]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - lib/test_hmm.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-hirsute-kernel.git] / lib / test_hmm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is a module to test the HMM (Heterogeneous Memory Management)
4 * mirror and zone device private memory migration APIs of the kernel.
5 * Userspace programs can register with the driver to mirror their own address
6 * space and can use the device to read/write any valid virtual address.
7 */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/mutex.h>
16 #include <linux/rwsem.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/highmem.h>
20 #include <linux/delay.h>
21 #include <linux/pagemap.h>
22 #include <linux/hmm.h>
23 #include <linux/vmalloc.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/sched/mm.h>
27 #include <linux/platform_device.h>
28
29 #include "test_hmm_uapi.h"
30
31 #define DMIRROR_NDEVICES 2
32 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000
33 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U)
34 #define DEVMEM_CHUNKS_RESERVE 16
35
36 static const struct dev_pagemap_ops dmirror_devmem_ops;
37 static const struct mmu_interval_notifier_ops dmirror_min_ops;
38 static dev_t dmirror_dev;
39 static struct page *dmirror_zero_page;
40
41 struct dmirror_device;
42
43 struct dmirror_bounce {
44 void *ptr;
45 unsigned long size;
46 unsigned long addr;
47 unsigned long cpages;
48 };
49
50 #define DPT_XA_TAG_WRITE 3UL
51
52 /*
53 * Data structure to track address ranges and register for mmu interval
54 * notifier updates.
55 */
56 struct dmirror_interval {
57 struct mmu_interval_notifier notifier;
58 struct dmirror *dmirror;
59 };
60
61 /*
62 * Data attached to the open device file.
63 * Note that it might be shared after a fork().
64 */
65 struct dmirror {
66 struct dmirror_device *mdevice;
67 struct xarray pt;
68 struct mmu_interval_notifier notifier;
69 struct mutex mutex;
70 };
71
72 /*
73 * ZONE_DEVICE pages for migration and simulating device memory.
74 */
75 struct dmirror_chunk {
76 struct dev_pagemap pagemap;
77 struct dmirror_device *mdevice;
78 };
79
80 /*
81 * Per device data.
82 */
83 struct dmirror_device {
84 struct cdev cdevice;
85 struct hmm_devmem *devmem;
86
87 unsigned int devmem_capacity;
88 unsigned int devmem_count;
89 struct dmirror_chunk **devmem_chunks;
90 struct mutex devmem_lock; /* protects the above */
91
92 unsigned long calloc;
93 unsigned long cfree;
94 struct page *free_pages;
95 spinlock_t lock; /* protects the above */
96 };
97
98 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
99
100 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
101 unsigned long addr,
102 unsigned long size)
103 {
104 bounce->addr = addr;
105 bounce->size = size;
106 bounce->cpages = 0;
107 bounce->ptr = vmalloc(size);
108 if (!bounce->ptr)
109 return -ENOMEM;
110 return 0;
111 }
112
113 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
114 {
115 vfree(bounce->ptr);
116 }
117
118 static int dmirror_fops_open(struct inode *inode, struct file *filp)
119 {
120 struct cdev *cdev = inode->i_cdev;
121 struct dmirror *dmirror;
122 int ret;
123
124 /* Mirror this process address space */
125 dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
126 if (dmirror == NULL)
127 return -ENOMEM;
128
129 dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
130 mutex_init(&dmirror->mutex);
131 xa_init(&dmirror->pt);
132
133 ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
134 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
135 if (ret) {
136 kfree(dmirror);
137 return ret;
138 }
139
140 filp->private_data = dmirror;
141 return 0;
142 }
143
144 static int dmirror_fops_release(struct inode *inode, struct file *filp)
145 {
146 struct dmirror *dmirror = filp->private_data;
147
148 mmu_interval_notifier_remove(&dmirror->notifier);
149 xa_destroy(&dmirror->pt);
150 kfree(dmirror);
151 return 0;
152 }
153
154 static struct dmirror_device *dmirror_page_to_device(struct page *page)
155
156 {
157 return container_of(page->pgmap, struct dmirror_chunk,
158 pagemap)->mdevice;
159 }
160
161 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
162 {
163 unsigned long *pfns = range->hmm_pfns;
164 unsigned long pfn;
165
166 for (pfn = (range->start >> PAGE_SHIFT);
167 pfn < (range->end >> PAGE_SHIFT);
168 pfn++, pfns++) {
169 struct page *page;
170 void *entry;
171
172 /*
173 * Since we asked for hmm_range_fault() to populate pages,
174 * it shouldn't return an error entry on success.
