]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/swiotlb.c
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33
34 #include <asm/io.h>
35 #include <asm/dma.h>
36
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
43
44 #define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
46
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49 /*
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
56 int swiotlb_force;
57
58 /*
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61 * API.
62 */
63 static phys_addr_t io_tlb_start, io_tlb_end;
64
65 /*
66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 */
69 static unsigned long io_tlb_nslabs;
70
71 /*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74 static unsigned long io_tlb_overflow = 32*1024;
75
76 static phys_addr_t io_tlb_overflow_buffer;
77
78 /*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82 static unsigned int *io_tlb_list;
83 static unsigned int io_tlb_index;
84
85 /*
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
88 */
89 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
90 static phys_addr_t *io_tlb_orig_addr;
91
92 /*
93 * Protect the above data structures in the map and unmap calls
94 */
95 static DEFINE_SPINLOCK(io_tlb_lock);
96
97 static int late_alloc;
98
99 static int __init
100 setup_io_tlb_npages(char *str)
101 {
102 if (isdigit(*str)) {
103 io_tlb_nslabs = simple_strtoul(str, &str, 0);
104 /* avoid tail segment of size < IO_TLB_SEGSIZE */
105 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106 }
107 if (*str == ',')
108 ++str;
109 if (!strcmp(str, "force"))
110 swiotlb_force = 1;
111
112 return 0;
113 }
114 early_param("swiotlb", setup_io_tlb_npages);
115 /* make io_tlb_overflow tunable too? */
116
117 unsigned long swiotlb_nr_tbl(void)
118 {
119 return io_tlb_nslabs;
120 }
121 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
122
123 /* default to 64MB */
124 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
125 unsigned long swiotlb_size_or_default(void)
126 {
127 unsigned long size;
128
129 size = io_tlb_nslabs << IO_TLB_SHIFT;
130
131 return size ? size : (IO_TLB_DEFAULT_SIZE);
132 }
133
134 /* Note that this doesn't work with highmem page */
135 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
136 volatile void *address)
137 {
138 return phys_to_dma(hwdev, virt_to_phys(address));
139 }
140
141 static bool no_iotlb_memory;
142
143 void swiotlb_print_info(void)
144 {
145 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
146 unsigned char *vstart, *vend;
147
148 if (no_iotlb_memory) {
149 pr_warn("software IO TLB: No low mem\n");
150 return;
151 }
152
153 vstart = phys_to_virt(io_tlb_start);
154 vend = phys_to_virt(io_tlb_end);
155
156 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
157 (unsigned long long)io_tlb_start,
158 (unsigned long long)io_tlb_end,
159 bytes >> 20, vstart, vend - 1);
160 }
161
162 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
163 {
164 void *v_overflow_buffer;
165 unsigned long i, bytes;
166
167 bytes = nslabs << IO_TLB_SHIFT;
168
169 io_tlb_nslabs = nslabs;
170 io_tlb_start = __pa(tlb);
171 io_tlb_end = io_tlb_start + bytes;
172
173 /*
174 * Get the overflow emergency buffer
175 */
176 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
177 PAGE_ALIGN(io_tlb_overflow),
178 PAGE_SIZE);
179 if (!v_overflow_buffer)
180 return -ENOMEM;
181
182 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
183
184 /*
185 * Allocate and initialize the free list array. This array is used
186 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
187 * between io_tlb_start and io_tlb_end.
188 */
189 io_tlb_list = memblock_virt_alloc(
190 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
191 PAGE_SIZE);
192 io_tlb_orig_addr = memblock_virt_alloc(
193 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
194 PAGE_SIZE);
195 for (i = 0; i < io_tlb_nslabs; i++) {
196 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
197 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
198 }
199 io_tlb_index = 0;
200
201 if (verbose)
202 swiotlb_print_info();
203
204 return 0;
205 }
206
207 /*
208 * Statically reserve bounce buffer space and initialize bounce buffer data
209 * structures for the software IO TLB used to implement the DMA API.
