2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
38 #include <linux/init.h>
39 #include <linux/bootmem.h>
40 #include <linux/iommu-helper.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/swiotlb.h>
45 #define OFFSET(val,align) ((unsigned long) \
46 ( (val) & ( (align) - 1)))
48 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
51 * Minimum IO TLB size to bother booting with. Systems with mainly
52 * 64bit capable cards will only lightly use the swiotlb. If we can't
53 * allocate a contiguous 1MB, we're probably in trouble anyway.
55 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57 enum swiotlb_force swiotlb_force
;
60 * Used to do a quick range check in swiotlb_tbl_unmap_single and
61 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
64 static phys_addr_t io_tlb_start
, io_tlb_end
;
67 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
68 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
70 static unsigned long io_tlb_nslabs
;
73 * When the IOMMU overflows we return a fallback buffer. This sets the size.
75 static unsigned long io_tlb_overflow
= 32*1024;
77 static phys_addr_t io_tlb_overflow_buffer
;
80 * This is a free list describing the number of free entries available from
83 static unsigned int *io_tlb_list
;
84 static unsigned int io_tlb_index
;
87 * Max segment that we can provide which (if pages are contingous) will
88 * not be bounced (unless SWIOTLB_FORCE is set).
90 unsigned int max_segment
;
93 * We need to save away the original address corresponding to a mapped entry
94 * for the sync operations.
96 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
97 static phys_addr_t
*io_tlb_orig_addr
;
100 * Protect the above data structures in the map and unmap calls
102 static DEFINE_SPINLOCK(io_tlb_lock
);
104 static int late_alloc
;
107 setup_io_tlb_npages(char *str
)
110 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
111 /* avoid tail segment of size < IO_TLB_SEGSIZE */
112 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
116 if (!strcmp(str
, "force")) {
117 swiotlb_force
= SWIOTLB_FORCE
;
118 } else if (!strcmp(str
, "noforce")) {
119 swiotlb_force
= SWIOTLB_NO_FORCE
;
125 early_param("swiotlb", setup_io_tlb_npages
);
126 /* make io_tlb_overflow tunable too? */
128 unsigned long swiotlb_nr_tbl(void)
130 return io_tlb_nslabs
;
132 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
134 unsigned int swiotlb_max_segment(void)
138 EXPORT_SYMBOL_GPL(swiotlb_max_segment
);
140 void swiotlb_set_max_segment(unsigned int val
)
142 if (swiotlb_force
== SWIOTLB_FORCE
)
145 max_segment
= rounddown(val
, PAGE_SIZE
);
148 /* default to 64MB */
149 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
150 unsigned long swiotlb_size_or_default(void)
154 size
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
156 return size
? size
: (IO_TLB_DEFAULT_SIZE
);
159 void __weak
swiotlb_set_mem_attributes(void *vaddr
, unsigned long size
) { }
161 /* For swiotlb, clear memory encryption mask from dma addresses */
162 static dma_addr_t
swiotlb_phys_to_dma(struct device
*hwdev
,
165 return __sme_clr(phys_to_dma(hwdev
, address
));
168 /* Note that this doesn't work with highmem page */
169 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
170 volatile void *address
)
172 return phys_to_dma(hwdev
, virt_to_phys(address
));
175 static bool no_iotlb_memory
;
177 void swiotlb_print_info(void)
179 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
180 unsigned char *vstart
, *vend
;
182 if (no_iotlb_memory
) {
183 pr_warn("software IO TLB: No low mem\n");
187 vstart
= phys_to_virt(io_tlb_start
);
188 vend
= phys_to_virt(io_tlb_end
);
190 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
191 (unsigned long long)io_tlb_start
,
192 (unsigned long long)io_tlb_end
,
193 bytes
>> 20, vstart
, vend
- 1);
197 * Early SWIOTLB allocation may be too early to allow an architecture to
198 * perform the desired operations. This function allows the architecture to
199 * call SWIOTLB when the operations are possible. It needs to be called
200 * before the SWIOTLB memory is used.