175 */
176 WARN_ON(*pfns & HMM_PFN_ERROR);
177 WARN_ON(!(*pfns & HMM_PFN_VALID));
178
179 page = hmm_pfn_to_page(*pfns);
180 WARN_ON(!page);
181
182 entry = page;
183 if (*pfns & HMM_PFN_WRITE)
184 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
185 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
186 return -EFAULT;
187 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
188 if (xa_is_err(entry))
189 return xa_err(entry);
190 }
191
192 return 0;
193 }
194
195 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
196 unsigned long end)
197 {
198 unsigned long pfn;
199 void *entry;
200
201 /*
202 * The XArray doesn't hold references to pages since it relies on
203 * the mmu notifier to clear page pointers when they become stale.
204 * Therefore, it is OK to just clear the entry.
205 */
206 xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
207 end >> PAGE_SHIFT)
208 xa_erase(&dmirror->pt, pfn);
209 }
210
211 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
212 const struct mmu_notifier_range *range,
213 unsigned long cur_seq)
214 {
215 struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
216
217 if (mmu_notifier_range_blockable(range))
218 mutex_lock(&dmirror->mutex);
219 else if (!mutex_trylock(&dmirror->mutex))
220 return false;
221
222 mmu_interval_set_seq(mni, cur_seq);
223 dmirror_do_update(dmirror, range->start, range->end);
224
225 mutex_unlock(&dmirror->mutex);
226 return true;
227 }
228
229 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
230 .invalidate = dmirror_interval_invalidate,
231 };
232
233 static int dmirror_range_fault(struct dmirror *dmirror,
234 struct hmm_range *range)
235 {
236 struct mm_struct *mm = dmirror->notifier.mm;
237 unsigned long timeout =
238 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
239 int ret;
240
241 while (true) {
242 if (time_after(jiffies, timeout)) {
243 ret = -EBUSY;
244 goto out;
245 }
246
247 range->notifier_seq = mmu_interval_read_begin(range->notifier);
248 mmap_read_lock(mm);
249 ret = hmm_range_fault(range);
250 mmap_read_unlock(mm);
251 if (ret) {
252 if (ret == -EBUSY)
253 continue;
254 goto out;
255 }
256
257 mutex_lock(&dmirror->mutex);
258 if (mmu_interval_read_retry(range->notifier,
259 range->notifier_seq)) {
260 mutex_unlock(&dmirror->mutex);
261 continue;
262 }
263 break;
264 }
265
266 ret = dmirror_do_fault(dmirror, range);
267
268 mutex_unlock(&dmirror->mutex);
269 out:
270 return ret;
271 }
272
273 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
274 unsigned long end, bool write)
275 {
276 struct mm_struct *mm = dmirror->notifier.mm;
277 unsigned long addr;
278 unsigned long pfns[64];
279 struct hmm_range range = {
280 .notifier = &dmirror->notifier,
281 .hmm_pfns = pfns,
282 .pfn_flags_mask = 0,
283 .default_flags =
284 HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
285 .dev_private_owner = dmirror->mdevice,
286 };
287 int ret = 0;
288
289 /* Since the mm is for the mirrored process, get a reference first. */
290 if (!mmget_not_zero(mm))
291 return 0;
292
293 for (addr = start; addr < end; addr = range.end) {
294 range.start = addr;
295 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
296
297 ret = dmirror_range_fault(dmirror, &range);
298 if (ret)
299 break;
300 }
301
302 mmput(mm);
303 return ret;
304 }
305
306 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
307 unsigned long end, struct dmirror_bounce *bounce)
308 {
309 unsigned long pfn;
310 void *ptr;
311
312 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
313
314 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
315 void *entry;
316 struct page *page;
317 void *tmp;
318
319 entry = xa_load(&dmirror->pt, pfn);
