]> git.proxmox.com Git - mirror_frr.git/blob - lib/table.c
Merge pull request #1955 from qlyoung/stylechecker
[mirror_frr.git] / lib / table.c
1 /*
2 * Routing Table functions.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #define FRR_COMPILING_TABLE_C
23
24 #include <zebra.h>
25
26 #include "prefix.h"
27 #include "table.h"
28 #include "memory.h"
29 #include "sockunion.h"
30
31 DEFINE_MTYPE(LIB, ROUTE_TABLE, "Route table")
32 DEFINE_MTYPE(LIB, ROUTE_NODE, "Route node")
33
34 static void route_table_free(struct route_table *);
35
36 static int route_table_hash_cmp(const void *a, const void *b)
37 {
38 const struct prefix *pa = a, *pb = b;
39 return prefix_cmp(pa, pb) == 0;
40 }
41
42 /*
43 * route_table_init_with_delegate
44 */
45 struct route_table *
46 route_table_init_with_delegate(route_table_delegate_t *delegate)
47 {
48 struct route_table *rt;
49
50 rt = XCALLOC(MTYPE_ROUTE_TABLE, sizeof(struct route_table));
51 rt->delegate = delegate;
52 rt->hash = hash_create(prefix_hash_key, route_table_hash_cmp,
53 "route table hash");
54 return rt;
55 }
56
57 void route_table_finish(struct route_table *rt)
58 {
59 route_table_free(rt);
60 }
61
62 /* Allocate new route node. */
63 static struct route_node *route_node_new(struct route_table *table)
64 {
65 return table->delegate->create_node(table->delegate, table);
66 }
67
68 /* Allocate new route node with prefix set. */
69 static struct route_node *route_node_set(struct route_table *table,
70 const struct prefix *prefix)
71 {
72 struct route_node *node, *inserted;
73
74 node = route_node_new(table);
75
76 prefix_copy(&node->p, prefix);
77 node->table = table;
78
79 inserted = hash_get(node->table->hash, node, hash_alloc_intern);
80 assert(inserted == node);
81
82 return node;
83 }
84
85 /* Free route node. */
86 static void route_node_free(struct route_table *table, struct route_node *node)
87 {
88 if (table->cleanup)
89 table->cleanup(table, node);
90 table->delegate->destroy_node(table->delegate, table, node);
91 }
92
93 /* Free route table. */
94 static void route_table_free(struct route_table *rt)
95 {
96 struct route_node *tmp_node;
97 struct route_node *node;
98
99 if (rt == NULL)
100 return;
101
102 hash_clean(rt->hash, NULL);
103 hash_free(rt->hash);
104
105 node = rt->top;
106
107 /* Bulk deletion of nodes remaining in this table. This function is not
108 called until workers have completed their dependency on this table.
109 A final route_unlock_node() will not be called for these nodes. */
110 while (node) {
111 if (node->l_left) {
112 node = node->l_left;
113 continue;
114 }
115
116 if (node->l_right) {
117 node = node->l_right;
118 continue;
119 }
120
121 tmp_node = node;
122 node = node->parent;
123
124 tmp_node->table->count--;
125 tmp_node->lock = 0; /* to cause assert if unlocked after this */
126 route_node_free(rt, tmp_node);
127
128 if (node != NULL) {
129 if (node->l_left == tmp_node)
130 node->l_left = NULL;
131 else
132 node->l_right = NULL;
133 } else {
134 break;
135 }
136 }
137
138 assert(rt->count == 0);
139
140 XFREE(MTYPE_ROUTE_TABLE, rt);
141 return;
142 }
143
144 /* Utility mask array. */
145 static const uint8_t maskbit[] = {0x00, 0x80, 0xc0, 0xe0, 0xf0,
146 0xf8, 0xfc, 0xfe, 0xff};
147
148 /* Common prefix route genaration. */
149 static void route_common(const struct prefix *n, const struct prefix *p,
150 struct prefix *new)
151 {
152 int i;
153 uint8_t diff;
154 uint8_t mask;
155
156 const uint8_t *np = (const uint8_t *)&n->u.prefix;
157 const uint8_t *pp = (const uint8_t *)&p->u.prefix;
158 uint8_t *newp = (uint8_t *)&new->u.prefix;
159
160 for (i = 0; i < p->prefixlen / 8; i++) {
161 if (np[i] == pp[i])
162 newp[i] = np[i];
163 else
164 break;
165 }
166
167 new->prefixlen = i * 8;
168
169 if (new->prefixlen != p->prefixlen) {
170 diff = np[i] ^ pp[i];
171 mask = 0x80;
172 while (new->prefixlen < p->prefixlen && !(mask & diff)) {
173 mask >>= 1;
