]> git.proxmox.com Git - mirror_frr.git/blob - lib/table.c
Merge pull request #410 from dslicenc/rdnbrd-vrr
[mirror_frr.git] / lib / table.c
1 /*
2 * Routing Table functions.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with GNU Zebra; see the file COPYING. If not, write to the Free
19 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA.
21 */
22
23 #include <zebra.h>
24
25 #include "prefix.h"
26 #include "table.h"
27 #include "memory.h"
28 #include "sockunion.h"
29
30 DEFINE_MTYPE( LIB, ROUTE_TABLE, "Route table")
31 DEFINE_MTYPE( LIB, ROUTE_NODE, "Route node")
32
33 static void route_node_delete (struct route_node *);
34 static void route_table_free (struct route_table *);
35
36
37 /*
38 * route_table_init_with_delegate
39 */
40 struct route_table *
41 route_table_init_with_delegate (route_table_delegate_t *delegate)
42 {
43 struct route_table *rt;
44
45 rt = XCALLOC (MTYPE_ROUTE_TABLE, sizeof (struct route_table));
46 rt->delegate = delegate;
47 return rt;
48 }
49
50 void
51 route_table_finish (struct route_table *rt)
52 {
53 route_table_free (rt);
54 }
55
56 /* Allocate new route node. */
57 static struct route_node *
58 route_node_new (struct route_table *table)
59 {
60 return table->delegate->create_node (table->delegate, table);
61 }
62
63 /* Allocate new route node with prefix set. */
64 static struct route_node *
65 route_node_set (struct route_table *table, const struct prefix *prefix)
66 {
67 struct route_node *node;
68
69 node = route_node_new (table);
70
71 prefix_copy (&node->p, prefix);
72 node->table = table;
73
74 return node;
75 }
76
77 /* Free route node. */
78 static void
79 route_node_free (struct route_table *table, struct route_node *node)
80 {
81 if (table->cleanup)
82 table->cleanup(table, node);
83 table->delegate->destroy_node (table->delegate, table, node);
84 }
85
86 /* Free route table. */
87 static void
88 route_table_free (struct route_table *rt)
89 {
90 struct route_node *tmp_node;
91 struct route_node *node;
92
93 if (rt == NULL)
94 return;
95
96 node = rt->top;
97
98 /* Bulk deletion of nodes remaining in this table. This function is not
99 called until workers have completed their dependency on this table.
100 A final route_unlock_node() will not be called for these nodes. */
101 while (node)
102 {
103 if (node->l_left)
104 {
105 node = node->l_left;
106 continue;
107 }
108
109 if (node->l_right)
110 {
111 node = node->l_right;
112 continue;
113 }
114
115 tmp_node = node;
116 node = node->parent;
117
118 tmp_node->table->count--;
119 tmp_node->lock = 0; /* to cause assert if unlocked after this */
120 route_node_free (rt, tmp_node);
121
122 if (node != NULL)
123 {
124 if (node->l_left == tmp_node)
125 node->l_left = NULL;
126 else
127 node->l_right = NULL;
128 }
129 else
130 {
131 break;
132 }
133 }
134
135 assert (rt->count == 0);
136
137 XFREE (MTYPE_ROUTE_TABLE, rt);
138 return;
139 }
140
141 /* Utility mask array. */
142 static const u_char maskbit[] =
143 {
144 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff
145 };
146
147 /* Common prefix route genaration. */
148 static void
149 route_common (const struct prefix *n, const struct prefix *p, struct prefix *new)
150 {
151 int i;
152 u_char diff;
153 u_char mask;
154
155 const u_char *np = (const u_char *)&n->u.prefix;
156 const u_char *pp = (const u_char *)&p->u.prefix;
157 u_char *newp = (u_char *)&new->u.prefix;
158
159 for (i = 0; i < p->prefixlen / 8; i++)
160 {
161 if (np[i] == pp[i])
162 newp[i] = np[i];
163 else
164 break;
165 }
166
167 new->prefixlen = i * 8;
168
169 if (new->prefixlen != p->prefixlen)
170 {
171 diff = np[i] ^ pp[i];
172 mask = 0x80;
173 while (new->prefixlen < p->prefixlen && !(mask & diff))
174 {
175 mask >>= 1;
176 new->prefixlen++;
177 }
178 newp[i] = np[i] & maskbit[new->prefixlen % 8];
179 }
180 }
181
182 static void
183 set_link (struct route_node *node, struct route_node *new)
184 {
185 unsigned int bit = prefix_bit (&new->p.u.prefix, node->p.prefixlen);
186
187 node->link[bit] = new;