320 page = xa_untag_pointer(entry);
321 if (!page)
322 return -ENOENT;
323
324 tmp = kmap(page);
325 memcpy(ptr, tmp, PAGE_SIZE);
326 kunmap(page);
327
328 ptr += PAGE_SIZE;
329 bounce->cpages++;
330 }
331
332 return 0;
333 }
334
335 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
336 {
337 struct dmirror_bounce bounce;
338 unsigned long start, end;
339 unsigned long size = cmd->npages << PAGE_SHIFT;
340 int ret;
341
342 start = cmd->addr;
343 end = start + size;
344 if (end < start)
345 return -EINVAL;
346
347 ret = dmirror_bounce_init(&bounce, start, size);
348 if (ret)
349 return ret;
350
351 while (1) {
352 mutex_lock(&dmirror->mutex);
353 ret = dmirror_do_read(dmirror, start, end, &bounce);
354 mutex_unlock(&dmirror->mutex);
355 if (ret != -ENOENT)
356 break;
357
358 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
359 ret = dmirror_fault(dmirror, start, end, false);
360 if (ret)
361 break;
362 cmd->faults++;
363 }
364
365 if (ret == 0) {
366 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
367 bounce.size))
368 ret = -EFAULT;
369 }
370 cmd->cpages = bounce.cpages;
371 dmirror_bounce_fini(&bounce);
372 return ret;
373 }
374
375 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
376 unsigned long end, struct dmirror_bounce *bounce)
377 {
378 unsigned long pfn;
379 void *ptr;
380
381 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
382
383 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
384 void *entry;
385 struct page *page;
386 void *tmp;
387
388 entry = xa_load(&dmirror->pt, pfn);
389 page = xa_untag_pointer(entry);
390 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
391 return -ENOENT;
392
393 tmp = kmap(page);
394 memcpy(tmp, ptr, PAGE_SIZE);
395 kunmap(page);
396
397 ptr += PAGE_SIZE;
398 bounce->cpages++;
399 }
400
401 return 0;
402 }
403
404 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
405 {
406 struct dmirror_bounce bounce;
407 unsigned long start, end;
408 unsigned long size = cmd->npages << PAGE_SHIFT;
409 int ret;
410
411 start = cmd->addr;
412 end = start + size;
413 if (end < start)
414 return -EINVAL;
415
416 ret = dmirror_bounce_init(&bounce, start, size);
417 if (ret)
418 return ret;
419 if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
420 bounce.size)) {
421 ret = -EFAULT;
422 goto fini;
423 }
424
425 while (1) {
426 mutex_lock(&dmirror->mutex);
427 ret = dmirror_do_write(dmirror, start, end, &bounce);
428 mutex_unlock(&dmirror->mutex);
429 if (ret != -ENOENT)
430 break;
431
432 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
433 ret = dmirror_fault(dmirror, start, end, true);
434 if (ret)
435 break;
436 cmd->faults++;
437 }
438
439 fini:
440 cmd->cpages = bounce.cpages;
441 dmirror_bounce_fini(&bounce);
442 return ret;
443 }
444
445 static bool dmirror_allocate_chunk(struct dmirror_device *mdevice,
446 struct page **ppage)
447 {
448 struct dmirror_chunk *devmem;
449 struct resource *res;
450 unsigned long pfn;
451 unsigned long pfn_first;
452 unsigned long pfn_last;
453 void *ptr;
454
455 mutex_lock(&mdevice->devmem_lock);
456
457 if (mdevice->devmem_count == mdevice->devmem_capacity) {
458 struct dmirror_chunk **new_chunks;
459 unsigned int new_capacity;
460
461 new_capacity = mdevice->devmem_capacity +
462 DEVMEM_CHUNKS_RESERVE;
463 new_chunks = krealloc(mdevice->devmem_chunks,
464 sizeof(new_chunks[0]) * new_capacity,
465 GFP_KERNEL);
466 if (!new_chunks)
467 goto err;
468 mdevice->devmem_capacity = new_capacity;
469 mdevice->devmem_chunks = new_chunks;
470 }
471
472 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
473 "hmm_dmirror");
474 if (IS_ERR(res))
475 goto err;
476
477 devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