174 new->prefixlen++;
175 }
176 newp[i] = np[i] & maskbit[new->prefixlen % 8];
177 }
178 }
179
180 static void set_link(struct route_node *node, struct route_node *new)
181 {
182 unsigned int bit = prefix_bit(&new->p.u.prefix, node->p.prefixlen);
183
184 node->link[bit] = new;
185 new->parent = node;
186 }
187
188 /* Find matched prefix. */
189 struct route_node *route_node_match(const struct route_table *table,
190 union prefixconstptr pu)
191 {
192 const struct prefix *p = pu.p;
193 struct route_node *node;
194 struct route_node *matched;
195
196 matched = NULL;
197 node = table->top;
198
199 /* Walk down tree. If there is matched route then store it to
200 matched. */
201 while (node && node->p.prefixlen <= p->prefixlen
202 && prefix_match(&node->p, p)) {
203 if (node->info)
204 matched = node;
205
206 if (node->p.prefixlen == p->prefixlen)
207 break;
208
209 node = node->link[prefix_bit(&p->u.prefix, node->p.prefixlen)];
210 }
211
212 /* If matched route found, return it. */
213 if (matched)
214 return route_lock_node(matched);
215
216 return NULL;
217 }
218
219 struct route_node *route_node_match_ipv4(const struct route_table *table,
220 const struct in_addr *addr)
221 {
222 struct prefix_ipv4 p;
223
224 memset(&p, 0, sizeof(struct prefix_ipv4));
225 p.family = AF_INET;
226 p.prefixlen = IPV4_MAX_PREFIXLEN;
227 p.prefix = *addr;
228
229 return route_node_match(table, (struct prefix *)&p);
230 }
231
232 struct route_node *route_node_match_ipv6(const struct route_table *table,
233 const struct in6_addr *addr)
234 {
235 struct prefix_ipv6 p;
236
237 memset(&p, 0, sizeof(struct prefix_ipv6));
238 p.family = AF_INET6;
239 p.prefixlen = IPV6_MAX_PREFIXLEN;
240 p.prefix = *addr;
241
242 return route_node_match(table, (struct prefix *)&p);
243 }
244
245 /* Lookup same prefix node. Return NULL when we can't find route. */
246 struct route_node *route_node_lookup(const struct route_table *table,
247 union prefixconstptr pu)
248 {
249 struct prefix p;
250 struct route_node *node;
251 prefix_copy(&p, pu.p);
252 apply_mask(&p);
253
254 node = hash_get(table->hash, (void *)&p, NULL);
255 return (node && node->info) ? route_lock_node(node) : NULL;
256 }
257
258 /* Lookup same prefix node. Return NULL when we can't find route. */
259 struct route_node *route_node_lookup_maynull(const struct route_table *table,
260 union prefixconstptr pu)
261 {
262 struct prefix p;
263 struct route_node *node;
264 prefix_copy(&p, pu.p);
265 apply_mask(&p);
266
267 node = hash_get(table->hash, (void *)&p, NULL);
268 return node ? route_lock_node(node) : NULL;
269 }
270
271 /* Add node to routing table. */
272 struct route_node *route_node_get(struct route_table *const table,
273 union prefixconstptr pu)
274 {
275 const struct prefix *p = pu.p;
276 struct route_node *new;
277 struct route_node *node;
278 struct route_node *match;
279 struct route_node *inserted;
280 uint8_t prefixlen = p->prefixlen;
281 const uint8_t *prefix = &p->u.prefix;
282
283 apply_mask((struct prefix *)p);
284 node = hash_get(table->hash, (void *)p, NULL);
285 if (node && node->info)
286 return route_lock_node(node);
287
288 match = NULL;
289 node = table->top;
290 while (node && node->p.prefixlen <= prefixlen
291 && prefix_match(&node->p, p)) {
292 if (node->p.prefixlen == prefixlen)
293 return route_lock_node(node);
294
295 match = node;
296 node = node->link[prefix_bit(prefix, node->p.prefixlen)];
297 }
298
299 if (node == NULL) {
300 new = route_node_set(table, p);
301 if (match)
302 set_link(match, new);
303 else
304 table->top = new;
305 } else {
306 new = route_node_new(table);
307 route_common(&node->p, p, &new->p);
308 new->p.family = p->family;
309 new->table = table;
310 set_link(new, node);
311 inserted = hash_get(node->table->hash, new, hash_alloc_intern);
312 assert(inserted == new);
313
314 if (match)
315 set_link(match, new);
316 else
317 table->top = new;
318