202 void __init
swiotlb_update_mem_attributes(void)
207 if (no_iotlb_memory
|| late_alloc
)
210 vaddr
= phys_to_virt(io_tlb_start
);
211 bytes
= PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
);
212 swiotlb_set_mem_attributes(vaddr
, bytes
);
213 memset(vaddr
, 0, bytes
);
215 vaddr
= phys_to_virt(io_tlb_overflow_buffer
);
216 bytes
= PAGE_ALIGN(io_tlb_overflow
);
217 swiotlb_set_mem_attributes(vaddr
, bytes
);
218 memset(vaddr
, 0, bytes
);
221 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
223 void *v_overflow_buffer
;
224 unsigned long i
, bytes
;
226 bytes
= nslabs
<< IO_TLB_SHIFT
;
228 io_tlb_nslabs
= nslabs
;
229 io_tlb_start
= __pa(tlb
);
230 io_tlb_end
= io_tlb_start
+ bytes
;
233 * Get the overflow emergency buffer
235 v_overflow_buffer
= memblock_virt_alloc_low_nopanic(
236 PAGE_ALIGN(io_tlb_overflow
),
238 if (!v_overflow_buffer
)
241 io_tlb_overflow_buffer
= __pa(v_overflow_buffer
);
244 * Allocate and initialize the free list array. This array is used
245 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
246 * between io_tlb_start and io_tlb_end.
248 io_tlb_list
= memblock_virt_alloc(
249 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)),
251 io_tlb_orig_addr
= memblock_virt_alloc(
252 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)),
254 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
255 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
256 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
261 swiotlb_print_info();
263 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
268 * Statically reserve bounce buffer space and initialize bounce buffer data
269 * structures for the software IO TLB used to implement the DMA API.
272 swiotlb_init(int verbose
)
274 size_t default_size
= IO_TLB_DEFAULT_SIZE
;
275 unsigned char *vstart
;
278 if (!io_tlb_nslabs
) {
279 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
280 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
283 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
285 /* Get IO TLB memory from the low pages */
286 vstart
= memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes
), PAGE_SIZE
);
287 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
291 memblock_free_early(io_tlb_start
,
292 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
293 pr_warn("Cannot allocate SWIOTLB buffer");
294 no_iotlb_memory
= true;
298 * Systems with larger DMA zones (those that don't support ISA) can
299 * initialize the swiotlb later using the slab allocator if needed.
300 * This should be just like above, but with some error catching.
303 swiotlb_late_init_with_default_size(size_t default_size
)
305 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
306 unsigned char *vstart
= NULL
;
310 if (!io_tlb_nslabs
) {
311 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
312 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
316 * Get IO TLB memory from the low pages
318 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
319 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
320 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
322 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
323 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
331 io_tlb_nslabs
= req_nslabs
;
334 if (order
!= get_order(bytes
)) {
335 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
336 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
337 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
339 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
341 free_pages((unsigned long)vstart
, order
);
347 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
349 unsigned long i
, bytes
;
350 unsigned char *v_overflow_buffer
;
352 bytes
= nslabs
<< IO_TLB_SHIFT
;
354 io_tlb_nslabs
= nslabs
;
355 io_tlb_start
= virt_to_phys(tlb
);
356 io_tlb_end
= io_tlb_start
+ bytes
;
358 swiotlb_set_mem_attributes(tlb
, bytes
);
359 memset(tlb
, 0, bytes
);
362 * Get the overflow emergency buffer
364 v_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
365 get_order(io_tlb_overflow
));
366 if (!v_overflow_buffer
)
369 swiotlb_set_mem_attributes(v_overflow_buffer
, io_tlb_overflow
);
370 memset(v_overflow_buffer
, 0, io_tlb_overflow
);
371 io_tlb_overflow_buffer
= virt_to_phys(v_overflow_buffer
);
374 * Allocate and initialize the free list array. This array is used
375 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
376 * between io_tlb_start and io_tlb_end.