478 if (!devmem)
479 goto err_release;
480
481 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
482 devmem->pagemap.res = *res;
483 devmem->pagemap.ops = &dmirror_devmem_ops;
484 devmem->pagemap.owner = mdevice;
485
486 ptr = memremap_pages(&devmem->pagemap, numa_node_id());
487 if (IS_ERR(ptr))
488 goto err_free;
489
490 devmem->mdevice = mdevice;
491 pfn_first = devmem->pagemap.res.start >> PAGE_SHIFT;
492 pfn_last = pfn_first +
493 (resource_size(&devmem->pagemap.res) >> PAGE_SHIFT);
494 mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
495
496 mutex_unlock(&mdevice->devmem_lock);
497
498 pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
499 DEVMEM_CHUNK_SIZE / (1024 * 1024),
500 mdevice->devmem_count,
501 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
502 pfn_first, pfn_last);
503
504 spin_lock(&mdevice->lock);
505 for (pfn = pfn_first; pfn < pfn_last; pfn++) {
506 struct page *page = pfn_to_page(pfn);
507
508 page->zone_device_data = mdevice->free_pages;
509 mdevice->free_pages = page;
510 }
511 if (ppage) {
512 *ppage = mdevice->free_pages;
513 mdevice->free_pages = (*ppage)->zone_device_data;
514 mdevice->calloc++;
515 }
516 spin_unlock(&mdevice->lock);
517
518 return true;
519
520 err_free:
521 kfree(devmem);
522 err_release:
523 release_mem_region(devmem->pagemap.res.start,
524 resource_size(&devmem->pagemap.res));
525 err:
526 mutex_unlock(&mdevice->devmem_lock);
527 return false;
528 }
529
530 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
531 {
532 struct page *dpage = NULL;
533 struct page *rpage;
534
535 /*
536 * This is a fake device so we alloc real system memory to store
537 * our device memory.
538 */
539 rpage = alloc_page(GFP_HIGHUSER);
540 if (!rpage)
541 return NULL;
542
543 spin_lock(&mdevice->lock);
544
545 if (mdevice->free_pages) {
546 dpage = mdevice->free_pages;
547 mdevice->free_pages = dpage->zone_device_data;
548 mdevice->calloc++;
549 spin_unlock(&mdevice->lock);
550 } else {
551 spin_unlock(&mdevice->lock);
552 if (!dmirror_allocate_chunk(mdevice, &dpage))
553 goto error;
554 }
555
556 dpage->zone_device_data = rpage;
557 get_page(dpage);
558 lock_page(dpage);
559 return dpage;
560
561 error:
562 __free_page(rpage);
563 return NULL;
564 }
565
566 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
567 struct dmirror *dmirror)
568 {
569 struct dmirror_device *mdevice = dmirror->mdevice;
570 const unsigned long *src = args->src;
571 unsigned long *dst = args->dst;
572 unsigned long addr;
573
574 for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
575 src++, dst++) {
576 struct page *spage;
577 struct page *dpage;
578 struct page *rpage;
579
580 if (!(*src & MIGRATE_PFN_MIGRATE))
581 continue;
582
583 /*
584 * Note that spage might be NULL which is OK since it is an
585 * unallocated pte_none() or read-only zero page.
586 */
587 spage = migrate_pfn_to_page(*src);
588
589 /*
590 * Don't migrate device private pages from our own driver or
591 * others. For our own we would do a device private memory copy
592 * not a migration and for others, we would need to fault the
593 * other device's page into system memory first.
594 */
595 if (spage && is_zone_device_page(spage))
596 continue;
597
598 dpage = dmirror_devmem_alloc_page(mdevice);
599 if (!dpage)
600 continue;
601
602 rpage = dpage->zone_device_data;
603 if (spage)
604 copy_highpage(rpage, spage);
605 else
606 clear_highpage(rpage);
607
608 /*
609 * Normally, a device would use the page->zone_device_data to
610 * point to the mirror but here we use it to hold the page for
611 * the simulated device memory and that page holds the pointer
612 * to the mirror.
