]> git.proxmox.com Git - mirror_ovs.git/blob - lib/sha1.c
ipf: Avoid accessing to a freed rp.
[mirror_ovs.git] / lib / sha1.c
1 /*
2 * This file is from the Apache Portable Runtime Library.
3 * The full upstream copyright and license statement is included below.
4 * Modifications copyright (c) 2009, 2010 Nicira, Inc.
5 */
6
7 /* Licensed to the Apache Software Foundation (ASF) under one or more
8 * contributor license agreements. See the NOTICE file distributed with
9 * this work for additional information regarding copyright ownership.
10 * The ASF licenses this file to You under the Apache License, Version 2.0
11 * (the "License"); you may not use this file except in compliance with
12 * the License. You may obtain a copy of the License at
13 *
14 * http://www.apache.org/licenses/LICENSE-2.0
15 *
16 * Unless required by applicable law or agreed to in writing, software
17 * distributed under the License is distributed on an "AS IS" BASIS,
18 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19 * See the License for the specific language governing permissions and
20 * limitations under the License.
21 */
22
23 /* This software also makes use of the following component:
24 *
25 * NIST Secure Hash Algorithm
26 * heavily modified by Uwe Hollerbach uh@alumni.caltech edu
27 * from Peter C. Gutmann's implementation as found in
28 * Applied Cryptography by Bruce Schneier
29 * This code is hereby placed in the public domain
30 */
31
32 #include <config.h>
33 #include "sha1.h"
34 #include <ctype.h>
35 #include <string.h>
36 #include "compiler.h"
37 #include "util.h"
38
39 /* a bit faster & bigger, if defined */
40 #define UNROLL_LOOPS
41
42 /* SHA f()-functions */
43 static inline uint32_t
44 f1(uint32_t x, uint32_t y, uint32_t z)
45 {
46 return (x & y) | (~x & z);
47 }
48
49 static inline uint32_t
50 f2(uint32_t x, uint32_t y, uint32_t z)
51 {
52 return x ^ y ^ z;
53 }
54
55 static inline uint32_t
56 f3(uint32_t x, uint32_t y, uint32_t z)
57 {
58 return (x & y) | (x & z) | (y & z);
59 }
60
61 static inline uint32_t
62 f4(uint32_t x, uint32_t y, uint32_t z)
63 {
64 return x ^ y ^ z;
65 }
66
67 /* SHA constants */
68 #define CONST1 0x5a827999L
69 #define CONST2 0x6ed9eba1L
70 #define CONST3 0x8f1bbcdcL
71 #define CONST4 0xca62c1d6L
72
73 /* 32-bit rotate */
74 static inline uint32_t
75 rotate32(uint32_t x, int n)
76 {
77 return ((x << n) | (x >> (32 - n)));
78 }
79
80 #define FUNC(n, i) \
81 do { \
82 temp = rotate32(A, 5) + f##n(B, C, D) + E + W[i] + CONST##n; \
83 E = D; \
84 D = C; \
85 C = rotate32(B, 30); \
86 B = A; \
87 A = temp; \
88 } while (0)
89
90 #define SHA_BLOCK_SIZE 64
91
92 /* Do SHA transformation. */
93 static void
94 sha_transform(struct sha1_ctx *sha_info)
95 {
96 int i;
97 uint32_t temp, A, B, C, D, E, W[80];
98
99 for (i = 0; i < 16; ++i) {
100 W[i] = sha_info->data[i];
101 }
102 for (i = 16; i < 80; ++i) {