188 new->parent = node;
189 }
190
191 /* Lock node. */
192 struct route_node *
193 route_lock_node (struct route_node *node)
194 {
195 node->lock++;
196 return node;
197 }
198
199 /* Unlock node. */
200 void
201 route_unlock_node (struct route_node *node)
202 {
203 assert (node->lock > 0);
204 node->lock--;
205
206 if (node->lock == 0)
207 route_node_delete (node);
208 }
209
210 /* Find matched prefix. */
211 struct route_node *
212 route_node_match (const struct route_table *table, const struct prefix *p)
213 {
214 struct route_node *node;
215 struct route_node *matched;
216
217 matched = NULL;
218 node = table->top;
219
220 /* Walk down tree. If there is matched route then store it to
221 matched. */
222 while (node && node->p.prefixlen <= p->prefixlen &&
223 prefix_match (&node->p, p))
224 {
225 if (node->info)
226 matched = node;
227
228 if (node->p.prefixlen == p->prefixlen)
229 break;
230
231 node = node->link[prefix_bit(&p->u.prefix, node->p.prefixlen)];
232 }
233
234 /* If matched route found, return it. */
235 if (matched)
236 return route_lock_node (matched);
237
238 return NULL;
239 }
240
241 struct route_node *
242 route_node_match_ipv4 (const struct route_table *table,
243 const struct in_addr *addr)
244 {
245 struct prefix_ipv4 p;
246
247 memset (&p, 0, sizeof (struct prefix_ipv4));
248 p.family = AF_INET;
249 p.prefixlen = IPV4_MAX_PREFIXLEN;
250 p.prefix = *addr;
251
252 return route_node_match (table, (struct prefix *) &p);
253 }
254
255 struct route_node *
256 route_node_match_ipv6 (const struct route_table *table,
257 const struct in6_addr *addr)
258 {
259 struct prefix_ipv6 p;
260
261 memset (&p, 0, sizeof (struct prefix_ipv6));
262 p.family = AF_INET6;
263 p.prefixlen = IPV6_MAX_PREFIXLEN;
264 p.prefix = *addr;
265
266 return route_node_match (table, (struct prefix *) &p);
267 }
268
269 /* Lookup same prefix node. Return NULL when we can't find route. */
270 struct route_node *
271 route_node_lookup (const struct route_table *table, const struct prefix *p)
272 {
273 struct route_node *node;
274 u_char prefixlen = p->prefixlen;
275 const u_char *prefix = &p->u.prefix;
276
277 node = table->top;
278
279 while (node && node->p.prefixlen <= prefixlen &&
280 prefix_match (&node->p, p))
281 {
282 if (node->p.prefixlen == prefixlen)
283 return node->info ? route_lock_node (node) : NULL;
284
285 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
286 }
287
288 return NULL;
289 }
290
291 /* Lookup same prefix node. Return NULL when we can't find route. */
292 struct route_node *
293 route_node_lookup_maynull (const struct route_table *table, const struct prefix *p)
294 {
295 struct route_node *node;
296 u_char prefixlen = p->prefixlen;
297 const u_char *prefix = &p->u.prefix;
298
299 node = table->top;
300
301 while (node && node->p.prefixlen <= prefixlen &&
302 prefix_match (&node->p, p))
303 {
304 if (node->p.prefixlen == prefixlen)
305 return route_lock_node (node);
306
307 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
308 }
309
310 return NULL;
311 }
312
313 /* Add node to routing table. */
314 struct route_node *
315 route_node_get (struct route_table *const table, const struct prefix *p)
316 {
317 struct route_node *new;
318 struct route_node *node;
319 struct route_node *match;
320 u_char prefixlen = p->prefixlen;
321 const u_char *prefix = &p->u.prefix;
322
323 match = NULL;
324 node = table->top;
325 while (node && node->p.prefixlen <= prefixlen &&
326 prefix_match (&node->p, p))
327 {
328 if (node->p.prefixlen == prefixlen)
329 return route_lock_node (node);
330
331 match = node;
332 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
333 }
334
335 if (node == NULL)
336 {
337 new = route_node_set (table, p);
338 if (match)
339 set_link (match, new);
340 else
341 table->top = new;
342 }
343 else
344 {
345 new = route_node_new (table);
346 route_common (&node->p, p, &new->p);
347 new->p.family = p->family;
348 new->table = table;
349 set_link (new, node);
350
351 if (match)