613 */
614 rpage->zone_device_data = dmirror;
615
616 *dst = migrate_pfn(page_to_pfn(dpage)) |
617 MIGRATE_PFN_LOCKED;
618 if ((*src & MIGRATE_PFN_WRITE) ||
619 (!spage && args->vma->vm_flags & VM_WRITE))
620 *dst |= MIGRATE_PFN_WRITE;
621 }
622 }
623
624 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
625 struct dmirror *dmirror)
626 {
627 unsigned long start = args->start;
628 unsigned long end = args->end;
629 const unsigned long *src = args->src;
630 const unsigned long *dst = args->dst;
631 unsigned long pfn;
632
633 /* Map the migrated pages into the device's page tables. */
634 mutex_lock(&dmirror->mutex);
635
636 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
637 src++, dst++) {
638 struct page *dpage;
639 void *entry;
640
641 if (!(*src & MIGRATE_PFN_MIGRATE))
642 continue;
643
644 dpage = migrate_pfn_to_page(*dst);
645 if (!dpage)
646 continue;
647
648 /*
649 * Store the page that holds the data so the page table
650 * doesn't have to deal with ZONE_DEVICE private pages.
651 */
652 entry = dpage->zone_device_data;
653 if (*dst & MIGRATE_PFN_WRITE)
654 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
655 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
656 if (xa_is_err(entry)) {
657 mutex_unlock(&dmirror->mutex);
658 return xa_err(entry);
659 }
660 }
661
662 mutex_unlock(&dmirror->mutex);
663 return 0;
664 }
665
666 static int dmirror_migrate(struct dmirror *dmirror,
667 struct hmm_dmirror_cmd *cmd)
668 {
669 unsigned long start, end, addr;
670 unsigned long size = cmd->npages << PAGE_SHIFT;
671 struct mm_struct *mm = dmirror->notifier.mm;
672 struct vm_area_struct *vma;
673 unsigned long src_pfns[64];
674 unsigned long dst_pfns[64];
675 struct dmirror_bounce bounce;
676 struct migrate_vma args;
677 unsigned long next;
678 int ret;
679
680 start = cmd->addr;
681 end = start + size;
682 if (end < start)
683 return -EINVAL;
684
685 /* Since the mm is for the mirrored process, get a reference first. */
686 if (!mmget_not_zero(mm))
687 return -EINVAL;
688
689 mmap_read_lock(mm);
690 for (addr = start; addr < end; addr = next) {
691 vma = find_vma(mm, addr);
692 if (!vma || addr < vma->vm_start ||
693 !(vma->vm_flags & VM_READ)) {
694 ret = -EINVAL;
695 goto out;
696 }
697 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
698 if (next > vma->vm_end)
699 next = vma->vm_end;
700
701 args.vma = vma;
702 args.src = src_pfns;
703 args.dst = dst_pfns;
704 args.start = addr;
705 args.end = next;
706 args.src_owner = NULL;
707 ret = migrate_vma_setup(&args);
708 if (ret)
709 goto out;
710
711 dmirror_migrate_alloc_and_copy(&args, dmirror);
712 migrate_vma_pages(&args);
713 dmirror_migrate_finalize_and_map(&args, dmirror);
714 migrate_vma_finalize(&args);
715 }
716 mmap_read_unlock(mm);
717 mmput(mm);
718
719 /* Return the migrated data for verification. */
720 ret = dmirror_bounce_init(&bounce, start, size);
721 if (ret)
722 return ret;
723 mutex_lock(&dmirror->mutex);
724 ret = dmirror_do_read(dmirror, start, end, &bounce);
725 mutex_unlock(&dmirror->mutex);
726 if (ret == 0) {
727 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
728 bounce.size))
729 ret = -EFAULT;
730 }
731 cmd->cpages = bounce.cpages;
732 dmirror_bounce_fini(&bounce);
733 return ret;
734
735 out:
736 mmap_read_unlock(mm);
737 mmput(mm);
738 return ret;
739 }
740
741 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
742 unsigned char *perm, unsigned long entry)
743 {
744 struct page *page;
745
746 if (entry & HMM_PFN_ERROR) {
747 *perm = HMM_DMIRROR_PROT_ERROR;
748 return;
749 }
750 if (!(entry & HMM_PFN_VALID)) {
751 *perm = HMM_DMIRROR_PROT_NONE;
752 return;
753 }
754
755 page = hmm_pfn_to_page(entry);
756 if (is_device_private_page(page)) {
757 /* Is the page migrated to this device or some other? */
758 if (dmirror->mdevice == dmirror_page_to_device(page))
759 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
760 else
761 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
762 } else if (is_zero_pfn(page_to_pfn(page)))
763 *perm = HMM_DMIRROR_PROT_ZERO;
764 else
765 *perm = HMM_DMIRROR_PROT_NONE;
766 if (entry & HMM_PFN_WRITE)
767 *perm |= HMM_DMIRROR_PROT_WRITE;
768 else
769 *perm |= HMM_DMIRROR_PROT_READ;
770 }
771
772 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
773 const struct mmu_notifier_range *range,
774 unsigned long cur_seq)
775 {
776 struct dmirror_interval *dmi =
777 container_of(mni, struct dmirror_interval, notifier);
778 struct dmirror *dmirror = dmi->dmirror;
779
780 if (mmu_notifier_range_blockable(range))
781 mutex_lock(&dmirror->mutex);
782 else if (!mutex_trylock(&dmirror->mutex))
783 return false;
784
785 /*
786 * Snapshots only need to set the sequence number since any
787 * invalidation in the interval invalidates the whole snapshot.
