]> git.proxmox.com Git - mirror_frr.git/blob - lib/table.c
Merge remote-tracking branch 'origin/stable/3.0'
[mirror_frr.git] / lib / table.c
1 /*
2 * Routing Table functions.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #include "prefix.h"
25 #include "table.h"
26 #include "memory.h"
27 #include "sockunion.h"
28
29 DEFINE_MTYPE( LIB, ROUTE_TABLE, "Route table")
30 DEFINE_MTYPE( LIB, ROUTE_NODE, "Route node")
31
32 static void route_node_delete (struct route_node *);
33 static void route_table_free (struct route_table *);
34
35
36 /*
37 * route_table_init_with_delegate
38 */
39 struct route_table *
40 route_table_init_with_delegate (route_table_delegate_t *delegate)
41 {
42 struct route_table *rt;
43
44 rt = XCALLOC (MTYPE_ROUTE_TABLE, sizeof (struct route_table));
45 rt->delegate = delegate;
46 return rt;
47 }
48
49 void
50 route_table_finish (struct route_table *rt)
51 {
52 route_table_free (rt);
53 }
54
55 /* Allocate new route node. */
56 static struct route_node *
57 route_node_new (struct route_table *table)
58 {
59 return table->delegate->create_node (table->delegate, table);
60 }
61
62 /* Allocate new route node with prefix set. */
63 static struct route_node *
64 route_node_set (struct route_table *table, const struct prefix *prefix)
65 {
66 struct route_node *node;
67
68 node = route_node_new (table);
69
70 prefix_copy (&node->p, prefix);
71 node->table = table;
72
73 return node;
74 }
75
76 /* Free route node. */
77 static void
78 route_node_free (struct route_table *table, struct route_node *node)
79 {
80 if (table->cleanup)
81 table->cleanup(table, node);
82 table->delegate->destroy_node (table->delegate, table, node);
83 }
84
85 /* Free route table. */
86 static void
87 route_table_free (struct route_table *rt)
88 {
89 struct route_node *tmp_node;
90 struct route_node *node;
91
92 if (rt == NULL)
93 return;
94
95 node = rt->top;
96
97 /* Bulk deletion of nodes remaining in this table. This function is not
98 called until workers have completed their dependency on this table.
99 A final route_unlock_node() will not be called for these nodes. */
100 while (node)
101 {
102 if (node->l_left)
103 {
104 node = node->l_left;
105 continue;
106 }
107
108 if (node->l_right)
109 {
110 node = node->l_right;
111 continue;
112 }
113
114 tmp_node = node;
115 node = node->parent;
116
117 tmp_node->table->count--;
118 tmp_node->lock = 0; /* to cause assert if unlocked after this */
119 route_node_free (rt, tmp_node);
120
121 if (node != NULL)
122 {
123 if (node->l_left == tmp_node)
124 node->l_left = NULL;
125 else
126 node->l_right = NULL;
127 }
128 else
129 {
130 break;
131 }
132 }
133
134 assert (rt->count == 0);
135
136 XFREE (MTYPE_ROUTE_TABLE, rt);
137 return;
138 }
139
140 /* Utility mask array. */
141 static const u_char maskbit[] =
142 {
143 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff
144 };
145
146 /* Common prefix route genaration. */
147 static void
148 route_common (const struct prefix *n, const struct prefix *p, struct prefix *new)
149 {
150 int i;
151 u_char diff;
152 u_char mask;
153
154 const u_char *np = (const u_char *)&n->u.prefix;
155 const u_char *pp = (const u_char *)&p->u.prefix;
156 u_char *newp = (u_char *)&new->u.prefix;
157
158 for (i = 0; i < p->prefixlen / 8; i++)
159 {
160 if (np[i] == pp[i])
161 newp[i] = np[i];
162 else
163 break;
164 }
165
166 new->prefixlen = i * 8;
167
168 if (new->prefixlen != p->prefixlen)
169 {
170 diff = np[i] ^ pp[i];
171 mask = 0x80;
172 while (new->prefixlen < p->prefixlen && !(mask & diff))
173 {
174 mask >>= 1;
175 new->prefixlen++;
176 }
177 newp[i] = np[i] & maskbit[new->prefixlen % 8];
178 }
179 }
180
181 static void
182 set_link (struct route_node *node, struct route_node *new)
183 {
184 unsigned int bit = prefix_bit (&new->p.u.prefix, node->p.prefixlen);
185
186 node->link[bit] = new;
187 new->parent = node;
188 }
189
190 /* Lock node. */
191 struct route_node *
