 size >>= shift;
1187 subhash >>= shift;
1188 }
1189
1190 if (!ntbl)
1191 return NULL;
1192
1193 return &ntbl[subhash].bucket;
1194
1195 }
1196 EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1197
1198 struct rhash_lock_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1199 unsigned int hash)
1200 {
1201 static struct rhash_lock_head __rcu *rhnull;
1202
1203 if (!rhnull)
1204 INIT_RHT_NULLS_HEAD(rhnull);
1205 return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1206 }
1207 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1208
1209 struct rhash_lock_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1210 struct bucket_table *tbl,
1211 unsigned int hash)
1212 {
1213 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1214 unsigned int index = hash & ((1 << tbl->nest) - 1);
1215 unsigned int size = tbl->size >> tbl->nest;
1216 union nested_table *ntbl;
1217
1218 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1219 hash >>= tbl->nest;
1220 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1221 size <= (1 << shift));
1222
1223 while (ntbl && size > (1 << shift)) {
1224 index = hash & ((1 << shift) - 1);
1225 size >>= shift;
1226 hash >>= shift;
1227 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1228 size <= (1 << shift));
1229 }
1230
1231 if (!ntbl)
1232 return NULL;
1233
1234 return &ntbl[hash].bucket;
1235
1236 }
1237 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);