352 set_link (match, new);
353 else
354 table->top = new;
355
356 if (new->p.prefixlen != p->prefixlen)
357 {
358 match = new;
359 new = route_node_set (table, p);
360 set_link (match, new);
361 table->count++;
362 }
363 }
364 table->count++;
365 route_lock_node (new);
366
367 return new;
368 }
369
370 /* Delete node from the routing table. */
371 static void
372 route_node_delete (struct route_node *node)
373 {
374 struct route_node *child;
375 struct route_node *parent;
376
377 assert (node->lock == 0);
378 assert (node->info == NULL);
379
380 if (node->l_left && node->l_right)
381 return;
382
383 if (node->l_left)
384 child = node->l_left;
385 else
386 child = node->l_right;
387
388 parent = node->parent;
389
390 if (child)
391 child->parent = parent;
392
393 if (parent)
394 {
395 if (parent->l_left == node)
396 parent->l_left = child;
397 else
398 parent->l_right = child;
399 }
400 else
401 node->table->top = child;
402
403 node->table->count--;
404
405 /* WARNING: FRAGILE CODE!
406 * route_node_free may have the side effect of free'ing the entire table.
407 * this is permitted only if table->count got decremented to zero above,
408 * because in that case parent will also be NULL, so that we won't try to
409 * delete a now-stale parent below.
410 *
411 * cf. srcdest_srcnode_destroy() in zebra/zebra_rib.c */
412
413 route_node_free (node->table, node);
414
415 /* If parent node is stub then delete it also. */
416 if (parent && parent->lock == 0)
417 route_node_delete (parent);
418 }
419
420 /* Get fist node and lock it. This function is useful when one want
421 to lookup all the node exist in the routing table. */
422 struct route_node *
423 route_top (struct route_table *table)
424 {
425 /* If there is no node in the routing table return NULL. */
426 if (table->top == NULL)
427 return NULL;
428
429 /* Lock the top node and return it. */
430 route_lock_node (table->top);
431 return table->top;
432 }
433
434 /* Unlock current node and lock next node then return it. */
435 struct route_node *
436 route_next (struct route_node *node)
437 {
438 struct route_node *next;
439 struct route_node *start;
440
441 /* Node may be deleted from route_unlock_node so we have to preserve
442 next node's pointer. */
443
444 if (node->l_left)
445 {
446 next = node->l_left;
447 route_lock_node (next);
448 route_unlock_node (node);
449 return next;
450 }
451 if (node->l_right)
452 {
453 next = node->l_right;
454 route_lock_node (next);
455 route_unlock_node (node);
456 return next;
457 }
458
459 start = node;
460 while (node->parent)
461 {
462 if (node->parent->l_left == node && node->parent->l_right)
463 {
464 next = node->parent->l_right;
465 route_lock_node (next);
466 route_unlock_node (start);
467 return next;
468 }
469 node = node->parent;
470 }
471 route_unlock_node (start);
472 return NULL;
473 }
474
475 /* Unlock current node and lock next node until limit. */
476 struct route_node *
477 route_next_until (struct route_node *node, struct route_node *limit)
478 {
479 struct route_node *next;
480 struct route_node *start;
481
482 /* Node may be deleted from route_unlock_node so we have to preserve
483 next node's pointer. */
484
485 if (node->l_left)
486 {
487 next = node->l_left;
488 route_lock_node (next);
489 route_unlock_node (node);
490 return next;
491 }
492 if (node->l_right)
493 {
494 next = node->l_right;
495 route_lock_node (next);
496 route_unlock_node (node);
497 return next;
498 }
499
500 start = node;
501 while (node->parent && node != limit)
502 {
503 if (node->parent->l_left == node && node->parent->l_right)
504 {
505 next = node->parent->l_right;
506 route_lock_node (next);
507 route_unlock_node (start);
508 return next;
509 }
510 node = node->parent;
511 }
512 route_unlock_node (start);
513 return NULL;
514 }
515
516 unsigned long
517 route_table_count (const struct route_table *table)
518 {
519 return table->count;
520 }
521
522 /**
523 * route_node_create
524 *
525 * Default function for creating a route node.