788 */
789 mmu_interval_set_seq(mni, cur_seq);
790
791 mutex_unlock(&dmirror->mutex);
792 return true;
793 }
794
795 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
796 .invalidate = dmirror_snapshot_invalidate,
797 };
798
799 static int dmirror_range_snapshot(struct dmirror *dmirror,
800 struct hmm_range *range,
801 unsigned char *perm)
802 {
803 struct mm_struct *mm = dmirror->notifier.mm;
804 struct dmirror_interval notifier;
805 unsigned long timeout =
806 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
807 unsigned long i;
808 unsigned long n;
809 int ret = 0;
810
811 notifier.dmirror = dmirror;
812 range->notifier = &notifier.notifier;
813
814 ret = mmu_interval_notifier_insert(range->notifier, mm,
815 range->start, range->end - range->start,
816 &dmirror_mrn_ops);
817 if (ret)
818 return ret;
819
820 while (true) {
821 if (time_after(jiffies, timeout)) {
822 ret = -EBUSY;
823 goto out;
824 }
825
826 range->notifier_seq = mmu_interval_read_begin(range->notifier);
827
828 mmap_read_lock(mm);
829 ret = hmm_range_fault(range);
830 mmap_read_unlock(mm);
831 if (ret) {
832 if (ret == -EBUSY)
833 continue;
834 goto out;
835 }
836
837 mutex_lock(&dmirror->mutex);
838 if (mmu_interval_read_retry(range->notifier,
839 range->notifier_seq)) {
840 mutex_unlock(&dmirror->mutex);
841 continue;
842 }
843 break;
844 }
845
846 n = (range->end - range->start) >> PAGE_SHIFT;
847 for (i = 0; i < n; i++)
848 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
849
850 mutex_unlock(&dmirror->mutex);
851 out:
852 mmu_interval_notifier_remove(range->notifier);
853 return ret;
854 }
855
856 static int dmirror_snapshot(struct dmirror *dmirror,
857 struct hmm_dmirror_cmd *cmd)
858 {
859 struct mm_struct *mm = dmirror->notifier.mm;
860 unsigned long start, end;
861 unsigned long size = cmd->npages << PAGE_SHIFT;
862 unsigned long addr;
863 unsigned long next;
864 unsigned long pfns[64];
865 unsigned char perm[64];
866 char __user *uptr;
867 struct hmm_range range = {
868 .hmm_pfns = pfns,
869 .dev_private_owner = dmirror->mdevice,
870 };
871 int ret = 0;
872
873 start = cmd->addr;
874 end = start + size;
875 if (end < start)
876 return -EINVAL;
877
878 /* Since the mm is for the mirrored process, get a reference first. */
879 if (!mmget_not_zero(mm))
880 return -EINVAL;
881
882 /*
883 * Register a temporary notifier to detect invalidations even if it
884 * overlaps with other mmu_interval_notifiers.
