]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - lib/swiotlb.c
Merge tag 'acpi-4.18-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-hirsute-kernel.git] / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-direct.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
34 #include <linux/set_memory.h>
35
36 #include <asm/io.h>
37 #include <asm/dma.h>
38
39 #include <linux/init.h>
40 #include <linux/bootmem.h>
41 #include <linux/iommu-helper.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/swiotlb.h>
45
46 #define OFFSET(val,align) ((unsigned long) \
47 ( (val) & ( (align) - 1)))
48
49 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50
51 /*
52 * Minimum IO TLB size to bother booting with. Systems with mainly
53 * 64bit capable cards will only lightly use the swiotlb. If we can't
54 * allocate a contiguous 1MB, we're probably in trouble anyway.
55 */
56 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57
58 enum swiotlb_force swiotlb_force;
59
60 /*
61 * Used to do a quick range check in swiotlb_tbl_unmap_single and
62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
63 * API.
64 */
65 static phys_addr_t io_tlb_start, io_tlb_end;
66
67 /*
68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
70 */
71 static unsigned long io_tlb_nslabs;
72
73 /*
74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
75 */
76 static unsigned long io_tlb_overflow = 32*1024;
77
78 static phys_addr_t io_tlb_overflow_buffer;
79
80 /*
81 * This is a free list describing the number of free entries available from
82 * each index
83 */
84 static unsigned int *io_tlb_list;
85 static unsigned int io_tlb_index;
86
87 /*
88 * Max segment that we can provide which (if pages are contingous) will
89 * not be bounced (unless SWIOTLB_FORCE is set).
90 */
91 unsigned int max_segment;
92
93 /*
94 * We need to save away the original address corresponding to a mapped entry
95 * for the sync operations.
96 */
97 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
98 static phys_addr_t *io_tlb_orig_addr;
99
100 /*
101 * Protect the above data structures in the map and unmap calls
102 */
103 static DEFINE_SPINLOCK(io_tlb_lock);
104
105 static int late_alloc;
106
107 static int __init
108 setup_io_tlb_npages(char *str)
109 {
110 if (isdigit(*str)) {
111 io_tlb_nslabs = simple_strtoul(str, &str, 0);
112 /* avoid tail segment of size < IO_TLB_SEGSIZE */
113 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
114 }
115 if (*str == ',')
116 ++str;
117 if (!strcmp(str, "force")) {
118 swiotlb_force = SWIOTLB_FORCE;
119 } else if (!strcmp(str, "noforce")) {
120 swiotlb_force = SWIOTLB_NO_FORCE;
121 io_tlb_nslabs = 1;
122 }
123
124 return 0;
125 }
126 early_param("swiotlb", setup_io_tlb_npages);
127 /* make io_tlb_overflow tunable too? */
128
129 unsigned long swiotlb_nr_tbl(void)
130 {
131 return io_tlb_nslabs;
132 }
133 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
134
135 unsigned int swiotlb_max_segment(void)
136 {
137 return max_segment;
138 }
139 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
140
141 void swiotlb_set_max_segment(unsigned int val)
142 {
143 if (swiotlb_force == SWIOTLB_FORCE)
144 max_segment = 1;
145 else
146 max_segment = rounddown(val, PAGE_SIZE);
147 }
148
149 /* default to 64MB */
150 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
151 unsigned long swiotlb_size_or_default(void)
152 {
153 unsigned long size;
154
155 size = io_tlb_nslabs << IO_TLB_SHIFT;
156
157 return size ? size : (IO_TLB_DEFAULT_SIZE);
158 }
159
160 static bool no_iotlb_memory;
161
162 void swiotlb_print_info(void)
163 {
164 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
165 unsigned char *vstart, *vend;
166
167 if (no_iotlb_memory) {
168 pr_warn("software IO TLB: No low mem\n");
169 return;
170 }
171
172 vstart = phys_to_virt(io_tlb_start);
173 vend = phys_to_virt(io_tlb_end);
174
175 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
176 (unsigned long long)io_tlb_start,
177 (unsigned long long)io_tlb_end,
178 bytes >> 20, vstart, vend - 1);
179 }
180
181 /*
182 * Early SWIOTLB allocation may be too early to allow an architecture to
183 * perform the desired operations. This function allows the architecture to
184 * call SWIOTLB when the operations are possible. It needs to be called
185 * before the SWIOTLB memory is used.