319 if (new->p.prefixlen != p->prefixlen) {
320 match = new;
321 new = route_node_set(table, p);
322 set_link(match, new);
323 table->count++;
324 }
325 }
326 table->count++;
327 route_lock_node(new);
328
329 return new;
330 }
331
332 /* Delete node from the routing table. */
333 void route_node_delete(struct route_node *node)
334 {
335 struct route_node *child;
336 struct route_node *parent;
337
338 assert(node->lock == 0);
339 assert(node->info == NULL);
340
341 if (node->l_left && node->l_right)
342 return;
343
344 if (node->l_left)
345 child = node->l_left;
346 else
347 child = node->l_right;
348
349 parent = node->parent;
350
351 if (child)
352 child->parent = parent;
353
354 if (parent) {
355 if (parent->l_left == node)
356 parent->l_left = child;
357 else
358 parent->l_right = child;
359 } else
360 node->table->top = child;
361
362 node->table->count--;
363
364 hash_release(node->table->hash, node);
365
366 /* WARNING: FRAGILE CODE!
367 * route_node_free may have the side effect of free'ing the entire
368 * table.
369 * this is permitted only if table->count got decremented to zero above,
370 * because in that case parent will also be NULL, so that we won't try
371 * to
372 * delete a now-stale parent below.
373 *
374 * cf. srcdest_srcnode_destroy() in zebra/zebra_rib.c */
375
376 route_node_free(node->table, node);
377
378 /* If parent node is stub then delete it also. */
379 if (parent && parent->lock == 0)
380 route_node_delete(parent);
381 }
382
383 /* Get fist node and lock it. This function is useful when one want
384 to lookup all the node exist in the routing table. */
385 struct route_node *route_top(struct route_table *table)
386 {
387 /* If there is no node in the routing table return NULL. */
388 if (table->top == NULL)
389 return NULL;
390
391 /* Lock the top node and return it. */
392 route_lock_node(table->top);
393 return table->top;
394 }
395
396 /* Unlock current node and lock next node then return it. */
397 struct route_node *route_next(struct route_node *node)
398 {
399 struct route_node *next;
400 struct route_node *start;
401
402 /* Node may be deleted from route_unlock_node so we have to preserve
403 next node's pointer. */
404
405 if (node->l_left) {
406 next = node->l_left;
407 route_lock_node(next);
408 route_unlock_node(node);
409 return next;
410 }
411 if (node->l_right) {
412 next = node->l_right;
413 route_lock_node(next);
414 route_unlock_node(node);
415 return next;
416 }
417
418 start = node;
419 while (node->parent) {
420 if (node->parent->l_left == node && node->parent->l_right) {
421 next = node->parent->l_right;
422 route_lock_node(next);
423 route_unlock_node(start);
424 return next;
425 }
426 node = node->parent;
427 }
428 route_unlock_node(start);
429 return NULL;
430 }
431
432 /* Unlock current node and lock next node until limit. */
433 struct route_node *route_next_until(struct route_node *node,
434 const struct route_node *limit)
435 {
436 struct route_node *next;
437 struct route_node *start;
438
439 /* Node may be deleted from route_unlock_node so we have to preserve
440 next node's pointer. */
441
442 if (node->l_left) {
443 next = node->l_left;
444 route_lock_node(next);
445 route_unlock_node(node);
446 return next;
447 }
448 if (node->l_right) {
449 next = node->l_right;
450 route_lock_node(next);
451 route_unlock_node(node);
452 return next;
453 }
454
455 start = node;
456 while (node->parent && node != limit) {
457 if (node->parent->l_left == node && node->parent->l_right) {
458 next = node->parent->l_right;
459 route_lock_node(next);
460 route_unlock_node(start);
461 return next;
462 }
463 node = node->parent;
464 }
465 route_unlock_node(start);
466 return NULL;
467 }
468
469 unsigned long route_table_count(const struct route_table *table)
470 {
471 return table->count;
472 }
473
474 /**
475 * route_node_create
476 *
477 * Default function for creating a route node.