378 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
379 get_order(io_tlb_nslabs
* sizeof(int)));
383 io_tlb_orig_addr
= (phys_addr_t
*)
384 __get_free_pages(GFP_KERNEL
,
385 get_order(io_tlb_nslabs
*
386 sizeof(phys_addr_t
)));
387 if (!io_tlb_orig_addr
)
390 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
391 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
392 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
396 swiotlb_print_info();
400 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
405 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
409 free_pages((unsigned long)v_overflow_buffer
,
410 get_order(io_tlb_overflow
));
411 io_tlb_overflow_buffer
= 0;
420 void __init
swiotlb_free(void)
422 if (!io_tlb_orig_addr
)
426 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer
),
427 get_order(io_tlb_overflow
));
428 free_pages((unsigned long)io_tlb_orig_addr
,
429 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
430 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
432 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
433 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
435 memblock_free_late(io_tlb_overflow_buffer
,
436 PAGE_ALIGN(io_tlb_overflow
));
437 memblock_free_late(__pa(io_tlb_orig_addr
),
438 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
439 memblock_free_late(__pa(io_tlb_list
),
440 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
441 memblock_free_late(io_tlb_start
,
442 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
448 int is_swiotlb_buffer(phys_addr_t paddr
)
450 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
454 * Bounce: copy the swiotlb buffer back to the original dma location
456 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
457 size_t size
, enum dma_data_direction dir
)
459 unsigned long pfn
= PFN_DOWN(orig_addr
);
460 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
462 if (PageHighMem(pfn_to_page(pfn
))) {
463 /* The buffer does not have a mapping. Map it in and copy */
464 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
470 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
472 local_irq_save(flags
);
473 buffer
= kmap_atomic(pfn_to_page(pfn
));
474 if (dir
== DMA_TO_DEVICE
)
475 memcpy(vaddr
, buffer
+ offset
, sz
);
477 memcpy(buffer
+ offset
, vaddr
, sz
);
478 kunmap_atomic(buffer
);
479 local_irq_restore(flags
);
486 } else if (dir
== DMA_TO_DEVICE
) {
487 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
489 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
493 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
494 dma_addr_t tbl_dma_addr
,
495 phys_addr_t orig_addr
, size_t size
,
496 enum dma_data_direction dir
,
500 phys_addr_t tlb_addr
;
501 unsigned int nslots
, stride
, index
, wrap
;
504 unsigned long offset_slots
;
505 unsigned long max_slots
;
508 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
510 if (mem_encrypt_active())
511 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
512 sme_active() ? "SME" : "SEV");
514 mask
= dma_get_seg_boundary(hwdev
);
516 tbl_dma_addr
&= mask
;
518 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
521 * Carefully handle integer overflow which can occur when mask == ~0UL.
524 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
525 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
528 * For mappings greater than or equal to a page, we limit the stride
529 * (and hence alignment) to a page size.
531 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
532 if (size
>= PAGE_SIZE
)
533 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
540 * Find suitable number of IO TLB entries size that will fit this
541 * request and allocate a buffer from that IO TLB pool.
543 spin_lock_irqsave(&io_tlb_lock
, flags
);
544 index
= ALIGN(io_tlb_index
, stride
);
545 if (index
>= io_tlb_nslabs
)
550 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
553 if (index
>= io_tlb_nslabs
)
560 * If we find a slot that indicates we have 'nslots' number of
561 * contiguous buffers, we allocate the buffers from that slot
562 * and mark the entries as '0' indicating unavailable.
564 if (io_tlb_list
[index
] >= nslots
) {
567 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
569 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
570 io_tlb_list
[i
] = ++count
;
571 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
574 * Update the indices to avoid searching in the next
577 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
578 ? (index
+ nslots
) : 0);
583 if (index
>= io_tlb_nslabs
)
585 } while (index
!= wrap
);
588 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
589 if (printk_ratelimit())
590 dev_warn(hwdev
, "swiotlb buffer is full (sz: %zd bytes)\n", size
);
591 return SWIOTLB_MAP_ERROR
;
593 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
596 * Save away the mapping from the original address to the DMA address.