526 */
527 struct route_node *
528 route_node_create (route_table_delegate_t *delegate,
529 struct route_table *table)
530 {
531 struct route_node *node;
532 node = XCALLOC (MTYPE_ROUTE_NODE, sizeof (struct route_node));
533 return node;
534 }
535
536 /**
537 * route_node_destroy
538 *
539 * Default function for destroying a route node.
540 */
541 void
542 route_node_destroy (route_table_delegate_t *delegate,
543 struct route_table *table, struct route_node *node)
544 {
545 XFREE (MTYPE_ROUTE_NODE, node);
546 }
547
548 /*
549 * Default delegate.
550 */
551 static route_table_delegate_t default_delegate = {
552 .create_node = route_node_create,
553 .destroy_node = route_node_destroy
554 };
555
556 route_table_delegate_t *
557 route_table_get_default_delegate(void)
558 {
559 return &default_delegate;
560 }
561
562 /*
563 * route_table_init
564 */
565 struct route_table *
566 route_table_init (void)
567 {
568 return route_table_init_with_delegate (&default_delegate);
569 }
570
571 /**
572 * route_table_prefix_iter_cmp
573 *
574 * Compare two prefixes according to the order in which they appear in
575 * an iteration over a tree.
576 *
577 * @return -1 if p1 occurs before p2 (p1 < p2)
578 * 0 if the prefixes are identical (p1 == p2)
579 * +1 if p1 occurs after p2 (p1 > p2)
580 */
581 int
582 route_table_prefix_iter_cmp (struct prefix *p1, struct prefix *p2)
583 {
584 struct prefix common_space;
585 struct prefix *common = &common_space;
586
587 if (p1->prefixlen <= p2->prefixlen)
588 {
589 if (prefix_match (p1, p2))
590 {
591
592 /*
593 * p1 contains p2, or is equal to it.
594 */
595 return (p1->prefixlen == p2->prefixlen) ? 0 : -1;
596 }
597 }
598 else
599 {
600
601 /*
602 * Check if p2 contains p1.
603 */
604 if (prefix_match (p2, p1))
605 return 1;
606 }
607
608 route_common (p1, p2, common);
609 assert (common->prefixlen < p1->prefixlen);
610 assert (common->prefixlen < p2->prefixlen);
611
612 /*
613 * Both prefixes are longer than the common prefix.
614 *
615 * We need to check the bit after the common prefixlen to determine
616 * which one comes later.
617 */
618 if (prefix_bit (&p1->u.prefix, common->prefixlen))
619 {
620
621 /*
622 * We branch to the right to get to p1 from the common prefix.
623 */
624 assert (!prefix_bit (&p2->u.prefix, common->prefixlen));
625 return 1;
626 }
627
628 /*
629 * We branch to the right to get to p2 from the common prefix.
630 */
631 assert (prefix_bit (&p2->u.prefix, common->prefixlen));
632 return -1;
633 }
634
635 /*
636 * route_get_subtree_next
637 *
638 * Helper function that returns the first node that follows the nodes
639 * in the sub-tree under 'node' in iteration order.
640 */
641 static struct route_node *
642 route_get_subtree_next (struct route_node *node)
643 {
644 while (node->parent)
645 {
646 if (node->parent->l_left == node && node->parent->l_right)
647 return node->parent->l_right;
648
649 node = node->parent;
650 }
651
652 return NULL;
653 }
654
655 /**
656 * route_table_get_next_internal
657 *
658 * Helper function to find the node that occurs after the given prefix in
659 * order of iteration.
660 *
661 * @see route_table_get_next
662 */
663 static struct route_node *
664 route_table_get_next_internal (const struct route_table *table,
665 struct prefix *p)
666 {
667 struct route_node *node, *tmp_node;
668 int cmp;
669
670 node = table->top;
671
672 while (node)
673 {
674 int match;
675
676 if (node->p.prefixlen < p->prefixlen)
677 match = prefix_match (&node->p, p);
678 else
679 match = prefix_match (p, &node->p);
680
681 if (match)
682 {
683 if (node->p.prefixlen == p->prefixlen)
684 {
685
686 /*
687 * The prefix p exists in the tree, just return the next
688 * node.