210 */
211 void __init
212 swiotlb_init(int verbose)
213 {
214 size_t default_size = IO_TLB_DEFAULT_SIZE;
215 unsigned char *vstart;
216 unsigned long bytes;
217
218 if (!io_tlb_nslabs) {
219 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
220 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
221 }
222
223 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
224
225 /* Get IO TLB memory from the low pages */
226 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
227 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
228 return;
229
230 if (io_tlb_start)
231 memblock_free_early(io_tlb_start,
232 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
233 pr_warn("Cannot allocate SWIOTLB buffer");
234 no_iotlb_memory = true;
235 }
236
237 /*
238 * Systems with larger DMA zones (those that don't support ISA) can
239 * initialize the swiotlb later using the slab allocator if needed.
240 * This should be just like above, but with some error catching.
241 */
242 int
243 swiotlb_late_init_with_default_size(size_t default_size)
244 {
245 unsigned long bytes, req_nslabs = io_tlb_nslabs;
246 unsigned char *vstart = NULL;
247 unsigned int order;
248 int rc = 0;
249
250 if (!io_tlb_nslabs) {
251 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
252 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
253 }
254
255 /*
256 * Get IO TLB memory from the low pages
257 */
258 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
259 io_tlb_nslabs = SLABS_PER_PAGE << order;
260 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
261
262 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
263 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
264 order);
265 if (vstart)
266 break;
267 order--;
268 }
269
270 if (!vstart) {
271 io_tlb_nslabs = req_nslabs;
272 return -ENOMEM;
273 }
274 if (order != get_order(bytes)) {
275 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
276 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
277 io_tlb_nslabs = SLABS_PER_PAGE << order;
278 }
279 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
280 if (rc)
281 free_pages((unsigned long)vstart, order);
282 return rc;
283 }
284
285 int
286 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
287 {
288 unsigned long i, bytes;
289 unsigned char *v_overflow_buffer;
290
291 bytes = nslabs << IO_TLB_SHIFT;
292
293 io_tlb_nslabs = nslabs;
294 io_tlb_start = virt_to_phys(tlb);
295 io_tlb_end = io_tlb_start + bytes;
296
297 memset(tlb, 0, bytes);
298
299 /*
300 * Get the overflow emergency buffer
301 */
302 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
303 get_order(io_tlb_overflow));
304 if (!v_overflow_buffer)
305 goto cleanup2;
306
307 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
308
309 /*
310 * Allocate and initialize the free list array. This array is used
311 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
312 * between io_tlb_start and io_tlb_end.
313 */
314 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
315 get_order(io_tlb_nslabs * sizeof(int)));
316 if (!io_tlb_list)
317 goto cleanup3;
318
319 io_tlb_orig_addr = (phys_addr_t *)
320 __get_free_pages(GFP_KERNEL,
321 get_order(io_tlb_nslabs *
322 sizeof(phys_addr_t)));
323 if (!io_tlb_orig_addr)
324 goto cleanup4;
325
326 for (i = 0; i < io_tlb_nslabs; i++) {
327 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
328 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
329 }
330 io_tlb_index = 0;
331
332 swiotlb_print_info();
333
334 late_alloc = 1;
335
336 return 0;
337
338 cleanup4:
339 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
340 sizeof(int)));
341 io_tlb_list = NULL;
342 cleanup3:
343 free_pages((unsigned long)v_overflow_buffer,
344 get_order(io_tlb_overflow));
345 io_tlb_overflow_buffer = 0;
346 cleanup2:
347 io_tlb_end = 0;
348 io_tlb_start = 0;
349 io_tlb_nslabs = 0;
350 return -ENOMEM;
351 }
352
353 void __init swiotlb_free(void)
354 {
355 if (!io_tlb_orig_addr)
356 return;
357
358 if (late_alloc) {
359 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
360 get_order(io_tlb_overflow));
361 free_pages((unsigned long)io_tlb_orig_addr,
362 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
363 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
364 sizeof(int)));
365 free_pages((unsigned long)phys_to_virt(io_tlb_start),
366 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
367 } else {
368 memblock_free_late(io_tlb_overflow_buffer,