186 */
187 void __init swiotlb_update_mem_attributes(void)
188 {
189 void *vaddr;
190 unsigned long bytes;
191
192 if (no_iotlb_memory || late_alloc)
193 return;
194
195 vaddr = phys_to_virt(io_tlb_start);
196 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
197 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
198 memset(vaddr, 0, bytes);
199
200 vaddr = phys_to_virt(io_tlb_overflow_buffer);
201 bytes = PAGE_ALIGN(io_tlb_overflow);
202 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
203 memset(vaddr, 0, bytes);
204 }
205
206 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
207 {
208 void *v_overflow_buffer;
209 unsigned long i, bytes;
210
211 bytes = nslabs << IO_TLB_SHIFT;
212
213 io_tlb_nslabs = nslabs;
214 io_tlb_start = __pa(tlb);
215 io_tlb_end = io_tlb_start + bytes;
216
217 /*
218 * Get the overflow emergency buffer
219 */
220 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
221 PAGE_ALIGN(io_tlb_overflow),
222 PAGE_SIZE);
223 if (!v_overflow_buffer)
224 return -ENOMEM;
225
226 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
227
228 /*
229 * Allocate and initialize the free list array. This array is used
230 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
231 * between io_tlb_start and io_tlb_end.
232 */
233 io_tlb_list = memblock_virt_alloc(
234 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
235 PAGE_SIZE);
236 io_tlb_orig_addr = memblock_virt_alloc(
237 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
238 PAGE_SIZE);
239 for (i = 0; i < io_tlb_nslabs; i++) {
240 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
241 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
242 }
243 io_tlb_index = 0;
244
245 if (verbose)
246 swiotlb_print_info();
247
248 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
249 return 0;
250 }
251
252 /*
253 * Statically reserve bounce buffer space and initialize bounce buffer data
254 * structures for the software IO TLB used to implement the DMA API.
255 */
256 void __init
257 swiotlb_init(int verbose)
258 {
259 size_t default_size = IO_TLB_DEFAULT_SIZE;
260 unsigned char *vstart;
261 unsigned long bytes;
262
263 if (!io_tlb_nslabs) {
264 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
265 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
266 }
267
268 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
269
270 /* Get IO TLB memory from the low pages */
271 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
272 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
273 return;
274
275 if (io_tlb_start)
276 memblock_free_early(io_tlb_start,
277 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
278 pr_warn("Cannot allocate SWIOTLB buffer");
279 no_iotlb_memory = true;
280 }
281
282 /*
283 * Systems with larger DMA zones (those that don't support ISA) can
284 * initialize the swiotlb later using the slab allocator if needed.
285 * This should be just like above, but with some error catching.
286 */
287 int
288 swiotlb_late_init_with_default_size(size_t default_size)
289 {
290 unsigned long bytes, req_nslabs = io_tlb_nslabs;
291 unsigned char *vstart = NULL;
292 unsigned int order;
293 int rc = 0;
294
295 if (!io_tlb_nslabs) {
296 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
297 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
298 }
299
300 /*
301 * Get IO TLB memory from the low pages
302 */
303 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
304 io_tlb_nslabs = SLABS_PER_PAGE << order;
305 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
306
307 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
308 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
309 order);
310 if (vstart)
311 break;
312 order--;
313 }
314
315 if (!vstart) {
316 io_tlb_nslabs = req_nslabs;
317 return -ENOMEM;
318 }
319 if (order != get_order(bytes)) {
320 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
321 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
322 io_tlb_nslabs = SLABS_PER_PAGE << order;
323 }
324 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
325 if (rc)
326 free_pages((unsigned long)vstart, order);
327
328 return rc;
329 }
330
331 int
332 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
333 {
334 unsigned long i, bytes;
335 unsigned char *v_overflow_buffer;
336
337 bytes = nslabs << IO_TLB_SHIFT;
338
339 io_tlb_nslabs = nslabs;
340 io_tlb_start = virt_to_phys(tlb);
341 io_tlb_end = io_tlb_start + bytes;
342
343 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
344 memset(tlb, 0, bytes);
345
346 /*
347 * Get the overflow emergency buffer
348 */
349 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
350 get_order(io_tlb_overflow));
351 if (!v_overflow_buffer)
352 goto cleanup2;
353
354 set_memory_decrypted((unsigned long)v_overflow_buffer,
355 io_tlb_overflow >> PAGE_SHIFT);
356 memset(v_overflow_buffer, 0, io_tlb_overflow);
357 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
358
359 /*
360 * Allocate and initialize the free list array. This array is used
361 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
362 * between io_tlb_start and io_tlb_end.