885 */
886 uptr = u64_to_user_ptr(cmd->ptr);
887 for (addr = start; addr < end; addr = next) {
888 unsigned long n;
889
890 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
891 range.start = addr;
892 range.end = next;
893
894 ret = dmirror_range_snapshot(dmirror, &range, perm);
895 if (ret)
896 break;
897
898 n = (range.end - range.start) >> PAGE_SHIFT;
899 if (copy_to_user(uptr, perm, n)) {
900 ret = -EFAULT;
901 break;
902 }
903
904 cmd->cpages += n;
905 uptr += n;
906 }
907 mmput(mm);
908
909 return ret;
910 }
911
912 static long dmirror_fops_unlocked_ioctl(struct file *filp,
913 unsigned int command,
914 unsigned long arg)
915 {
916 void __user *uarg = (void __user *)arg;
917 struct hmm_dmirror_cmd cmd;
918 struct dmirror *dmirror;
919 int ret;
920
921 dmirror = filp->private_data;
922 if (!dmirror)
923 return -EINVAL;
924
925 if (copy_from_user(&cmd, uarg, sizeof(cmd)))
926 return -EFAULT;
927
928 if (cmd.addr & ~PAGE_MASK)
929 return -EINVAL;
930 if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
931 return -EINVAL;
932
933 cmd.cpages = 0;
934 cmd.faults = 0;
935
936 switch (command) {
937 case HMM_DMIRROR_READ:
938 ret = dmirror_read(dmirror, &cmd);
939 break;
940
941 case HMM_DMIRROR_WRITE:
942 ret = dmirror_write(dmirror, &cmd);
943 break;
944
945 case HMM_DMIRROR_MIGRATE:
946 ret = dmirror_migrate(dmirror, &cmd);
947 break;
948
949 case HMM_DMIRROR_SNAPSHOT:
950 ret = dmirror_snapshot(dmirror, &cmd);
951 break;
952
953 default:
954 return -EINVAL;
955 }
956 if (ret)
957 return ret;
958
959 if (copy_to_user(uarg, &cmd, sizeof(cmd)))
960 return -EFAULT;
961
962 return 0;
963 }
964
965 static const struct file_operations dmirror_fops = {
966 .open = dmirror_fops_open,
967 .release = dmirror_fops_release,
968 .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
969 .llseek = default_llseek,
970 .owner = THIS_MODULE,
971 };
972
973 static void dmirror_devmem_free(struct page *page)
974 {
975 struct page *rpage = page->zone_device_data;
976 struct dmirror_device *mdevice;
977
978 if (rpage)
979 __free_page(rpage);
980
981 mdevice = dmirror_page_to_device(page);
982
983 spin_lock(&mdevice->lock);
984 mdevice->cfree++;
985 page->zone_device_data = mdevice->free_pages;
986 mdevice->free_pages = page;
987 spin_unlock(&mdevice->lock);
988 }
989
990 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
991 struct dmirror_device *mdevice)
992 {
993 const unsigned long *src = args->src;
994 unsigned long *dst = args->dst;
995 unsigned long start = args->start;
996 unsigned long end = args->end;
997 unsigned long addr;
998
999 for (addr = start; addr < end; addr += PAGE_SIZE,
1000 src++, dst++) {
1001 struct page *dpage, *spage;
1002
1003 spage = migrate_pfn_to_page(*src);
1004 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
1005 continue;
1006 spage = spage->zone_device_data;
1007
1008 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
1009 if (!dpage)
1010 continue;
1011
1012 lock_page(dpage);
1013 copy_highpage(dpage, spage);
1014 *dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
1015 if (*src & MIGRATE_PFN_WRITE)
1016 *dst |= MIGRATE_PFN_WRITE;
1017 }
1018 return 0;
1019 }
1020
1021 static void dmirror_devmem_fault_finalize_and_map(struct migrate_vma *args,
1022 struct dmirror *dmirror)
1023 {
1024 /* Invalidate the device's page table mapping. */
1025 mutex_lock(&dmirror->mutex);
1026 dmirror_do_update(dmirror, args->start, args->end);
1027 mutex_unlock(&dmirror->mutex);
1028 }
1029
1030 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1031 {
1032 struct migrate_vma args;
1033 unsigned long src_pfns;
1034 unsigned long dst_pfns;
1035 struct page *rpage;
1036 struct dmirror *dmirror;
1037 vm_fault_t ret;
1038
1039 /*
1040 * Normally, a device would use the page->zone_device_data to point to
1041 * the mirror but here we use it to hold the page for the simulated
1042 * device memory and that page holds the pointer to the mirror.