369 PAGE_ALIGN(io_tlb_overflow));
370 memblock_free_late(__pa(io_tlb_orig_addr),
371 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
372 memblock_free_late(__pa(io_tlb_list),
373 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
374 memblock_free_late(io_tlb_start,
375 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
376 }
377 io_tlb_nslabs = 0;
378 }
379
380 int is_swiotlb_buffer(phys_addr_t paddr)
381 {
382 return paddr >= io_tlb_start && paddr < io_tlb_end;
383 }
384
385 /*
386 * Bounce: copy the swiotlb buffer back to the original dma location
387 */
388 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
389 size_t size, enum dma_data_direction dir)
390 {
391 unsigned long pfn = PFN_DOWN(orig_addr);
392 unsigned char *vaddr = phys_to_virt(tlb_addr);
393
394 if (PageHighMem(pfn_to_page(pfn))) {
395 /* The buffer does not have a mapping. Map it in and copy */
396 unsigned int offset = orig_addr & ~PAGE_MASK;
397 char *buffer;
398 unsigned int sz = 0;
399 unsigned long flags;
400
401 while (size) {
402 sz = min_t(size_t, PAGE_SIZE - offset, size);
403
404 local_irq_save(flags);
405 buffer = kmap_atomic(pfn_to_page(pfn));
406 if (dir == DMA_TO_DEVICE)
407 memcpy(vaddr, buffer + offset, sz);
408 else
409 memcpy(buffer + offset, vaddr, sz);
410 kunmap_atomic(buffer);
411 local_irq_restore(flags);
412
413 size -= sz;
414 pfn++;
415 vaddr += sz;
416 offset = 0;
417 }
418 } else if (dir == DMA_TO_DEVICE) {
419 memcpy(vaddr, phys_to_virt(orig_addr), size);
420 } else {
421 memcpy(phys_to_virt(orig_addr), vaddr, size);
422 }
423 }
424
425 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
426 dma_addr_t tbl_dma_addr,
427 phys_addr_t orig_addr, size_t size,
428 enum dma_data_direction dir,
429 unsigned long attrs)
430 {
431 unsigned long flags;
432 phys_addr_t tlb_addr;
433 unsigned int nslots, stride, index, wrap;
434 int i;
435 unsigned long mask;
436 unsigned long offset_slots;
437 unsigned long max_slots;
438
439 if (no_iotlb_memory)
440 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
441
442 mask = dma_get_seg_boundary(hwdev);
443
444 tbl_dma_addr &= mask;
445
446 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
447
448 /*
449 * Carefully handle integer overflow which can occur when mask == ~0UL.
450 */
451 max_slots = mask + 1
452 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
453 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
454
455 /*
456 * For mappings greater than a page, we limit the stride (and
457 * hence alignment) to a page size.
458 */
459 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
460 if (size > PAGE_SIZE)
461 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
462 else
463 stride = 1;
464
465 BUG_ON(!nslots);
466
467 /*
468 * Find suitable number of IO TLB entries size that will fit this
469 * request and allocate a buffer from that IO TLB pool.
470 */
471 spin_lock_irqsave(&io_tlb_lock, flags);
472 index = ALIGN(io_tlb_index, stride);
473 if (index >= io_tlb_nslabs)
474 index = 0;
475 wrap = index;
476
477 do {
478 while (iommu_is_span_boundary(index, nslots, offset_slots,
479 max_slots)) {
480 index += stride;
481 if (index >= io_tlb_nslabs)
482 index = 0;
483 if (index == wrap)
484 goto not_found;
485 }
486
487 /*
488 * If we find a slot that indicates we have 'nslots' number of
489 * contiguous buffers, we allocate the buffers from that slot
490 * and mark the entries as '0' indicating unavailable.
491 */
492 if (io_tlb_list[index] >= nslots) {
493 int count = 0;
494
495 for (i = index; i < (int) (index + nslots); i++)
496 io_tlb_list[i] = 0;
497 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
498 io_tlb_list[i] = ++count;
499 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
500
501 /*
502 * Update the indices to avoid searching in the next
503 * round.
504 */
505 io_tlb_index = ((index + nslots) < io_tlb_nslabs
506 ? (index + nslots) : 0);
507
508 goto found;
509 }
510 index += stride;
511 if (index >= io_tlb_nslabs)
512 index = 0;
513 } while (index != wrap);
514
515 not_found:
516 spin_unlock_irqrestore(&io_tlb_lock, flags);
517 if (printk_ratelimit())
518 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
519 return SWIOTLB_MAP_ERROR;
520 found:
521 spin_unlock_irqrestore(&io_tlb_lock, flags);
522
523 /*
524 * Save away the mapping from the original address to the DMA address.
525 * This is needed when we sync the memory. Then we sync the buffer if
526 * needed.