363 */
364 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
365 get_order(io_tlb_nslabs * sizeof(int)));
366 if (!io_tlb_list)
367 goto cleanup3;
368
369 io_tlb_orig_addr = (phys_addr_t *)
370 __get_free_pages(GFP_KERNEL,
371 get_order(io_tlb_nslabs *
372 sizeof(phys_addr_t)));
373 if (!io_tlb_orig_addr)
374 goto cleanup4;
375
376 for (i = 0; i < io_tlb_nslabs; i++) {
377 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
378 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
379 }
380 io_tlb_index = 0;
381
382 swiotlb_print_info();
383
384 late_alloc = 1;
385
386 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
387
388 return 0;
389
390 cleanup4:
391 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
392 sizeof(int)));
393 io_tlb_list = NULL;
394 cleanup3:
395 free_pages((unsigned long)v_overflow_buffer,
396 get_order(io_tlb_overflow));
397 io_tlb_overflow_buffer = 0;
398 cleanup2:
399 io_tlb_end = 0;
400 io_tlb_start = 0;
401 io_tlb_nslabs = 0;
402 max_segment = 0;
403 return -ENOMEM;
404 }
405
406 void __init swiotlb_exit(void)
407 {
408 if (!io_tlb_orig_addr)
409 return;
410
411 if (late_alloc) {
412 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
413 get_order(io_tlb_overflow));
414 free_pages((unsigned long)io_tlb_orig_addr,
415 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
416 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
417 sizeof(int)));
418 free_pages((unsigned long)phys_to_virt(io_tlb_start),
419 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
420 } else {
421 memblock_free_late(io_tlb_overflow_buffer,
422 PAGE_ALIGN(io_tlb_overflow));
423 memblock_free_late(__pa(io_tlb_orig_addr),
424 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
425 memblock_free_late(__pa(io_tlb_list),
426 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
427 memblock_free_late(io_tlb_start,
428 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
429 }
430 io_tlb_nslabs = 0;
431 max_segment = 0;
432 }
433
434 int is_swiotlb_buffer(phys_addr_t paddr)
435 {
436 return paddr >= io_tlb_start && paddr < io_tlb_end;
437 }
438
439 /*
440 * Bounce: copy the swiotlb buffer back to the original dma location
441 */
442 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
443 size_t size, enum dma_data_direction dir)
444 {
445 unsigned long pfn = PFN_DOWN(orig_addr);
446 unsigned char *vaddr = phys_to_virt(tlb_addr);
447
448 if (PageHighMem(pfn_to_page(pfn))) {
449 /* The buffer does not have a mapping. Map it in and copy */
450 unsigned int offset = orig_addr & ~PAGE_MASK;
451 char *buffer;
452 unsigned int sz = 0;
453 unsigned long flags;
454
455 while (size) {
456 sz = min_t(size_t, PAGE_SIZE - offset, size);
457
458 local_irq_save(flags);
459 buffer = kmap_atomic(pfn_to_page(pfn));
460 if (dir == DMA_TO_DEVICE)
461 memcpy(vaddr, buffer + offset, sz);
462 else
463 memcpy(buffer + offset, vaddr, sz);
464 kunmap_atomic(buffer);
465 local_irq_restore(flags);
466
467 size -= sz;
468 pfn++;
469 vaddr += sz;
470 offset = 0;
471 }
472 } else if (dir == DMA_TO_DEVICE) {
473 memcpy(vaddr, phys_to_virt(orig_addr), size);
474 } else {
475 memcpy(phys_to_virt(orig_addr), vaddr, size);
476 }
477 }
478
479 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
480 dma_addr_t tbl_dma_addr,
481 phys_addr_t orig_addr, size_t size,
482 enum dma_data_direction dir,
483 unsigned long attrs)
484 {
485 unsigned long flags;
486 phys_addr_t tlb_addr;
487 unsigned int nslots, stride, index, wrap;
488 int i;
489 unsigned long mask;
490 unsigned long offset_slots;
491 unsigned long max_slots;
492
493 if (no_iotlb_memory)
494 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
495
496 if (mem_encrypt_active())
497 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
498 sme_active() ? "SME" : "SEV");
499
500 mask = dma_get_seg_boundary(hwdev);
501
502 tbl_dma_addr &= mask;
503
504 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
505
506 /*
507 * Carefully handle integer overflow which can occur when mask == ~0UL.