1043 */
1044 rpage = vmf->page->zone_device_data;
1045 dmirror = rpage->zone_device_data;
1046
1047 /* FIXME demonstrate how we can adjust migrate range */
1048 args.vma = vmf->vma;
1049 args.start = vmf->address;
1050 args.end = args.start + PAGE_SIZE;
1051 args.src = &src_pfns;
1052 args.dst = &dst_pfns;
1053 args.src_owner = dmirror->mdevice;
1054
1055 if (migrate_vma_setup(&args))
1056 return VM_FAULT_SIGBUS;
1057
1058 ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror->mdevice);
1059 if (ret)
1060 return ret;
1061 migrate_vma_pages(&args);
1062 dmirror_devmem_fault_finalize_and_map(&args, dmirror);
1063 migrate_vma_finalize(&args);
1064 return 0;
1065 }
1066
1067 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1068 .page_free = dmirror_devmem_free,
1069 .migrate_to_ram = dmirror_devmem_fault,
1070 };
1071
1072 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1073 {
1074 dev_t dev;
1075 int ret;
1076
1077 dev = MKDEV(MAJOR(dmirror_dev), id);
1078 mutex_init(&mdevice->devmem_lock);
1079 spin_lock_init(&mdevice->lock);
1080
1081 cdev_init(&mdevice->cdevice, &dmirror_fops);
1082 mdevice->cdevice.owner = THIS_MODULE;
1083 ret = cdev_add(&mdevice->cdevice, dev, 1);
1084 if (ret)
1085 return ret;
1086
1087 /* Build a list of free ZONE_DEVICE private struct pages */
1088 dmirror_allocate_chunk(mdevice, NULL);
1089
1090 return 0;
1091 }
1092
1093 static void dmirror_device_remove(struct dmirror_device *mdevice)
1094 {
1095 unsigned int i;
1096
1097 if (mdevice->devmem_chunks) {
1098 for (i = 0; i < mdevice->devmem_count; i++) {
1099 struct dmirror_chunk *devmem =
1100 mdevice->devmem_chunks[i];
1101
1102 memunmap_pages(&devmem->pagemap);
1103 release_mem_region(devmem->pagemap.res.start,
1104 resource_size(&devmem->pagemap.res));
1105 kfree(devmem);
1106 }
1107 kfree(mdevice->devmem_chunks);
1108 }
1109
1110 cdev_del(&mdevice->cdevice);
1111 }
1112
1113 static int __init hmm_dmirror_init(void)
1114 {
1115 int ret;
1116 int id;
1117
1118 ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1119 "HMM_DMIRROR");
1120 if (ret)
1121 goto err_unreg;
1122
1123 for (id = 0; id < DMIRROR_NDEVICES; id++) {
1124 ret = dmirror_device_init(dmirror_devices + id, id);
1125 if (ret)
1126 goto err_chrdev;
1127 }
1128
1129 /*
1130 * Allocate a zero page to simulate a reserved page of device private
1131 * memory which is always zero. The zero_pfn page isn't used just to
1132 * make the code here simpler (i.e., we need a struct page for it).
1133 */
1134 dmirror_zero_page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1135 if (!dmirror_zero_page) {
1136 ret = -ENOMEM;
1137 goto err_chrdev;
1138 }
1139
1140 pr_info("HMM test module loaded. This is only for testing HMM.\n");
1141 return 0;
1142
1143 err_chrdev:
1144 while (--id >= 0)
1145 dmirror_device_remove(dmirror_devices + id);
1146 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1147 err_unreg:
1148 return ret;
1149 }
1150
1151 static void __exit hmm_dmirror_exit(void)
1152 {
1153 int id;
1154
1155 if (dmirror_zero_page)
1156 __free_page(dmirror_zero_page);
1157 for (id = 0; id < DMIRROR_NDEVICES; id++)
1158 dmirror_device_remove(dmirror_devices + id);
1159 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1160 }
1161
1162 module_init(hmm_dmirror_init);
1163 module_exit(hmm_dmirror_exit);
1164 MODULE_LICENSE("GPL");