192 route_lock_node (struct route_node *node)
193 {
194 node->lock++;
195 return node;
196 }
197
198 /* Unlock node. */
199 void
200 route_unlock_node (struct route_node *node)
201 {
202 assert (node->lock > 0);
203 node->lock--;
204
205 if (node->lock == 0)
206 route_node_delete (node);
207 }
208
209 /* Find matched prefix. */
210 struct route_node *
211 route_node_match (const struct route_table *table, const struct prefix *p)
212 {
213 struct route_node *node;
214 struct route_node *matched;
215
216 matched = NULL;
217 node = table->top;
218
219 /* Walk down tree. If there is matched route then store it to
220 matched. */
221 while (node && node->p.prefixlen <= p->prefixlen &&
222 prefix_match (&node->p, p))
223 {
224 if (node->info)
225 matched = node;
226
227 if (node->p.prefixlen == p->prefixlen)
228 break;
229
230 node = node->link[prefix_bit(&p->u.prefix, node->p.prefixlen)];
231 }
232
233 /* If matched route found, return it. */
234 if (matched)
235 return route_lock_node (matched);
236
237 return NULL;
238 }
239
240 struct route_node *
241 route_node_match_ipv4 (const struct route_table *table,
242 const struct in_addr *addr)
243 {
244 struct prefix_ipv4 p;
245
246 memset (&p, 0, sizeof (struct prefix_ipv4));
247 p.family = AF_INET;
248 p.prefixlen = IPV4_MAX_PREFIXLEN;
249 p.prefix = *addr;
250
251 return route_node_match (table, (struct prefix *) &p);
252 }
253
254 struct route_node *
255 route_node_match_ipv6 (const struct route_table *table,
256 const struct in6_addr *addr)
257 {
258 struct prefix_ipv6 p;
259
260 memset (&p, 0, sizeof (struct prefix_ipv6));
261 p.family = AF_INET6;
262 p.prefixlen = IPV6_MAX_PREFIXLEN;
263 p.prefix = *addr;
264
265 return route_node_match (table, (struct prefix *) &p);
266 }
267
268 /* Lookup same prefix node. Return NULL when we can't find route. */
269 struct route_node *
270 route_node_lookup (const struct route_table *table, const struct prefix *p)
271 {
272 struct route_node *node;
273 u_char prefixlen = p->prefixlen;
274 const u_char *prefix = &p->u.prefix;
275
276 node = table->top;
277
278 while (node && node->p.prefixlen <= prefixlen &&
279 prefix_match (&node->p, p))
280 {
281 if (node->p.prefixlen == prefixlen)
282 return node->info ? route_lock_node (node) : NULL;
283
284 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
285 }
286
287 return NULL;
288 }
289
290 /* Lookup same prefix node. Return NULL when we can't find route. */
291 struct route_node *
292 route_node_lookup_maynull (const struct route_table *table, const struct prefix *p)
293 {
294 struct route_node *node;
295 u_char prefixlen = p->prefixlen;
296 const u_char *prefix = &p->u.prefix;
297
298 node = table->top;
299
300 while (node && node->p.prefixlen <= prefixlen &&
301 prefix_match (&node->p, p))
302 {
303 if (node->p.prefixlen == prefixlen)
304 return route_lock_node (node);
305
306 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
307 }
308
309 return NULL;
310 }
311
312 /* Add node to routing table. */
313 struct route_node *
314 route_node_get (struct route_table *const table, const struct prefix *p)
315 {
316 struct route_node *new;
317 struct route_node *node;
318 struct route_node *match;
319 u_char prefixlen = p->prefixlen;
320 const u_char *prefix = &p->u.prefix;
321
322 match = NULL;
323 node = table->top;
324 while (node && node->p.prefixlen <= prefixlen &&
325 prefix_match (&node->p, p))
326 {
327 if (node->p.prefixlen == prefixlen)
328 return route_lock_node (node);
329
330 match = node;
331 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
332 }
333
334 if (node == NULL)
335 {
336 new = route_node_set (table, p);
337 if (match)
338 set_link (match, new);
339 else
340 table->top = new;
341 }
342 else
343 {
344 new = route_node_new (table);
345 route_common (&node->p, p, &new->p);
346 new->p.family = p->family;
347 new->table = table;
348 set_link (new, node);
349
350 if (match)
351 set_link (match, new);
352 else
353 table->top = new;