103 W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
104 W[i] = rotate32(W[i], 1);
105 }
106 A = sha_info->digest[0];
107 B = sha_info->digest[1];
108 C = sha_info->digest[2];
109 D = sha_info->digest[3];
110 E = sha_info->digest[4];
111 #ifdef UNROLL_LOOPS
112 FUNC(1, 0); FUNC(1, 1); FUNC(1, 2); FUNC(1, 3); FUNC(1, 4);
113 FUNC(1, 5); FUNC(1, 6); FUNC(1, 7); FUNC(1, 8); FUNC(1, 9);
114 FUNC(1,10); FUNC(1,11); FUNC(1,12); FUNC(1,13); FUNC(1,14);
115 FUNC(1,15); FUNC(1,16); FUNC(1,17); FUNC(1,18); FUNC(1,19);
116
117 FUNC(2,20); FUNC(2,21); FUNC(2,22); FUNC(2,23); FUNC(2,24);
118 FUNC(2,25); FUNC(2,26); FUNC(2,27); FUNC(2,28); FUNC(2,29);
119 FUNC(2,30); FUNC(2,31); FUNC(2,32); FUNC(2,33); FUNC(2,34);
120 FUNC(2,35); FUNC(2,36); FUNC(2,37); FUNC(2,38); FUNC(2,39);
121
122 FUNC(3,40); FUNC(3,41); FUNC(3,42); FUNC(3,43); FUNC(3,44);
123 FUNC(3,45); FUNC(3,46); FUNC(3,47); FUNC(3,48); FUNC(3,49);
124 FUNC(3,50); FUNC(3,51); FUNC(3,52); FUNC(3,53); FUNC(3,54);
125 FUNC(3,55); FUNC(3,56); FUNC(3,57); FUNC(3,58); FUNC(3,59);
126
127 FUNC(4,60); FUNC(4,61); FUNC(4,62); FUNC(4,63); FUNC(4,64);
128 FUNC(4,65); FUNC(4,66); FUNC(4,67); FUNC(4,68); FUNC(4,69);
129 FUNC(4,70); FUNC(4,71); FUNC(4,72); FUNC(4,73); FUNC(4,74);
130 FUNC(4,75); FUNC(4,76); FUNC(4,77); FUNC(4,78); FUNC(4,79);
131 #else /* !UNROLL_LOOPS */
132 for (i = 0; i < 20; ++i) {
133 FUNC(1,i);
134 }
135 for (i = 20; i < 40; ++i) {
136 FUNC(2,i);
137 }
138 for (i = 40; i < 60; ++i) {
139 FUNC(3,i);
140 }
141 for (i = 60; i < 80; ++i) {
142 FUNC(4,i);
143 }
144 #endif /* !UNROLL_LOOPS */
145 sha_info->digest[0] += A;
146 sha_info->digest[1] += B;
147 sha_info->digest[2] += C;
148 sha_info->digest[3] += D;
149 sha_info->digest[4] += E;
150 }
151
152 /* 'count' is the number of bytes to do an endian flip. */
153 static void
154 maybe_byte_reverse(uint32_t *buffer OVS_UNUSED, int count OVS_UNUSED)
155 {
156 #if !WORDS_BIGENDIAN
157 int i;
158 uint8_t ct[4], *cp;
159
160 count /= sizeof(uint32_t);
161 cp = (uint8_t *) buffer;
162 for (i = 0; i < count; i++) {
163 ct[0] = cp[0];
164 ct[1] = cp[1];
165 ct[2] = cp[2];
166 ct[3] = cp[3];
167 cp[0] = ct[3];
168 cp[1] = ct[2];
169 cp[2] = ct[1];
170 cp[3] = ct[0];
171 cp += sizeof(uint32_t);
172 }
173 #endif
174 }
175
176 /*
177 * Initialize the SHA digest.
178 * context: The SHA context to initialize
179 */
180 void
181 sha1_init(struct sha1_ctx *sha_info)
182 {
183 sha_info->digest[0] = 0x67452301L;
184 sha_info->digest[1] = 0xefcdab89L;
185 sha_info->digest[2] = 0x98badcfeL;
186 sha_info->digest[3] = 0x10325476L;
187 sha_info->digest[4] = 0xc3d2e1f0L;
188 sha_info->count_lo = 0L;
189 sha_info->count_hi = 0L;
190 sha_info->local = 0;
191 }
192
193 /*
194 * Update the SHA digest.
195 * context: The SHA1 context to update.
196 * input: The buffer to add to the SHA digest.
197 * inputLen: The length of the input buffer.
