]> git.proxmox.com Git - mirror_frr.git/blob - lib/table.c
lib: call apply_mask in route_node_get
[mirror_frr.git] / lib / table.c
1 /*
2 * Routing Table functions.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #define FRR_COMPILING_TABLE_C
23
24 #include <zebra.h>
25
26 #include "prefix.h"
27 #include "table.h"
28 #include "memory.h"
29 #include "sockunion.h"
30
31 DEFINE_MTYPE(LIB, ROUTE_TABLE, "Route table")
32 DEFINE_MTYPE(LIB, ROUTE_NODE, "Route node")
33
34 static void route_table_free(struct route_table *);
35
36 static int route_table_hash_cmp(const void *a, const void *b)
37 {
38 const struct prefix *pa = a, *pb = b;
39 return prefix_cmp(pa, pb) == 0;
40 }
41
42 /*
43 * route_table_init_with_delegate
44 */
45 struct route_table *
46 route_table_init_with_delegate(route_table_delegate_t *delegate)
47 {
48 struct route_table *rt;
49
50 rt = XCALLOC(MTYPE_ROUTE_TABLE, sizeof(struct route_table));
51 rt->delegate = delegate;
52 rt->hash = hash_create(prefix_hash_key, route_table_hash_cmp,
53 "route table hash");
54 return rt;
55 }
56
57 void route_table_finish(struct route_table *rt)
58 {
59 route_table_free(rt);
60 }
61
62 /* Allocate new route node. */
63 static struct route_node *route_node_new(struct route_table *table)
64 {
65 return table->delegate->create_node(table->delegate, table);
66 }
67
68 /* Allocate new route node with prefix set. */
69 static struct route_node *route_node_set(struct route_table *table,
70 const struct prefix *prefix)
71 {
72 struct route_node *node, *inserted;
73
74 node = route_node_new(table);
75
76 prefix_copy(&node->p, prefix);
77 apply_mask(&node->p);
78 node->table = table;
79
80 inserted = hash_get(node->table->hash, node, hash_alloc_intern);
81 assert(inserted == node);
82
83 return node;
84 }
85
86 /* Free route node. */
87 static void route_node_free(struct route_table *table, struct route_node *node)
88 {
89 if (table->cleanup)
90 table->cleanup(table, node);
91 table->delegate->destroy_node(table->delegate, table, node);
92 }
93
94 /* Free route table. */
95 static void route_table_free(struct route_table *rt)
96 {
97 struct route_node *tmp_node;
98 struct route_node *node;
99
100 if (rt == NULL)
101 return;
102
103 hash_clean(rt->hash, NULL);
104 hash_free(rt->hash);
105
106 node = rt->top;
107
108 /* Bulk deletion of nodes remaining in this table. This function is not
109 called until workers have completed their dependency on this table.
110 A final route_unlock_node() will not be called for these nodes. */
111 while (node) {
112 if (node->l_left) {
113 node = node->l_left;
114 continue;
115 }
116
117 if (node->l_right) {
118 node = node->l_right;
119 continue;
120 }
121
122 tmp_node = node;
123 node = node->parent;
124
125 tmp_node->table->count--;
126 tmp_node->lock = 0; /* to cause assert if unlocked after this */
127 route_node_free(rt, tmp_node);
128
129 if (node != NULL) {
130 if (node->l_left == tmp_node)
131 node->l_left = NULL;
132 else
133 node->l_right = NULL;
134 } else {
135 break;
136 }
137 }
138
139 assert(rt->count == 0);
140
141 XFREE(MTYPE_ROUTE_TABLE, rt);
142 return;
143 }
144
145 /* Utility mask array. */
146 static const u_char maskbit[] = {0x00, 0x80, 0xc0, 0xe0, 0xf0,
147 0xf8, 0xfc, 0xfe, 0xff};
148
149 /* Common prefix route genaration. */
150 static void route_common(const struct prefix *n, const struct prefix *p,
151 struct prefix *new)
152 {
153 int i;
154 u_char diff;
155 u_char mask;
156
157 const u_char *np = (const u_char *)&n->u.prefix;
158 const u_char *pp = (const u_char *)&p->u.prefix;
159 u_char *newp = (u_char *)&new->u.prefix;
160
161 for (i = 0; i < p->prefixlen / 8; i++) {
162 if (np[i] == pp[i])
163 newp[i] = np[i];
164 else
165 break;
166 }
167
168 new->prefixlen = i * 8;
169
170 if (new->prefixlen != p->prefixlen) {
171 diff = np[i] ^ pp[i];
172 mask = 0x80;
173 while (new->prefixlen < p->prefixlen && !(mask & diff)) {