354
355 if (new->p.prefixlen != p->prefixlen)
356 {
357 match = new;
358 new = route_node_set (table, p);
359 set_link (match, new);
360 table->count++;
361 }
362 }
363 table->count++;
364 route_lock_node (new);
365
366 return new;
367 }
368
369 /* Delete node from the routing table. */
370 static void
371 route_node_delete (struct route_node *node)
372 {
373 struct route_node *child;
374 struct route_node *parent;
375
376 assert (node->lock == 0);
377 assert (node->info == NULL);
378
379 if (node->l_left && node->l_right)
380 return;
381
382 if (node->l_left)
383 child = node->l_left;
384 else
385 child = node->l_right;
386
387 parent = node->parent;
388
389 if (child)
390 child->parent = parent;
391
392 if (parent)
393 {
394 if (parent->l_left == node)
395 parent->l_left = child;
396 else
397 parent->l_right = child;
398 }
399 else
400 node->table->top = child;
401
402 node->table->count--;
403
404 /* WARNING: FRAGILE CODE!
405 * route_node_free may have the side effect of free'ing the entire table.
406 * this is permitted only if table->count got decremented to zero above,
407 * because in that case parent will also be NULL, so that we won't try to
408 * delete a now-stale parent below.
409 *
410 * cf. srcdest_srcnode_destroy() in zebra/zebra_rib.c */
411
412 route_node_free (node->table, node);
413
414 /* If parent node is stub then delete it also. */
415 if (parent && parent->lock == 0)
416 route_node_delete (parent);
417 }
418
419 /* Get fist node and lock it. This function is useful when one want
420 to lookup all the node exist in the routing table. */
421 struct route_node *
422 route_top (struct route_table *table)
423 {
424 /* If there is no node in the routing table return NULL. */
425 if (table->top == NULL)
426 return NULL;
427
428 /* Lock the top node and return it. */
429 route_lock_node (table->top);
430 return table->top;
431 }
432
433 /* Unlock current node and lock next node then return it. */
434 struct route_node *
435 route_next (struct route_node *node)
436 {
437 struct route_node *next;
438 struct route_node *start;
439
440 /* Node may be deleted from route_unlock_node so we have to preserve
441 next node's pointer. */
442
443 if (node->l_left)
444 {
445 next = node->l_left;
446 route_lock_node (next);
447 route_unlock_node (node);
448 return next;
449 }
450 if (node->l_right)
451 {
452 next = node->l_right;
453 route_lock_node (next);
454 route_unlock_node (node);
455 return next;
456 }
457
458 start = node;
459 while (node->parent)
460 {
461 if (node->parent->l_left == node && node->parent->l_right)
462 {
463 next = node->parent->l_right;
464 route_lock_node (next);
465 route_unlock_node (start);
466 return next;
467 }
468 node = node->parent;
469 }
470 route_unlock_node (start);
471 return NULL;
472 }
473
474 /* Unlock current node and lock next node until limit. */
475 struct route_node *
476 route_next_until (struct route_node *node, struct route_node *limit)
477 {
478 struct route_node *next;
479 struct route_node *start;
480
481 /* Node may be deleted from route_unlock_node so we have to preserve
482 next node's pointer. */
483
484 if (node->l_left)
485 {
486 next = node->l_left;
487 route_lock_node (next);
488 route_unlock_node (node);
489 return next;
490 }
491 if (node->l_right)
492 {
493 next = node->l_right;
494 route_lock_node (next);
495 route_unlock_node (node);
496 return next;
497 }
498
499 start = node;
500 while (node->parent && node != limit)
501 {
502 if (node->parent->l_left == node && node->parent->l_right)
503 {
504 next = node->parent->l_right;
505 route_lock_node (next);
506 route_unlock_node (start);
507 return next;
508 }
509 node = node->parent;
510 }
511 route_unlock_node (start);
512 return NULL;
513 }
514
515 unsigned long
516 route_table_count (const struct route_table *table)
517 {
518 return table->count;
519 }
520
521 /**
522 * route_node_create
523 *
524 * Default function for creating a route node.