198 */
199 void
200 sha1_update(struct sha1_ctx *ctx, const void *buffer_, uint32_t count)
201 {
202 const uint8_t *buffer = buffer_;
203 unsigned int i;
204
205 if ((ctx->count_lo + (count << 3)) < ctx->count_lo) {
206 ctx->count_hi++;
207 }
208 ctx->count_lo += count << 3;
209 ctx->count_hi += count >> 29;
210 if (ctx->local) {
211 i = SHA_BLOCK_SIZE - ctx->local;
212 if (i > count) {
213 i = count;
214 }
215 memcpy(((uint8_t *) ctx->data) + ctx->local, buffer, i);
216 count -= i;
217 buffer += i;
218 ctx->local += i;
219 if (ctx->local == SHA_BLOCK_SIZE) {
220 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
221 sha_transform(ctx);
222 } else {
223 return;
224 }
225 }
226 while (count >= SHA_BLOCK_SIZE) {
227 memcpy(ctx->data, buffer, SHA_BLOCK_SIZE);
228 buffer += SHA_BLOCK_SIZE;
229 count -= SHA_BLOCK_SIZE;
230 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
231 sha_transform(ctx);
232 }
233 memcpy(ctx->data, buffer, count);
234 ctx->local = count;
235 }
236
237 /*
238 * Finish computing the SHA digest.
239 * digest: the output buffer in which to store the digest.
240 * context: The context to finalize.
241 */
242 void
243 sha1_final(struct sha1_ctx *ctx, uint8_t digest[SHA1_DIGEST_SIZE])
244 {
245 int count, i, j;
246 uint32_t lo_bit_count, hi_bit_count, k;
247
248 lo_bit_count = ctx->count_lo;
249 hi_bit_count = ctx->count_hi;
250 count = (int) ((lo_bit_count >> 3) & 0x3f);
251 ((uint8_t *) ctx->data)[count++] = 0x80;
252 if (count > SHA_BLOCK_SIZE - 8) {
253 memset(((uint8_t *) ctx->data) + count, 0, SHA_BLOCK_SIZE - count);
254 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
255 sha_transform(ctx);
256 memset((uint8_t *) ctx->data, 0, SHA_BLOCK_SIZE - 8);
257 } else {
258 memset(((uint8_t *) ctx->data) + count, 0,
259 SHA_BLOCK_SIZE - 8 - count);
260 }
261 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
262 ctx->data[14] = hi_bit_count;
263 ctx->data[15] = lo_bit_count;
264 sha_transform(ctx);
265
266 for (i = j = 0; j < SHA1_DIGEST_SIZE; i++) {
267 k = ctx->digest[i];
268 digest[j++] = k >> 24;
269 digest[j++] = k >> 16;
270 digest[j++] = k >> 8;
271 digest[j++] = k;
272 }
273 }
274
275 /* Computes the hash of 'n' bytes in 'data' into 'digest'. */
276 void
277 sha1_bytes(const void *data, uint32_t n, uint8_t digest[SHA1_DIGEST_SIZE])
278 {
279 struct sha1_ctx ctx;
280
281 sha1_init(&ctx);
282 sha1_update(&ctx, data, n);
283 sha1_final(&ctx, digest);
284 }
285
286 void
287 sha1_to_hex(const uint8_t digest[SHA1_DIGEST_SIZE],
288 char hex[SHA1_HEX_DIGEST_LEN + 1])
289 {
290 int i;
291
292 for (i = 0; i < SHA1_DIGEST_SIZE; i++) {
293 *hex++ = "0123456789abcdef"[digest[i] >> 4];
294 *hex++ = "0123456789abcdef"[digest[i] & 15];
295 }
296 *hex = '\0';
297 }
298
299 bool
300 sha1_from_hex(uint8_t digest[SHA1_DIGEST_SIZE], const char *hex)
301 {
302 int i;
303
304 for (i = 0; i < SHA1_DIGEST_SIZE; i++) {
305 bool ok;
306
307 digest[i] = hexits_value(hex, 2, &ok);
308 if (!ok) {
309 return false;
310 }
311 hex += 2;
312 }
313 return true;
314 }
315