597 * This is needed when we sync the memory. Then we sync the buffer if
600 for (i
= 0; i
< nslots
; i
++)
601 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
602 if (!(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
603 (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
604 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
608 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
611 * Allocates bounce buffer and returns its kernel virtual address.
615 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
616 enum dma_data_direction dir
, unsigned long attrs
)
618 dma_addr_t start_dma_addr
;
620 if (swiotlb_force
== SWIOTLB_NO_FORCE
) {
621 dev_warn_ratelimited(hwdev
, "Cannot do DMA to address %pa\n",
623 return SWIOTLB_MAP_ERROR
;
626 start_dma_addr
= swiotlb_phys_to_dma(hwdev
, io_tlb_start
);
627 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
,
632 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
634 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
635 size_t size
, enum dma_data_direction dir
,
639 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
640 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
641 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
644 * First, sync the memory before unmapping the entry
646 if (orig_addr
!= INVALID_PHYS_ADDR
&&
647 !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
648 ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
649 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
652 * Return the buffer to the free list by setting the corresponding
653 * entries to indicate the number of contiguous entries available.
654 * While returning the entries to the free list, we merge the entries
655 * with slots below and above the pool being returned.
657 spin_lock_irqsave(&io_tlb_lock
, flags
);
659 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
660 io_tlb_list
[index
+ nslots
] : 0);
662 * Step 1: return the slots to the free list, merging the
663 * slots with superceeding slots
665 for (i
= index
+ nslots
- 1; i
>= index
; i
--) {
666 io_tlb_list
[i
] = ++count
;
667 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
670 * Step 2: merge the returned slots with the preceding slots,
671 * if available (non zero)
673 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
674 io_tlb_list
[i
] = ++count
;
676 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
678 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
680 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
681 size_t size
, enum dma_data_direction dir
,
682 enum dma_sync_target target
)
684 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
685 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
687 if (orig_addr
== INVALID_PHYS_ADDR
)
689 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
693 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
694 swiotlb_bounce(orig_addr
, tlb_addr
,
695 size
, DMA_FROM_DEVICE
);
697 BUG_ON(dir
!= DMA_TO_DEVICE
);
699 case SYNC_FOR_DEVICE
:
700 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
701 swiotlb_bounce(orig_addr
, tlb_addr
,
702 size
, DMA_TO_DEVICE
);
704 BUG_ON(dir
!= DMA_FROM_DEVICE
);
710 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
713 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
714 dma_addr_t
*dma_handle
, gfp_t flags
)
718 int order
= get_order(size
);
719 u64 dma_mask
= DMA_BIT_MASK(32);
721 if (hwdev
&& hwdev
->coherent_dma_mask
)
722 dma_mask
= hwdev
->coherent_dma_mask
;
724 ret
= (void *)__get_free_pages(flags
, order
);
726 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
727 if (dev_addr
+ size
- 1 > dma_mask
) {
729 * The allocated memory isn't reachable by the device.
731 free_pages((unsigned long) ret
, order
);
737 * We are either out of memory or the device can't DMA to
738 * GFP_DMA memory; fall back on map_single(), which
739 * will grab memory from the lowest available address range.
741 phys_addr_t paddr
= map_single(hwdev
, 0, size
,
743 if (paddr
== SWIOTLB_MAP_ERROR
)
746 ret
= phys_to_virt(paddr
);
747 dev_addr
= swiotlb_phys_to_dma(hwdev
, paddr
);
749 /* Confirm address can be DMA'd by device */
750 if (dev_addr
+ size
- 1 > dma_mask
) {
751 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
752 (unsigned long long)dma_mask
,
753 (unsigned long long)dev_addr
);
756 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
757 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
759 swiotlb_tbl_unmap_single(hwdev
, paddr
,
761 DMA_ATTR_SKIP_CPU_SYNC
);
766 *dma_handle
= dev_addr
;
767 memset(ret
, 0, size
);
772 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
773 dev_name(hwdev
), size
);
778 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
781 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
784 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
786 WARN_ON(irqs_disabled());
787 if (!is_swiotlb_buffer(paddr
))
788 free_pages((unsigned long)vaddr
, get_order(size
));
791 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
792 * DMA_ATTR_SKIP_CPU_SYNC is optional.