525 */
526 struct route_node *
527 route_node_create (route_table_delegate_t *delegate,
528 struct route_table *table)
529 {
530 struct route_node *node;
531 node = XCALLOC (MTYPE_ROUTE_NODE, sizeof (struct route_node));
532 return node;
533 }
534
535 /**
536 * route_node_destroy
537 *
538 * Default function for destroying a route node.
539 */
540 void
541 route_node_destroy (route_table_delegate_t *delegate,
542 struct route_table *table, struct route_node *node)
543 {
544 XFREE (MTYPE_ROUTE_NODE, node);
545 }
546
547 /*
548 * Default delegate.
549 */
550 static route_table_delegate_t default_delegate = {
551 .create_node = route_node_create,
552 .destroy_node = route_node_destroy
553 };
554
555 route_table_delegate_t *
556 route_table_get_default_delegate(void)
557 {
558 return &default_delegate;
559 }
560
561 /*
562 * route_table_init
563 */
564 struct route_table *
565 route_table_init (void)
566 {
567 return route_table_init_with_delegate (&default_delegate);
568 }
569
570 /**
571 * route_table_prefix_iter_cmp
572 *
573 * Compare two prefixes according to the order in which they appear in
574 * an iteration over a tree.
575 *
576 * @return -1 if p1 occurs before p2 (p1 < p2)
577 * 0 if the prefixes are identical (p1 == p2)
578 * +1 if p1 occurs after p2 (p1 > p2)
579 */
580 int
581 route_table_prefix_iter_cmp (struct prefix *p1, struct prefix *p2)
582 {
583 struct prefix common_space;
584 struct prefix *common = &common_space;
585
586 if (p1->prefixlen <= p2->prefixlen)
587 {
588 if (prefix_match (p1, p2))
589 {
590
591 /*
592 * p1 contains p2, or is equal to it.
593 */
594 return (p1->prefixlen == p2->prefixlen) ? 0 : -1;
595 }
596 }
597 else
598 {
599
600 /*
601 * Check if p2 contains p1.
602 */
603 if (prefix_match (p2, p1))
604 return 1;
605 }
606
607 route_common (p1, p2, common);
608 assert (common->prefixlen < p1->prefixlen);
609 assert (common->prefixlen < p2->prefixlen);
610
611 /*
612 * Both prefixes are longer than the common prefix.
613 *
614 * We need to check the bit after the common prefixlen to determine
615 * which one comes later.
616 */
617 if (prefix_bit (&p1->u.prefix, common->prefixlen))
618 {
619
620 /*
621 * We branch to the right to get to p1 from the common prefix.
622 */
623 assert (!prefix_bit (&p2->u.prefix, common->prefixlen));
624 return 1;
625 }
626
627 /*
628 * We branch to the right to get to p2 from the common prefix.
629 */
630 assert (prefix_bit (&p2->u.prefix, common->prefixlen));
631 return -1;
632 }
633
634 /*
635 * route_get_subtree_next
636 *
637 * Helper function that returns the first node that follows the nodes
638 * in the sub-tree under 'node' in iteration order.
639 */
640 static struct route_node *
641 route_get_subtree_next (struct route_node *node)
642 {
643 while (node->parent)
644 {
645 if (node->parent->l_left == node && node->parent->l_right)
646 return node->parent->l_right;
647
648 node = node->parent;
649 }
650
651 return NULL;
652 }
653
654 /**
655 * route_table_get_next_internal
656 *
657 * Helper function to find the node that occurs after the given prefix in
658 * order of iteration.
659 *
660 * @see route_table_get_next
661 */
662 static struct route_node *
663 route_table_get_next_internal (const struct route_table *table,
664 struct prefix *p)
665 {
666 struct route_node *node, *tmp_node;
667 int cmp;
668
669 node = table->top;
670
671 while (node)
672 {
673 int match;
674
675 if (node->p.prefixlen < p->prefixlen)
676 match = prefix_match (&node->p, p);
677 else
678 match = prefix_match (p, &node->p);
679
680 if (match)
681 {
682 if (node->p.prefixlen == p->prefixlen)
683 {
684
685 /*
686 * The prefix p exists in the tree, just return the next
687 * node.