508 */
509 max_slots = mask + 1
510 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
511 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
512
513 /*
514 * For mappings greater than or equal to a page, we limit the stride
515 * (and hence alignment) to a page size.
516 */
517 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
518 if (size >= PAGE_SIZE)
519 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
520 else
521 stride = 1;
522
523 BUG_ON(!nslots);
524
525 /*
526 * Find suitable number of IO TLB entries size that will fit this
527 * request and allocate a buffer from that IO TLB pool.
528 */
529 spin_lock_irqsave(&io_tlb_lock, flags);
530 index = ALIGN(io_tlb_index, stride);
531 if (index >= io_tlb_nslabs)
532 index = 0;
533 wrap = index;
534
535 do {
536 while (iommu_is_span_boundary(index, nslots, offset_slots,
537 max_slots)) {
538 index += stride;
539 if (index >= io_tlb_nslabs)
540 index = 0;
541 if (index == wrap)
542 goto not_found;
543 }
544
545 /*
546 * If we find a slot that indicates we have 'nslots' number of
547 * contiguous buffers, we allocate the buffers from that slot
548 * and mark the entries as '0' indicating unavailable.
549 */
550 if (io_tlb_list[index] >= nslots) {
551 int count = 0;
552
553 for (i = index; i < (int) (index + nslots); i++)
554 io_tlb_list[i] = 0;
555 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
556 io_tlb_list[i] = ++count;
557 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
558
559 /*
560 * Update the indices to avoid searching in the next
561 * round.
562 */
563 io_tlb_index = ((index + nslots) < io_tlb_nslabs
564 ? (index + nslots) : 0);
565
566 goto found;
567 }
568 index += stride;
569 if (index >= io_tlb_nslabs)
570 index = 0;
571 } while (index != wrap);
572
573 not_found:
574 spin_unlock_irqrestore(&io_tlb_lock, flags);
575 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
576 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
577 return SWIOTLB_MAP_ERROR;
578 found:
579 spin_unlock_irqrestore(&io_tlb_lock, flags);
580
581 /*
582 * Save away the mapping from the original address to the DMA address.
583 * This is needed when we sync the memory. Then we sync the buffer if
584 * needed.
585 */
586 for (i = 0; i < nslots; i++)
587 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
588 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
589 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
590 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
591
592 return tlb_addr;
593 }
594
595 /*
596 * Allocates bounce buffer and returns its physical address.
597 */
598 static phys_addr_t
599 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
600 enum dma_data_direction dir, unsigned long attrs)
601 {
602 dma_addr_t start_dma_addr;
603
604 if (swiotlb_force == SWIOTLB_NO_FORCE) {
605 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
606 &phys);
607 return SWIOTLB_MAP_ERROR;
608 }
609
610 start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
611 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
612 dir, attrs);
613 }
614
615 /*
616 * tlb_addr is the physical address of the bounce buffer to unmap.
617 */
618 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
619 size_t size, enum dma_data_direction dir,
620 unsigned long attrs)
621 {
622 unsigned long flags;
623 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
624 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
625 phys_addr_t orig_addr = io_tlb_orig_addr[index];
626
627 /*
628 * First, sync the memory before unmapping the entry
629 */
630 if (orig_addr != INVALID_PHYS_ADDR &&
631 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
632 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
633 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
634
635 /*
636 * Return the buffer to the free list by setting the corresponding
637 * entries to indicate the number of contiguous entries available.
638 * While returning the entries to the free list, we merge the entries
639 * with slots below and above the pool being returned.