174 mask >>= 1;
175 new->prefixlen++;
176 }
177 newp[i] = np[i] & maskbit[new->prefixlen % 8];
178 }
179 }
180
181 static void set_link(struct route_node *node, struct route_node *new)
182 {
183 unsigned int bit = prefix_bit(&new->p.u.prefix, node->p.prefixlen);
184
185 node->link[bit] = new;
186 new->parent = node;
187 }
188
189 /* Find matched prefix. */
190 struct route_node *route_node_match(const struct route_table *table,
191 union prefixconstptr pu)
192 {
193 const struct prefix *p = pu.p;
194 struct route_node *node;
195 struct route_node *matched;
196
197 matched = NULL;
198 node = table->top;
199
200 /* Walk down tree. If there is matched route then store it to
201 matched. */
202 while (node && node->p.prefixlen <= p->prefixlen
203 && prefix_match(&node->p, p)) {
204 if (node->info)
205 matched = node;
206
207 if (node->p.prefixlen == p->prefixlen)
208 break;
209
210 node = node->link[prefix_bit(&p->u.prefix, node->p.prefixlen)];
211 }
212
213 /* If matched route found, return it. */
214 if (matched)
215 return route_lock_node(matched);
216
217 return NULL;
218 }
219
220 struct route_node *route_node_match_ipv4(const struct route_table *table,
221 const struct in_addr *addr)
222 {
223 struct prefix_ipv4 p;
224
225 memset(&p, 0, sizeof(struct prefix_ipv4));
226 p.family = AF_INET;
227 p.prefixlen = IPV4_MAX_PREFIXLEN;
228 p.prefix = *addr;
229
230 return route_node_match(table, (struct prefix *)&p);
231 }
232
233 struct route_node *route_node_match_ipv6(const struct route_table *table,
234 const struct in6_addr *addr)
235 {
236 struct prefix_ipv6 p;
237
238 memset(&p, 0, sizeof(struct prefix_ipv6));
239 p.family = AF_INET6;
240 p.prefixlen = IPV6_MAX_PREFIXLEN;
241 p.prefix = *addr;
242
243 return route_node_match(table, (struct prefix *)&p);
244 }
245
246 /* Lookup same prefix node. Return NULL when we can't find route. */
247 struct route_node *route_node_lookup(const struct route_table *table,
248 union prefixconstptr pu)
249 {
250 struct prefix p;
251 struct route_node *node;
252 prefix_copy(&p, pu.p);
253 apply_mask(&p);
254
255 node = hash_get(table->hash, (void *)&p, NULL);
256 return (node && node->info) ? route_lock_node(node) : NULL;
257 }
258
259 /* Lookup same prefix node. Return NULL when we can't find route. */
260 struct route_node *route_node_lookup_maynull(const struct route_table *table,
261 union prefixconstptr pu)
262 {
263 struct prefix p;
264 struct route_node *node;
265 prefix_copy(&p, pu.p);
266 apply_mask(&p);
267
268 node = hash_get(table->hash, (void *)&p, NULL);
269 return node ? route_lock_node(node) : NULL;
270 }
271
272 /* Add node to routing table. */
273 struct route_node *route_node_get(struct route_table *const table,
274 union prefixconstptr pu)
275 {
276 const struct prefix *p = pu.p;
277 struct route_node *new;
278 struct route_node *node;
279 struct route_node *match;
280 struct route_node *inserted;
281 u_char prefixlen = p->prefixlen;
282 const u_char *prefix = &p->u.prefix;
283
284 apply_mask((struct prefix *)&p);
285 node = hash_get(table->hash, (void *)p, NULL);
286 if (node && node->info)
287 return route_lock_node(node);
288
289 match = NULL;
290 node = table->top;
291 while (node && node->p.prefixlen <= prefixlen
292 && prefix_match(&node->p, p)) {
293 if (node->p.prefixlen == prefixlen)
294 return route_lock_node(node);
295
296 match = node;
297 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
298 }
299
300 if (node == NULL) {
301 new = route_node_set(table, p);
302 if (match)
303 set_link(match, new);
304 else
305 table->top = new;
306 } else {
307 new = route_node_new(table);
308 route_common(&node->p, p, &new->p);
309 new->p.family = p->family;
310 new->table = table;
311 set_link(new, node);
312 inserted = hash_get(node->table->hash, new, hash_alloc_intern);
313 assert(inserted == new);
314
315 if (match)
316 set_link(match, new);
317 else
318 table->top = new;
319