688 */
689 route_lock_node (node);
690 node = route_next (node);
691 if (node)
692 route_unlock_node (node);
693
694 return (node);
695 }
696
697 if (node->p.prefixlen > p->prefixlen)
698 {
699
700 /*
701 * Node is in the subtree of p, and hence greater than p.
702 */
703 return node;
704 }
705
706 /*
707 * p is in the sub-tree under node.
708 */
709 tmp_node = node->link[prefix_bit (&p->u.prefix, node->p.prefixlen)];
710
711 if (tmp_node)
712 {
713 node = tmp_node;
714 continue;
715 }
716
717 /*
718 * There are no nodes in the direction where p should be. If
719 * node has a right child, then it must be greater than p.
720 */
721 if (node->l_right)
722 return node->l_right;
723
724 /*
725 * No more children to follow, go upwards looking for the next
726 * node.
727 */
728 return route_get_subtree_next (node);
729 }
730
731 /*
732 * Neither node prefix nor 'p' contains the other.
733 */
734 cmp = route_table_prefix_iter_cmp (&node->p, p);
735 if (cmp > 0)
736 {
737
738 /*
739 * Node follows p in iteration order. Return it.
740 */
741 return node;
742 }
743
744 assert (cmp < 0);
745
746 /*
747 * Node and the subtree under it come before prefix p in
748 * iteration order. Prefix p and its sub-tree are not present in
749 * the tree. Go upwards and find the first node that follows the
750 * subtree. That node will also succeed p.
751 */
752 return route_get_subtree_next (node);
753 }
754
755 return NULL;
756 }
757
758 /**
759 * route_table_get_next
760 *
761 * Find the node that occurs after the given prefix in order of
762 * iteration.
763 */
764 struct route_node *
765 route_table_get_next (const struct route_table *table, struct prefix *p)
766 {
767 struct route_node *node;
768
769 node = route_table_get_next_internal (table, p);
770 if (node)
771 {
772 assert (route_table_prefix_iter_cmp (&node->p, p) > 0);
773 route_lock_node (node);
774 }
775 return node;
776 }
777
778 /*
779 * route_table_iter_init
780 */
781 void
782 route_table_iter_init (route_table_iter_t * iter, struct route_table *table)
783 {
784 memset (iter, 0, sizeof (*iter));
785 iter->state = RT_ITER_STATE_INIT;
786 iter->table = table;
787 }
788
789 /*
790 * route_table_iter_pause
791 *
792 * Pause an iteration over the table. This allows the iteration to be
793 * resumed point after arbitrary additions/deletions from the table.
794 * An iteration can be resumed by just calling route_table_iter_next()
795 * on the iterator.
796 */
797 void
798 route_table_iter_pause (route_table_iter_t * iter)
799 {
800 switch (iter->state)
801 {
802
803 case RT_ITER_STATE_INIT:
804 case RT_ITER_STATE_PAUSED:
805 case RT_ITER_STATE_DONE:
806 return;
807
808 case RT_ITER_STATE_ITERATING:
809
810 /*
811 * Save the prefix that we are currently at. The next call to
812 * route_table_iter_next() will return the node after this prefix
813 * in the tree.
814 */
815 prefix_copy (&iter->pause_prefix, &iter->current->p);
816 route_unlock_node (iter->current);
817 iter->current = NULL;
818 iter->state = RT_ITER_STATE_PAUSED;
819 return;
820
821 default:
822 assert (0);
823 }
824
825 }
826
827 /*
828 * route_table_iter_cleanup
829 *
830 * Release any resources held by the iterator.
831 */
832 void
833 route_table_iter_cleanup (route_table_iter_t * iter)
834 {
835 if (iter->state == RT_ITER_STATE_ITERATING)
836 {
837 route_unlock_node (iter->current);
838 iter->current = NULL;
839 }
840 assert (!iter->current);
841
842 /*
843 * Set the state to RT_ITER_STATE_DONE to make any
844 * route_table_iter_next() calls on this iterator return NULL.
845 */
846 iter->state = RT_ITER_STATE_DONE;
847 }