478 */
479 struct route_node *route_node_create(route_table_delegate_t *delegate,
480 struct route_table *table)
481 {
482 struct route_node *node;
483 node = XCALLOC(MTYPE_ROUTE_NODE, sizeof(struct route_node));
484 return node;
485 }
486
487 /**
488 * route_node_destroy
489 *
490 * Default function for destroying a route node.
491 */
492 void route_node_destroy(route_table_delegate_t *delegate,
493 struct route_table *table, struct route_node *node)
494 {
495 XFREE(MTYPE_ROUTE_NODE, node);
496 }
497
498 /*
499 * Default delegate.
500 */
501 static route_table_delegate_t default_delegate = {
502 .create_node = route_node_create,
503 .destroy_node = route_node_destroy};
504
505 route_table_delegate_t *route_table_get_default_delegate(void)
506 {
507 return &default_delegate;
508 }
509
510 /*
511 * route_table_init
512 */
513 struct route_table *route_table_init(void)
514 {
515 return route_table_init_with_delegate(&default_delegate);
516 }
517
518 /**
519 * route_table_prefix_iter_cmp
520 *
521 * Compare two prefixes according to the order in which they appear in
522 * an iteration over a tree.
523 *
524 * @return -1 if p1 occurs before p2 (p1 < p2)
525 * 0 if the prefixes are identical (p1 == p2)
526 * +1 if p1 occurs after p2 (p1 > p2)
527 */
528 int route_table_prefix_iter_cmp(const struct prefix *p1,
529 const struct prefix *p2)
530 {
531 struct prefix common_space;
532 struct prefix *common = &common_space;
533
534 if (p1->prefixlen <= p2->prefixlen) {
535 if (prefix_match(p1, p2)) {
536
537 /*
538 * p1 contains p2, or is equal to it.
539 */
540 return (p1->prefixlen == p2->prefixlen) ? 0 : -1;
541 }
542 } else {
543
544 /*
545 * Check if p2 contains p1.
546 */
547 if (prefix_match(p2, p1))
548 return 1;
549 }
550
551 route_common(p1, p2, common);
552 assert(common->prefixlen < p1->prefixlen);
553 assert(common->prefixlen < p2->prefixlen);
554
555 /*
556 * Both prefixes are longer than the common prefix.
557 *
558 * We need to check the bit after the common prefixlen to determine
559 * which one comes later.
560 */
561 if (prefix_bit(&p1->u.prefix, common->prefixlen)) {
562
563 /*
564 * We branch to the right to get to p1 from the common prefix.
565 */
566 assert(!prefix_bit(&p2->u.prefix, common->prefixlen));
567 return 1;
568 }
569
570 /*
571 * We branch to the right to get to p2 from the common prefix.
572 */
573 assert(prefix_bit(&p2->u.prefix, common->prefixlen));
574 return -1;
575 }
576
577 /*
578 * route_get_subtree_next
579 *
580 * Helper function that returns the first node that follows the nodes
581 * in the sub-tree under 'node' in iteration order.
582 */
583 static struct route_node *route_get_subtree_next(struct route_node *node)
584 {
585 while (node->parent) {
586 if (node->parent->l_left == node && node->parent->l_right)
587 return node->parent->l_right;
588
589 node = node->parent;
590 }
591
592 return NULL;
593 }
594
595 /**
596 * route_table_get_next_internal
597 *
598 * Helper function to find the node that occurs after the given prefix in
599 * order of iteration.
600 *
601 * @see route_table_get_next
602 */
603 static struct route_node *
604 route_table_get_next_internal(const struct route_table *table,
605 const struct prefix *p)
606 {
607 struct route_node *node, *tmp_node;
608 int cmp;
609
610 node = table->top;
611
612 while (node) {
613 int match;
614
615 if (node->p.prefixlen < p->prefixlen)
616 match = prefix_match(&node->p, p);
617 else
618 match = prefix_match(p, &node->p);
619
620 if (match) {
621 if (node->p.prefixlen == p->prefixlen) {
622
623 /*
624 * The prefix p exists in the tree, just return
625 * the next
626 * node.