527 */
528 for (i = 0; i < nslots; i++)
529 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
530 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
531 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
532 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
533
534 return tlb_addr;
535 }
536 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
537
538 /*
539 * Allocates bounce buffer and returns its kernel virtual address.
540 */
541
542 static phys_addr_t
543 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
544 enum dma_data_direction dir, unsigned long attrs)
545 {
546 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
547
548 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
549 dir, attrs);
550 }
551
552 /*
553 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
554 */
555 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
556 size_t size, enum dma_data_direction dir,
557 unsigned long attrs)
558 {
559 unsigned long flags;
560 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
561 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
562 phys_addr_t orig_addr = io_tlb_orig_addr[index];
563
564 /*
565 * First, sync the memory before unmapping the entry
566 */
567 if (orig_addr != INVALID_PHYS_ADDR &&
568 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
569 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
570 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
571
572 /*
573 * Return the buffer to the free list by setting the corresponding
574 * entries to indicate the number of contiguous entries available.
575 * While returning the entries to the free list, we merge the entries
576 * with slots below and above the pool being returned.
577 */
578 spin_lock_irqsave(&io_tlb_lock, flags);
579 {
580 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
581 io_tlb_list[index + nslots] : 0);
582 /*
583 * Step 1: return the slots to the free list, merging the
584 * slots with superceeding slots
585 */
586 for (i = index + nslots - 1; i >= index; i--) {
587 io_tlb_list[i] = ++count;
588 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
589 }
590 /*
591 * Step 2: merge the returned slots with the preceding slots,
592 * if available (non zero)
593 */
594 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
595 io_tlb_list[i] = ++count;
596 }
597 spin_unlock_irqrestore(&io_tlb_lock, flags);
598 }
599 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
600
601 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
602 size_t size, enum dma_data_direction dir,
603 enum dma_sync_target target)
604 {
605 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
606 phys_addr_t orig_addr = io_tlb_orig_addr[index];
607
608 if (orig_addr == INVALID_PHYS_ADDR)
609 return;
610 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
611
612 switch (target) {
613 case SYNC_FOR_CPU:
614 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
615 swiotlb_bounce(orig_addr, tlb_addr,
616 size, DMA_FROM_DEVICE);
617 else
618 BUG_ON(dir != DMA_TO_DEVICE);
619 break;
620 case SYNC_FOR_DEVICE:
621 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
622 swiotlb_bounce(orig_addr, tlb_addr,
623 size, DMA_TO_DEVICE);
624 else
625 BUG_ON(dir != DMA_FROM_DEVICE);
626 break;
627 default:
628 BUG();
629 }
630 }
631 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
632
633 void *
634 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
635 dma_addr_t *dma_handle, gfp_t flags)
636 {
637 dma_addr_t dev_addr;
638 void *ret;
639 int order = get_order(size);
640 u64 dma_mask = DMA_BIT_MASK(32);
641
642 if (hwdev && hwdev->coherent_dma_mask)
643 dma_mask = hwdev->coherent_dma_mask;
644
645 ret = (void *)__get_free_pages(flags, order);
646 if (ret) {
647 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
648 if (dev_addr + size - 1 > dma_mask) {
649 /*
650 * The allocated memory isn't reachable by the device.
651 */
652 free_pages((unsigned long) ret, order);
653 ret = NULL;
654 }
655 }
656 if (!ret) {
657 /*
658 * We are either out of memory or the device can't DMA to
659 * GFP_DMA memory; fall back on map_single(), which
660 * will grab memory from the lowest available address range.
661 */
662 phys_addr_t paddr = map_single(hwdev, 0, size,
663 DMA_FROM_DEVICE, 0);
664 if (paddr == SWIOTLB_MAP_ERROR)
665 goto err_warn;
666
667 ret = phys_to_virt(paddr);
668 dev_addr = phys_to_dma(hwdev, paddr);
669
670 /* Confirm address can be DMA'd by device */
671 if (dev_addr + size - 1 > dma_mask) {
672 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
673 (unsigned long long)dma_mask,
674 (unsigned long long)dev_addr);
675
676 /*
677 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
678 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
679 */
680 swiotlb_tbl_unmap_single(hwdev, paddr,
681 size, DMA_TO_DEVICE,
682 DMA_ATTR_SKIP_CPU_SYNC);
683 goto err_warn;
684 }
685 }
686
687 *dma_handle = dev_addr;
688 memset(ret, 0, size);
689
690 return ret;
691
692 err_warn:
693 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
694 dev_name(hwdev), size);
695 dump_stack();
696
697 return NULL;
698 }
699 EXPORT_SYMBOL(swiotlb_alloc_coherent);
700
701 void
702 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
703 dma_addr_t dev_addr)
704 {
705 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
706
707 WARN_ON(irqs_disabled());
708 if (!is_swiotlb_buffer(paddr))
709 free_pages((unsigned long)vaddr, get_order(size));
710 else
711 /*
712 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
713 * DMA_ATTR_SKIP_CPU_SYNC is optional.