794 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, DMA_TO_DEVICE
,
795 DMA_ATTR_SKIP_CPU_SYNC
);
797 EXPORT_SYMBOL(swiotlb_free_coherent
);
800 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
803 if (swiotlb_force
== SWIOTLB_NO_FORCE
)
807 * Ran out of IOMMU space for this operation. This is very bad.
808 * Unfortunately the drivers cannot handle this operation properly.
809 * unless they check for dma_mapping_error (most don't)
810 * When the mapping is small enough return a static buffer to limit
811 * the damage, or panic when the transfer is too big.
813 dev_err_ratelimited(dev
, "DMA: Out of SW-IOMMU space for %zu bytes\n",
816 if (size
<= io_tlb_overflow
|| !do_panic
)
819 if (dir
== DMA_BIDIRECTIONAL
)
820 panic("DMA: Random memory could be DMA accessed\n");
821 if (dir
== DMA_FROM_DEVICE
)
822 panic("DMA: Random memory could be DMA written\n");
823 if (dir
== DMA_TO_DEVICE
)
824 panic("DMA: Random memory could be DMA read\n");
828 * Map a single buffer of the indicated size for DMA in streaming mode. The
829 * physical address to use is returned.
831 * Once the device is given the dma address, the device owns this memory until
832 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
834 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
835 unsigned long offset
, size_t size
,
836 enum dma_data_direction dir
,
839 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
840 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
842 BUG_ON(dir
== DMA_NONE
);
844 * If the address happens to be in the device's DMA window,
845 * we can safely return the device addr and not worry about bounce
848 if (dma_capable(dev
, dev_addr
, size
) && swiotlb_force
!= SWIOTLB_FORCE
)
851 trace_swiotlb_bounced(dev
, dev_addr
, size
, swiotlb_force
);
853 /* Oh well, have to allocate and map a bounce buffer. */
854 map
= map_single(dev
, phys
, size
, dir
, attrs
);
855 if (map
== SWIOTLB_MAP_ERROR
) {
856 swiotlb_full(dev
, size
, dir
, 1);
857 return swiotlb_phys_to_dma(dev
, io_tlb_overflow_buffer
);
860 dev_addr
= swiotlb_phys_to_dma(dev
, map
);
862 /* Ensure that the address returned is DMA'ble */
863 if (dma_capable(dev
, dev_addr
, size
))
866 attrs
|= DMA_ATTR_SKIP_CPU_SYNC
;
867 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
, attrs
);
869 return swiotlb_phys_to_dma(dev
, io_tlb_overflow_buffer
);
871 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
874 * Unmap a single streaming mode DMA translation. The dma_addr and size must
875 * match what was provided for in a previous swiotlb_map_page call. All
876 * other usages are undefined.
878 * After this call, reads by the cpu to the buffer are guaranteed to see
879 * whatever the device wrote there.
881 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
882 size_t size
, enum dma_data_direction dir
,
885 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
887 BUG_ON(dir
== DMA_NONE
);
889 if (is_swiotlb_buffer(paddr
)) {
890 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
, attrs
);
894 if (dir
!= DMA_FROM_DEVICE
)
898 * phys_to_virt doesn't work with hihgmem page but we could
899 * call dma_mark_clean() with hihgmem page here. However, we
900 * are fine since dma_mark_clean() is null on POWERPC. We can
901 * make dma_mark_clean() take a physical address if necessary.