320 if (new->p.prefixlen != p->prefixlen) {
321 match = new;
322 new = route_node_set(table, p);
323 set_link(match, new);
324 table->count++;
325 }
326 }
327 table->count++;
328 route_lock_node(new);
329
330 return new;
331 }
332
333 /* Delete node from the routing table. */
334 void route_node_delete(struct route_node *node)
335 {
336 struct route_node *child;
337 struct route_node *parent;
338
339 assert(node->lock == 0);
340 assert(node->info == NULL);
341
342 if (node->l_left && node->l_right)
343 return;
344
345 if (node->l_left)
346 child = node->l_left;
347 else
348 child = node->l_right;
349
350 parent = node->parent;
351
352 if (child)
353 child->parent = parent;
354
355 if (parent) {
356 if (parent->l_left == node)
357 parent->l_left = child;
358 else
359 parent->l_right = child;
360 } else
361 node->table->top = child;
362
363 node->table->count--;
364
365 hash_release(node->table->hash, node);
366
367 /* WARNING: FRAGILE CODE!
368 * route_node_free may have the side effect of free'ing the entire
369 * table.
370 * this is permitted only if table->count got decremented to zero above,
371 * because in that case parent will also be NULL, so that we won't try
372 * to
373 * delete a now-stale parent below.
374 *
375 * cf. srcdest_srcnode_destroy() in zebra/zebra_rib.c */
376
377 route_node_free(node->table, node);
378
379 /* If parent node is stub then delete it also. */
380 if (parent && parent->lock == 0)
381 route_node_delete(parent);
382 }
383
384 /* Get fist node and lock it. This function is useful when one want
385 to lookup all the node exist in the routing table. */
386 struct route_node *route_top(struct route_table *table)
387 {
388 /* If there is no node in the routing table return NULL. */
389 if (table->top == NULL)
390 return NULL;
391
392 /* Lock the top node and return it. */
393 route_lock_node(table->top);
394 return table->top;
395 }
396
397 /* Unlock current node and lock next node then return it. */
398 struct route_node *route_next(struct route_node *node)
399 {
400 struct route_node *next;
401 struct route_node *start;
402
403 /* Node may be deleted from route_unlock_node so we have to preserve
404 next node's pointer. */
405
406 if (node->l_left) {
407 next = node->l_left;
408 route_lock_node(next);
409 route_unlock_node(node);
410 return next;
411 }
412 if (node->l_right) {
413 next = node->l_right;
414 route_lock_node(next);
415 route_unlock_node(node);
416 return next;
417 }
418
419 start = node;
420 while (node->parent) {
421 if (node->parent->l_left == node && node->parent->l_right) {
422 next = node->parent->l_right;
423 route_lock_node(next);
424 route_unlock_node(start);
425 return next;
426 }
427 node = node->parent;
428 }
429 route_unlock_node(start);
430 return NULL;
431 }
432
433 /* Unlock current node and lock next node until limit. */
434 struct route_node *route_next_until(struct route_node *node,
435 const struct route_node *limit)
436 {
437 struct route_node *next;
438 struct route_node *start;
439
440 /* Node may be deleted from route_unlock_node so we have to preserve
441 next node's pointer. */
442
443 if (node->l_left) {
444 next = node->l_left;
445 route_lock_node(next);
446 route_unlock_node(node);
447 return next;
448 }
449 if (node->l_right) {
450 next = node->l_right;
451 route_lock_node(next);
452 route_unlock_node(node);
453 return next;
454 }
455
456 start = node;
457 while (node->parent && node != limit) {
458 if (node->parent->l_left == node && node->parent->l_right) {
459 next = node->parent->l_right;
460 route_lock_node(next);
461 route_unlock_node(start);
462 return next;
463 }
464 node = node->parent;
465 }
466 route_unlock_node(start);
467 return NULL;
468 }
469
470 unsigned long route_table_count(const struct route_table *table)
471 {
472 return table->count;
473 }
474
475 /**
476 * route_node_create
477 *
478 * Default function for creating a route node.