714 */
715 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
716 DMA_ATTR_SKIP_CPU_SYNC);
717 }
718 EXPORT_SYMBOL(swiotlb_free_coherent);
719
720 static void
721 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
722 int do_panic)
723 {
724 /*
725 * Ran out of IOMMU space for this operation. This is very bad.
726 * Unfortunately the drivers cannot handle this operation properly.
727 * unless they check for dma_mapping_error (most don't)
728 * When the mapping is small enough return a static buffer to limit
729 * the damage, or panic when the transfer is too big.
730 */
731 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
732 size);
733
734 if (size <= io_tlb_overflow || !do_panic)
735 return;
736
737 if (dir == DMA_BIDIRECTIONAL)
738 panic("DMA: Random memory could be DMA accessed\n");
739 if (dir == DMA_FROM_DEVICE)
740 panic("DMA: Random memory could be DMA written\n");
741 if (dir == DMA_TO_DEVICE)
742 panic("DMA: Random memory could be DMA read\n");
743 }
744
745 /*
746 * Map a single buffer of the indicated size for DMA in streaming mode. The
747 * physical address to use is returned.
748 *
749 * Once the device is given the dma address, the device owns this memory until
750 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
751 */
752 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
753 unsigned long offset, size_t size,
754 enum dma_data_direction dir,
755 unsigned long attrs)
756 {
757 phys_addr_t map, phys = page_to_phys(page) + offset;
758 dma_addr_t dev_addr = phys_to_dma(dev, phys);
759
760 BUG_ON(dir == DMA_NONE);
761 /*
762 * If the address happens to be in the device's DMA window,
763 * we can safely return the device addr and not worry about bounce
764 * buffering it.
765 */
766 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
767 return dev_addr;
768
769 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
770
771 /* Oh well, have to allocate and map a bounce buffer. */
772 map = map_single(dev, phys, size, dir, attrs);
773 if (map == SWIOTLB_MAP_ERROR) {
774 swiotlb_full(dev, size, dir, 1);
775 return phys_to_dma(dev, io_tlb_overflow_buffer);
776 }
777
778 dev_addr = phys_to_dma(dev, map);
779
780 /* Ensure that the address returned is DMA'ble */
781 if (dma_capable(dev, dev_addr, size))
782 return dev_addr;
783
784 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
785 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
786
787 return phys_to_dma(dev, io_tlb_overflow_buffer);
788 }
789 EXPORT_SYMBOL_GPL(swiotlb_map_page);
790
791 /*
792 * Unmap a single streaming mode DMA translation. The dma_addr and size must
793 * match what was provided for in a previous swiotlb_map_page call. All
794 * other usages are undefined.
795 *
796 * After this call, reads by the cpu to the buffer are guaranteed to see
797 * whatever the device wrote there.
798 */
799 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
800 size_t size, enum dma_data_direction dir,
801 unsigned long attrs)
802 {
803 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
804
805 BUG_ON(dir == DMA_NONE);
806
807 if (is_swiotlb_buffer(paddr)) {
808 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
809 return;
810 }
811
812 if (dir != DMA_FROM_DEVICE)
813 return;
814
815 /*
816 * phys_to_virt doesn't work with hihgmem page but we could
817 * call dma_mark_clean() with hihgmem page here. However, we
818 * are fine since dma_mark_clean() is null on POWERPC. We can
819 * make dma_mark_clean() take a physical address if necessary.
820 */
821 dma_mark_clean(phys_to_virt(paddr), size);
822 }
823
824 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
825 size_t size, enum dma_data_direction dir,
826 unsigned long attrs)
827 {
828 unmap_single(hwdev, dev_addr, size, dir, attrs);
829 }
830 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
831
832 /*
833 * Make physical memory consistent for a single streaming mode DMA translation
834 * after a transfer.