627 */
628 route_lock_node(node);
629 node = route_next(node);
630 if (node)
631 route_unlock_node(node);
632
633 return (node);
634 }
635
636 if (node->p.prefixlen > p->prefixlen) {
637
638 /*
639 * Node is in the subtree of p, and hence
640 * greater than p.
641 */
642 return node;
643 }
644
645 /*
646 * p is in the sub-tree under node.
647 */
648 tmp_node = node->link[prefix_bit(&p->u.prefix,
649 node->p.prefixlen)];
650
651 if (tmp_node) {
652 node = tmp_node;
653 continue;
654 }
655
656 /*
657 * There are no nodes in the direction where p should
658 * be. If
659 * node has a right child, then it must be greater than
660 * p.
661 */
662 if (node->l_right)
663 return node->l_right;
664
665 /*
666 * No more children to follow, go upwards looking for
667 * the next
668 * node.
669 */
670 return route_get_subtree_next(node);
671 }
672
673 /*
674 * Neither node prefix nor 'p' contains the other.
675 */
676 cmp = route_table_prefix_iter_cmp(&node->p, p);
677 if (cmp > 0) {
678
679 /*
680 * Node follows p in iteration order. Return it.
681 */
682 return node;
683 }
684
685 assert(cmp < 0);
686
687 /*
688 * Node and the subtree under it come before prefix p in
689 * iteration order. Prefix p and its sub-tree are not present in
690 * the tree. Go upwards and find the first node that follows the
691 * subtree. That node will also succeed p.
692 */
693 return route_get_subtree_next(node);
694 }
695
696 return NULL;
697 }
698
699 /**
700 * route_table_get_next
701 *
702 * Find the node that occurs after the given prefix in order of
703 * iteration.
704 */
705 struct route_node *route_table_get_next(const struct route_table *table,
706 union prefixconstptr pu)
707 {
708 const struct prefix *p = pu.p;
709 struct route_node *node;
710
711 node = route_table_get_next_internal(table, p);
712 if (node) {
713 assert(route_table_prefix_iter_cmp(&node->p, p) > 0);
714 route_lock_node(node);
715 }
716 return node;
717 }
718
719 /*
720 * route_table_iter_init
721 */
722 void route_table_iter_init(route_table_iter_t *iter, struct route_table *table)
723 {
724 memset(iter, 0, sizeof(*iter));
725 iter->state = RT_ITER_STATE_INIT;
726 iter->table = table;
727 }
728
729 /*
730 * route_table_iter_pause
731 *
732 * Pause an iteration over the table. This allows the iteration to be
733 * resumed point after arbitrary additions/deletions from the table.
734 * An iteration can be resumed by just calling route_table_iter_next()
735 * on the iterator.
736 */
737 void route_table_iter_pause(route_table_iter_t *iter)
738 {
739 switch (iter->state) {
740
741 case RT_ITER_STATE_INIT:
742 case RT_ITER_STATE_PAUSED:
743 case RT_ITER_STATE_DONE:
744 return;
745
746 case RT_ITER_STATE_ITERATING:
747
748 /*
749 * Save the prefix that we are currently at. The next call to
750 * route_table_iter_next() will return the node after this
751 * prefix
752 * in the tree.
753 */
754 prefix_copy(&iter->pause_prefix, &iter->current->p);
755 route_unlock_node(iter->current);
756 iter->current = NULL;
757 iter->state = RT_ITER_STATE_PAUSED;
758 return;
759
760 default:
761 assert(0);
762 }
763 }
764
765 /*
766 * route_table_iter_cleanup
767 *
768 * Release any resources held by the iterator.
769 */
770 void route_table_iter_cleanup(route_table_iter_t *iter)
771 {
772 if (iter->state == RT_ITER_STATE_ITERATING) {
773 route_unlock_node(iter->current);
774 iter->current = NULL;
775 }
776 assert(!iter->current);
777
778 /*
779 * Set the state to RT_ITER_STATE_DONE to make any
780 * route_table_iter_next() calls on this iterator return NULL.
781 */
782 iter->state = RT_ITER_STATE_DONE;
783 }