689 */
690 route_lock_node (node);
691 node = route_next (node);
692 if (node)
693 route_unlock_node (node);
694
695 return (node);
696 }
697
698 if (node->p.prefixlen > p->prefixlen)
699 {
700
701 /*
702 * Node is in the subtree of p, and hence greater than p.
703 */
704 return node;
705 }
706
707 /*
708 * p is in the sub-tree under node.
709 */
710 tmp_node = node->link[prefix_bit (&p->u.prefix, node->p.prefixlen)];
711
712 if (tmp_node)
713 {
714 node = tmp_node;
715 continue;
716 }
717
718 /*
719 * There are no nodes in the direction where p should be. If
720 * node has a right child, then it must be greater than p.
721 */
722 if (node->l_right)
723 return node->l_right;
724
725 /*
726 * No more children to follow, go upwards looking for the next
727 * node.
728 */
729 return route_get_subtree_next (node);
730 }
731
732 /*
733 * Neither node prefix nor 'p' contains the other.
734 */
735 cmp = route_table_prefix_iter_cmp (&node->p, p);
736 if (cmp > 0)
737 {
738
739 /*
740 * Node follows p in iteration order. Return it.
741 */
742 return node;
743 }
744
745 assert (cmp < 0);
746
747 /*
748 * Node and the subtree under it come before prefix p in
749 * iteration order. Prefix p and its sub-tree are not present in
750 * the tree. Go upwards and find the first node that follows the
751 * subtree. That node will also succeed p.
752 */
753 return route_get_subtree_next (node);
754 }
755
756 return NULL;
757 }
758
759 /**
760 * route_table_get_next
761 *
762 * Find the node that occurs after the given prefix in order of
763 * iteration.
764 */
765 struct route_node *
766 route_table_get_next (const struct route_table *table, struct prefix *p)
767 {
768 struct route_node *node;
769
770 node = route_table_get_next_internal (table, p);
771 if (node)
772 {
773 assert (route_table_prefix_iter_cmp (&node->p, p) > 0);
774 route_lock_node (node);
775 }
776 return node;
777 }
778
779 /*
780 * route_table_iter_init
781 */
782 void
783 route_table_iter_init (route_table_iter_t * iter, struct route_table *table)
784 {
785 memset (iter, 0, sizeof (*iter));
786 iter->state = RT_ITER_STATE_INIT;
787 iter->table = table;
788 }
789
790 /*
791 * route_table_iter_pause
792 *
793 * Pause an iteration over the table. This allows the iteration to be
794 * resumed point after arbitrary additions/deletions from the table.
795 * An iteration can be resumed by just calling route_table_iter_next()
796 * on the iterator.
797 */
798 void
799 route_table_iter_pause (route_table_iter_t * iter)
800 {
801 switch (iter->state)
802 {
803
804 case RT_ITER_STATE_INIT:
805 case RT_ITER_STATE_PAUSED:
806 case RT_ITER_STATE_DONE:
807 return;
808
809 case RT_ITER_STATE_ITERATING:
810
811 /*
812 * Save the prefix that we are currently at. The next call to
813 * route_table_iter_next() will return the node after this prefix
814 * in the tree.
815 */
816 prefix_copy (&iter->pause_prefix, &iter->current->p);
817 route_unlock_node (iter->current);
818 iter->current = NULL;
819 iter->state = RT_ITER_STATE_PAUSED;
820 return;
821
822 default:
823 assert (0);
824 }
825
826 }
827
828 /*
829 * route_table_iter_cleanup
830 *
831 * Release any resources held by the iterator.
832 */
833 void
834 route_table_iter_cleanup (route_table_iter_t * iter)
835 {
836 if (iter->state == RT_ITER_STATE_ITERATING)
837 {
838 route_unlock_node (iter->current);
839 iter->current = NULL;
840 }
841 assert (!iter->current);
842
843 /*
844 * Set the state to RT_ITER_STATE_DONE to make any
845 * route_table_iter_next() calls on this iterator return NULL.
846 */
847 iter->state = RT_ITER_STATE_DONE;
848 }