835 *
836 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
837 * using the cpu, yet do not wish to teardown the dma mapping, you must
838 * call this function before doing so. At the next point you give the dma
839 * address back to the card, you must first perform a
840 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
841 */
842 static void
843 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
844 size_t size, enum dma_data_direction dir,
845 enum dma_sync_target target)
846 {
847 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
848
849 BUG_ON(dir == DMA_NONE);
850
851 if (is_swiotlb_buffer(paddr)) {
852 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
853 return;
854 }
855
856 if (dir != DMA_FROM_DEVICE)
857 return;
858
859 dma_mark_clean(phys_to_virt(paddr), size);
860 }
861
862 void
863 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
864 size_t size, enum dma_data_direction dir)
865 {
866 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
867 }
868 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
869
870 void
871 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
872 size_t size, enum dma_data_direction dir)
873 {
874 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
875 }
876 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
877
878 /*
879 * Map a set of buffers described by scatterlist in streaming mode for DMA.
880 * This is the scatter-gather version of the above swiotlb_map_page
881 * interface. Here the scatter gather list elements are each tagged with the
882 * appropriate dma address and length. They are obtained via
883 * sg_dma_{address,length}(SG).
884 *
885 * NOTE: An implementation may be able to use a smaller number of
886 * DMA address/length pairs than there are SG table elements.
887 * (for example via virtual mapping capabilities)
888 * The routine returns the number of addr/length pairs actually
889 * used, at most nents.
890 *
891 * Device ownership issues as mentioned above for swiotlb_map_page are the
892 * same here.
893 */
894 int
895 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
896 enum dma_data_direction dir, unsigned long attrs)
897 {
898 struct scatterlist *sg;
899 int i;
900
901 BUG_ON(dir == DMA_NONE);
902
903 for_each_sg(sgl, sg, nelems, i) {
904 phys_addr_t paddr = sg_phys(sg);
905 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
906
907 if (swiotlb_force ||
908 !dma_capable(hwdev, dev_addr, sg->length)) {
909 phys_addr_t map = map_single(hwdev, sg_phys(sg),
910 sg->length, dir, attrs);
911 if (map == SWIOTLB_MAP_ERROR) {
912 /* Don't panic here, we expect map_sg users
913 to do proper error handling. */
914 swiotlb_full(hwdev, sg->length, dir, 0);
915 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
916 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
917 attrs);
918 sg_dma_len(sgl) = 0;
919 return 0;
920 }
921 sg->dma_address = phys_to_dma(hwdev, map);
922 } else
923 sg->dma_address = dev_addr;
924 sg_dma_len(sg) = sg->length;
925 }
926 return nelems;
927 }
928 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
929
930 /*
931 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
932 * concerning calls here are the same as for swiotlb_unmap_page() above.
933 */
934 void
935 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
936 int nelems, enum dma_data_direction dir,
937 unsigned long attrs)
938 {
939 struct scatterlist *sg;
940 int i;
941
942 BUG_ON(dir == DMA_NONE);
943
944 for_each_sg(sgl, sg, nelems, i)
945 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
946 attrs);
947 }
948 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
949
950 /*
951 * Make physical memory consistent for a set of streaming mode DMA translations
952 * after a transfer.
953 *
954 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
955 * and usage.
956 */
957 static void
958 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
959 int nelems, enum dma_data_direction dir,
960 enum dma_sync_target target)
961 {
962 struct scatterlist *sg;
963 int i;
964
965 for_each_sg(sgl, sg, nelems, i)
966 swiotlb_sync_single(hwdev, sg->dma_address,
967 sg_dma_len(sg), dir, target);
968 }
969
970 void
971 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
972 int nelems, enum dma_data_direction dir)
973 {
974 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
975 }
976 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
977
978 void
979 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
980 int nelems, enum dma_data_direction dir)
981 {
982 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
983 }
984 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
985
986 int
987 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
988 {
989 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
990 }
991 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
992
993 /*
994 * Return whether the given device DMA address mask can be supported
995 * properly. For example, if your device can only drive the low 24-bits
996 * during bus mastering, then you would pass 0x00ffffff as the mask to
997 * this function.
998 */
999 int
1000 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1001 {
1002 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1003 }
1004 EXPORT_SYMBOL(swiotlb_dma_supported);