640 */
641 spin_lock_irqsave(&io_tlb_lock, flags);
642 {
643 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
644 io_tlb_list[index + nslots] : 0);
645 /*
646 * Step 1: return the slots to the free list, merging the
647 * slots with superceeding slots
648 */
649 for (i = index + nslots - 1; i >= index; i--) {
650 io_tlb_list[i] = ++count;
651 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
652 }
653 /*
654 * Step 2: merge the returned slots with the preceding slots,
655 * if available (non zero)
656 */
657 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
658 io_tlb_list[i] = ++count;
659 }
660 spin_unlock_irqrestore(&io_tlb_lock, flags);
661 }
662
663 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
664 size_t size, enum dma_data_direction dir,
665 enum dma_sync_target target)
666 {
667 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
668 phys_addr_t orig_addr = io_tlb_orig_addr[index];
669
670 if (orig_addr == INVALID_PHYS_ADDR)
671 return;
672 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
673
674 switch (target) {
675 case SYNC_FOR_CPU:
676 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
677 swiotlb_bounce(orig_addr, tlb_addr,
678 size, DMA_FROM_DEVICE);
679 else
680 BUG_ON(dir != DMA_TO_DEVICE);
681 break;
682 case SYNC_FOR_DEVICE:
683 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
684 swiotlb_bounce(orig_addr, tlb_addr,
685 size, DMA_TO_DEVICE);
686 else
687 BUG_ON(dir != DMA_FROM_DEVICE);
688 break;
689 default:
690 BUG();
691 }
692 }
693
694 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
695 size_t size)
696 {
697 u64 mask = DMA_BIT_MASK(32);
698
699 if (dev && dev->coherent_dma_mask)
700 mask = dev->coherent_dma_mask;
701 return addr + size - 1 <= mask;
702 }
703
704 static void *
705 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
706 unsigned long attrs)
707 {
708 phys_addr_t phys_addr;
709
710 if (swiotlb_force == SWIOTLB_NO_FORCE)
711 goto out_warn;
712
713 phys_addr = swiotlb_tbl_map_single(dev,
714 __phys_to_dma(dev, io_tlb_start),
715 0, size, DMA_FROM_DEVICE, attrs);
716 if (phys_addr == SWIOTLB_MAP_ERROR)
717 goto out_warn;
718
719 *dma_handle = __phys_to_dma(dev, phys_addr);
720 if (!dma_coherent_ok(dev, *dma_handle, size))
721 goto out_unmap;
722
723 memset(phys_to_virt(phys_addr), 0, size);
724 return phys_to_virt(phys_addr);
725
726 out_unmap:
727 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
728 (unsigned long long)dev->coherent_dma_mask,
729 (unsigned long long)*dma_handle);
730
731 /*
732 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
733 * DMA_ATTR_SKIP_CPU_SYNC is optional.
734 */
735 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
736 DMA_ATTR_SKIP_CPU_SYNC);
737 out_warn:
738 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
739 dev_warn(dev,
740 "swiotlb: coherent allocation failed, size=%zu\n",
741 size);
742 dump_stack();
743 }
744 return NULL;
745 }
746
747 static bool swiotlb_free_buffer(struct device *dev, size_t size,
748 dma_addr_t dma_addr)
749 {
750 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
751
752 WARN_ON_ONCE(irqs_disabled());
753
754 if (!is_swiotlb_buffer(phys_addr))
755 return false;
756
757 /*
758 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
759 * DMA_ATTR_SKIP_CPU_SYNC is optional.
760 */
761 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
762 DMA_ATTR_SKIP_CPU_SYNC);
763 return true;
764 }
765
766 static void
767 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
768 int do_panic)
769 {
770 if (swiotlb_force == SWIOTLB_NO_FORCE)
771 return;
772
773 /*
774 * Ran out of IOMMU space for this operation. This is very bad.
775 * Unfortunately the drivers cannot handle this operation properly.
776 * unless they check for dma_mapping_error (most don't)
777 * When the mapping is small enough return a static buffer to limit
778 * the damage, or panic when the transfer is too big.
779 */
780 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
781 size);
782
783 if (size <= io_tlb_overflow || !do_panic)
784 return;
785
786 if (dir == DMA_BIDIRECTIONAL)
787 panic("DMA: Random memory could be DMA accessed\n");
788 if (dir == DMA_FROM_DEVICE)
789 panic("DMA: Random memory could be DMA written\n");
790 if (dir == DMA_TO_DEVICE)
791 panic("DMA: Random memory could be DMA read\n");
792 }
793
794 /*
795 * Map a single buffer of the indicated size for DMA in streaming mode. The
796 * physical address to use is returned.