903 dma_mark_clean(phys_to_virt(paddr
), size
);
906 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
907 size_t size
, enum dma_data_direction dir
,
910 unmap_single(hwdev
, dev_addr
, size
, dir
, attrs
);
912 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
915 * Make physical memory consistent for a single streaming mode DMA translation
918 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
919 * using the cpu, yet do not wish to teardown the dma mapping, you must
920 * call this function before doing so. At the next point you give the dma
921 * address back to the card, you must first perform a
922 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
925 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
926 size_t size
, enum dma_data_direction dir
,
927 enum dma_sync_target target
)
929 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
931 BUG_ON(dir
== DMA_NONE
);
933 if (is_swiotlb_buffer(paddr
)) {
934 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
938 if (dir
!= DMA_FROM_DEVICE
)
941 dma_mark_clean(phys_to_virt(paddr
), size
);
945 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
946 size_t size
, enum dma_data_direction dir
)
948 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
950 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
953 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
954 size_t size
, enum dma_data_direction dir
)
956 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
958 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
961 * Map a set of buffers described by scatterlist in streaming mode for DMA.
962 * This is the scatter-gather version of the above swiotlb_map_page
963 * interface. Here the scatter gather list elements are each tagged with the
964 * appropriate dma address and length. They are obtained via
965 * sg_dma_{address,length}(SG).
967 * NOTE: An implementation may be able to use a smaller number of
968 * DMA address/length pairs than there are SG table elements.
969 * (for example via virtual mapping capabilities)
970 * The routine returns the number of addr/length pairs actually
971 * used, at most nents.
973 * Device ownership issues as mentioned above for swiotlb_map_page are the
977 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
978 enum dma_data_direction dir
, unsigned long attrs
)
980 struct scatterlist
*sg
;
983 BUG_ON(dir
== DMA_NONE
);
985 for_each_sg(sgl
, sg
, nelems
, i
) {
986 phys_addr_t paddr
= sg_phys(sg
);
987 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
989 if (swiotlb_force
== SWIOTLB_FORCE
||
990 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
991 phys_addr_t map
= map_single(hwdev
, sg_phys(sg
),
992 sg
->length
, dir
, attrs
);
993 if (map
== SWIOTLB_MAP_ERROR
) {
994 /* Don't panic here, we expect map_sg users
995 to do proper error handling. */
996 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
997 attrs
|= DMA_ATTR_SKIP_CPU_SYNC
;
998 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
1000 sg_dma_len(sgl
) = 0;
1003 sg
->dma_address
= swiotlb_phys_to_dma(hwdev
, map
);
1005 sg
->dma_address
= dev_addr
;
1006 sg_dma_len(sg
) = sg
->length
;
1010 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
1013 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
1014 * concerning calls here are the same as for swiotlb_unmap_page() above.
1017 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
1018 int nelems
, enum dma_data_direction dir
,
1019 unsigned long attrs
)
1021 struct scatterlist
*sg
;
1024 BUG_ON(dir
== DMA_NONE
);
1026 for_each_sg(sgl
, sg
, nelems
, i
)
1027 unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
,
1030 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
1033 * Make physical memory consistent for a set of streaming mode DMA translations
1036 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1040 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
1041 int nelems
, enum dma_data_direction dir
,
1042 enum dma_sync_target target
)
1044 struct scatterlist
*sg
;
1047 for_each_sg(sgl
, sg
, nelems
, i
)
1048 swiotlb_sync_single(hwdev
, sg
->dma_address
,
1049 sg_dma_len(sg
), dir
, target
);
1053 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
1054 int nelems
, enum dma_data_direction dir
)
1056 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
1058 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
1061 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
1062 int nelems
, enum dma_data_direction dir
)
1064 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
1066 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
1069 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
1071 return (dma_addr
== swiotlb_phys_to_dma(hwdev
, io_tlb_overflow_buffer
));
1073 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
1076 * Return whether the given device DMA address mask can be supported
1077 * properly. For example, if your device can only drive the low 24-bits
1078 * during bus mastering, then you would pass 0x00ffffff as the mask to
1082 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
1084 return swiotlb_phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
1086 EXPORT_SYMBOL(swiotlb_dma_supported
);