479 */
480 struct route_node *route_node_create(route_table_delegate_t *delegate,
481 struct route_table *table)
482 {
483 struct route_node *node;
484 node = XCALLOC(MTYPE_ROUTE_NODE, sizeof(struct route_node));
485 return node;
486 }
487
488 /**
489 * route_node_destroy
490 *
491 * Default function for destroying a route node.
492 */
493 void route_node_destroy(route_table_delegate_t *delegate,
494 struct route_table *table, struct route_node *node)
495 {
496 XFREE(MTYPE_ROUTE_NODE, node);
497 }
498
499 /*
500 * Default delegate.
501 */
502 static route_table_delegate_t default_delegate = {
503 .create_node = route_node_create,
504 .destroy_node = route_node_destroy};
505
506 route_table_delegate_t *route_table_get_default_delegate(void)
507 {
508 return &default_delegate;
509 }
510
511 /*
512 * route_table_init
513 */
514 struct route_table *route_table_init(void)
515 {
516 return route_table_init_with_delegate(&default_delegate);
517 }
518
519 /**
520 * route_table_prefix_iter_cmp
521 *
522 * Compare two prefixes according to the order in which they appear in
523 * an iteration over a tree.
524 *
525 * @return -1 if p1 occurs before p2 (p1 < p2)
526 * 0 if the prefixes are identical (p1 == p2)
527 * +1 if p1 occurs after p2 (p1 > p2)
528 */
529 int route_table_prefix_iter_cmp(const struct prefix *p1,
530 const struct prefix *p2)
531 {
532 struct prefix common_space;
533 struct prefix *common = &common_space;
534
535 if (p1->prefixlen <= p2->prefixlen) {
536 if (prefix_match(p1, p2)) {
537
538 /*
539 * p1 contains p2, or is equal to it.
540 */
541 return (p1->prefixlen == p2->prefixlen) ? 0 : -1;
542 }
543 } else {
544
545 /*
546 * Check if p2 contains p1.
547 */
548 if (prefix_match(p2, p1))
549 return 1;
550 }
551
552 route_common(p1, p2, common);
553 assert(common->prefixlen < p1->prefixlen);
554 assert(common->prefixlen < p2->prefixlen);
555
556 /*
557 * Both prefixes are longer than the common prefix.
558 *
559 * We need to check the bit after the common prefixlen to determine
560 * which one comes later.
561 */
562 if (prefix_bit(&p1->u.prefix, common->prefixlen)) {
563
564 /*
565 * We branch to the right to get to p1 from the common prefix.
566 */
567 assert(!prefix_bit(&p2->u.prefix, common->prefixlen));
568 return 1;
569 }
570
571 /*
572 * We branch to the right to get to p2 from the common prefix.
573 */
574 assert(prefix_bit(&p2->u.prefix, common->prefixlen));
575 return -1;
576 }
577
578 /*
579 * route_get_subtree_next
580 *
581 * Helper function that returns the first node that follows the nodes
582 * in the sub-tree under 'node' in iteration order.
583 */
584 static struct route_node *route_get_subtree_next(struct route_node *node)
585 {
586 while (node->parent) {
587 if (node->parent->l_left == node && node->parent->l_right)
588 return node->parent->l_right;
589
590 node = node->parent;
591 }
592
593 return NULL;
594 }
595
596 /**
597 * route_table_get_next_internal
598 *
599 * Helper function to find the node that occurs after the given prefix in
600 * order of iteration.
601 *
602 * @see route_table_get_next
603 */
604 static struct route_node *
605 route_table_get_next_internal(const struct route_table *table,
606 const struct prefix *p)
607 {
608 struct route_node *node, *tmp_node;
609 int cmp;
610
611 node = table->top;
612
613 while (node) {
614 int match;
615
616 if (node->p.prefixlen < p->prefixlen)
617 match = prefix_match(&node->p, p);
618 else
619 match = prefix_match(p, &node->p);
620
621 if (match) {
622 if (node->p.prefixlen == p->prefixlen) {
623
624 /*
625 * The prefix p exists in the tree, just return
626 * the next
627 * node.