797 *
798 * Once the device is given the dma address, the device owns this memory until
799 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
800 */
801 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
802 unsigned long offset, size_t size,
803 enum dma_data_direction dir,
804 unsigned long attrs)
805 {
806 phys_addr_t map, phys = page_to_phys(page) + offset;
807 dma_addr_t dev_addr = phys_to_dma(dev, phys);
808
809 BUG_ON(dir == DMA_NONE);
810 /*
811 * If the address happens to be in the device's DMA window,
812 * we can safely return the device addr and not worry about bounce
813 * buffering it.
814 */
815 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
816 return dev_addr;
817
818 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
819
820 /* Oh well, have to allocate and map a bounce buffer. */
821 map = map_single(dev, phys, size, dir, attrs);
822 if (map == SWIOTLB_MAP_ERROR) {
823 swiotlb_full(dev, size, dir, 1);
824 return __phys_to_dma(dev, io_tlb_overflow_buffer);
825 }
826
827 dev_addr = __phys_to_dma(dev, map);
828
829 /* Ensure that the address returned is DMA'ble */
830 if (dma_capable(dev, dev_addr, size))
831 return dev_addr;
832
833 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
834 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
835
836 return __phys_to_dma(dev, io_tlb_overflow_buffer);
837 }
838
839 /*
840 * Unmap a single streaming mode DMA translation. The dma_addr and size must
841 * match what was provided for in a previous swiotlb_map_page call. All
842 * other usages are undefined.
843 *
844 * After this call, reads by the cpu to the buffer are guaranteed to see
845 * whatever the device wrote there.
846 */
847 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
848 size_t size, enum dma_data_direction dir,
849 unsigned long attrs)
850 {
851 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
852
853 BUG_ON(dir == DMA_NONE);
854
855 if (is_swiotlb_buffer(paddr)) {
856 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
857 return;
858 }
859
860 if (dir != DMA_FROM_DEVICE)
861 return;
862
863 /*
864 * phys_to_virt doesn't work with hihgmem page but we could
865 * call dma_mark_clean() with hihgmem page here. However, we
866 * are fine since dma_mark_clean() is null on POWERPC. We can
867 * make dma_mark_clean() take a physical address if necessary.
868 */
869 dma_mark_clean(phys_to_virt(paddr), size);
870 }
871
872 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
873 size_t size, enum dma_data_direction dir,
874 unsigned long attrs)
875 {
876 unmap_single(hwdev, dev_addr, size, dir, attrs);
877 }
878
879 /*
880 * Make physical memory consistent for a single streaming mode DMA translation
881 * after a transfer.
882 *
883 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
884 * using the cpu, yet do not wish to teardown the dma mapping, you must
885 * call this function before doing so. At the next point you give the dma
886 * address back to the card, you must first perform a
887 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
888 */
889 static void
890 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
891 size_t size, enum dma_data_direction dir,
892 enum dma_sync_target target)
893 {
894 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
895
896 BUG_ON(dir == DMA_NONE);
897
898 if (is_swiotlb_buffer(paddr)) {
899 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
900 return;
901 }
902
903 if (dir != DMA_FROM_DEVICE)
904 return;
905
906 dma_mark_clean(phys_to_virt(paddr), size);
907 }
908
909 void
910 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
911 size_t size, enum dma_data_direction dir)
912 {
913 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
914 }
915
916 void
917 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
918 size_t size, enum dma_data_direction dir)
919 {
920 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
921 }
922
923 /*
924 * Map a set of buffers described by scatterlist in streaming mode for DMA.
925 * This is the scatter-gather version of the above swiotlb_map_page
926 * interface. Here the scatter gather list elements are each tagged with the
927 * appropriate dma address and length. They are obtained via
928 * sg_dma_{address,length}(SG).
929 *
930 * NOTE: An implementation may be able to use a smaller number of
931 * DMA address/length pairs than there are SG table elements.
932 * (for example via virtual mapping capabilities)
933 * The routine returns the number of addr/length pairs actually
934 * used, at most nents.