628 */
629 route_lock_node(node);
630 node = route_next(node);
631 if (node)
632 route_unlock_node(node);
633
634 return (node);
635 }
636
637 if (node->p.prefixlen > p->prefixlen) {
638
639 /*
640 * Node is in the subtree of p, and hence
641 * greater than p.
642 */
643 return node;
644 }
645
646 /*
647 * p is in the sub-tree under node.
648 */
649 tmp_node = node->link[prefix_bit(&p->u.prefix,
650 node->p.prefixlen)];
651
652 if (tmp_node) {
653 node = tmp_node;
654 continue;
655 }
656
657 /*
658 * There are no nodes in the direction where p should
659 * be. If
660 * node has a right child, then it must be greater than
661 * p.
662 */
663 if (node->l_right)
664 return node->l_right;
665
666 /*
667 * No more children to follow, go upwards looking for
668 * the next
669 * node.
670 */
671 return route_get_subtree_next(node);
672 }
673
674 /*
675 * Neither node prefix nor 'p' contains the other.
676 */
677 cmp = route_table_prefix_iter_cmp(&node->p, p);
678 if (cmp > 0) {
679
680 /*
681 * Node follows p in iteration order. Return it.
682 */
683 return node;
684 }
685
686 assert(cmp < 0);
687
688 /*
689 * Node and the subtree under it come before prefix p in
690 * iteration order. Prefix p and its sub-tree are not present in
691 * the tree. Go upwards and find the first node that follows the
692 * subtree. That node will also succeed p.
693 */
694 return route_get_subtree_next(node);
695 }
696
697 return NULL;
698 }
699
700 /**
701 * route_table_get_next
702 *
703 * Find the node that occurs after the given prefix in order of
704 * iteration.
705 */
706 struct route_node *route_table_get_next(const struct route_table *table,
707 union prefixconstptr pu)
708 {
709 const struct prefix *p = pu.p;
710 struct route_node *node;
711
712 node = route_table_get_next_internal(table, p);
713 if (node) {
714 assert(route_table_prefix_iter_cmp(&node->p, p) > 0);
715 route_lock_node(node);
716 }
717 return node;
718 }
719
720 /*
721 * route_table_iter_init
722 */
723 void route_table_iter_init(route_table_iter_t *iter, struct route_table *table)
724 {
725 memset(iter, 0, sizeof(*iter));
726 iter->state = RT_ITER_STATE_INIT;
727 iter->table = table;
728 }
729
730 /*
731 * route_table_iter_pause
732 *
733 * Pause an iteration over the table. This allows the iteration to be
734 * resumed point after arbitrary additions/deletions from the table.
735 * An iteration can be resumed by just calling route_table_iter_next()
736 * on the iterator.
737 */
738 void route_table_iter_pause(route_table_iter_t *iter)
739 {
740 switch (iter->state) {
741
742 case RT_ITER_STATE_INIT:
743 case RT_ITER_STATE_PAUSED:
744 case RT_ITER_STATE_DONE:
745 return;
746
747 case RT_ITER_STATE_ITERATING:
748
749 /*
750 * Save the prefix that we are currently at. The next call to
751 * route_table_iter_next() will return the node after this
752 * prefix
753 * in the tree.
754 */
755 prefix_copy(&iter->pause_prefix, &iter->current->p);
756 route_unlock_node(iter->current);
757 iter->current = NULL;
758 iter->state = RT_ITER_STATE_PAUSED;
759 return;
760
761 default:
762 assert(0);
763 }
764 }
765
766 /*
767 * route_table_iter_cleanup
768 *
769 * Release any resources held by the iterator.
770 */
771 void route_table_iter_cleanup(route_table_iter_t *iter)
772 {
773 if (iter->state == RT_ITER_STATE_ITERATING) {
774 route_unlock_node(iter->current);
775 iter->current = NULL;
776 }
777 assert(!iter->current);
778
779 /*
780 * Set the state to RT_ITER_STATE_DONE to make any
781 * route_table_iter_next() calls on this iterator return NULL.
782 */
783 iter->state = RT_ITER_STATE_DONE;
784 }