935 *
936 * Device ownership issues as mentioned above for swiotlb_map_page are the
937 * same here.
938 */
939 int
940 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
941 enum dma_data_direction dir, unsigned long attrs)
942 {
943 struct scatterlist *sg;
944 int i;
945
946 BUG_ON(dir == DMA_NONE);
947
948 for_each_sg(sgl, sg, nelems, i) {
949 phys_addr_t paddr = sg_phys(sg);
950 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
951
952 if (swiotlb_force == SWIOTLB_FORCE ||
953 !dma_capable(hwdev, dev_addr, sg->length)) {
954 phys_addr_t map = map_single(hwdev, sg_phys(sg),
955 sg->length, dir, attrs);
956 if (map == SWIOTLB_MAP_ERROR) {
957 /* Don't panic here, we expect map_sg users
958 to do proper error handling. */
959 swiotlb_full(hwdev, sg->length, dir, 0);
960 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
961 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
962 attrs);
963 sg_dma_len(sgl) = 0;
964 return 0;
965 }
966 sg->dma_address = __phys_to_dma(hwdev, map);
967 } else
968 sg->dma_address = dev_addr;
969 sg_dma_len(sg) = sg->length;
970 }
971 return nelems;
972 }
973
974 /*
975 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
976 * concerning calls here are the same as for swiotlb_unmap_page() above.
977 */
978 void
979 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
980 int nelems, enum dma_data_direction dir,
981 unsigned long attrs)
982 {
983 struct scatterlist *sg;
984 int i;
985
986 BUG_ON(dir == DMA_NONE);
987
988 for_each_sg(sgl, sg, nelems, i)
989 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
990 attrs);
991 }
992
993 /*
994 * Make physical memory consistent for a set of streaming mode DMA translations
995 * after a transfer.
996 *
997 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
998 * and usage.
999 */
1000 static void
1001 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1002 int nelems, enum dma_data_direction dir,
1003 enum dma_sync_target target)
1004 {
1005 struct scatterlist *sg;
1006 int i;
1007
1008 for_each_sg(sgl, sg, nelems, i)
1009 swiotlb_sync_single(hwdev, sg->dma_address,
1010 sg_dma_len(sg), dir, target);
1011 }
1012
1013 void
1014 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1015 int nelems, enum dma_data_direction dir)
1016 {
1017 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1018 }
1019
1020 void
1021 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1022 int nelems, enum dma_data_direction dir)
1023 {
1024 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1025 }
1026
1027 int
1028 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1029 {
1030 return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
1031 }
1032
1033 /*
1034 * Return whether the given device DMA address mask can be supported
1035 * properly. For example, if your device can only drive the low 24-bits
1036 * during bus mastering, then you would pass 0x00ffffff as the mask to
1037 * this function.
1038 */
1039 int
1040 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1041 {
1042 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1043 }
1044
1045 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1046 gfp_t gfp, unsigned long attrs)
1047 {
1048 void *vaddr;
1049
1050 /* temporary workaround: */
1051 if (gfp & __GFP_NOWARN)
1052 attrs |= DMA_ATTR_NO_WARN;
1053
1054 /*
1055 * Don't print a warning when the first allocation attempt fails.
1056 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1057 * allocation ultimately failed.
1058 */
1059 gfp |= __GFP_NOWARN;
1060
1061 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1062 if (!vaddr)
1063 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1064 return vaddr;
1065 }
1066
1067 void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1068 dma_addr_t dma_addr, unsigned long attrs)
1069 {
1070 if (!swiotlb_free_buffer(dev, size, dma_addr))
1071 dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1072 }
1073
1074 const struct dma_map_ops swiotlb_dma_ops = {
1075 .mapping_error = swiotlb_dma_mapping_error,
1076 .alloc = swiotlb_alloc,
1077 .free = swiotlb_free,
1078 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
1079 .sync_single_for_device = swiotlb_sync_single_for_device,
1080 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
1081 .sync_sg_for_device = swiotlb_sync_sg_for_device,
1082 .map_sg = swiotlb_map_sg_attrs,
1083 .unmap_sg = swiotlb_unmap_sg_attrs,
1084 .map_page = swiotlb_map_page,
1085 .unmap_page = swiotlb_unmap_page,
1086 .dma_supported = dma_direct_supported,
1087 };