]> git.proxmox.com Git - mirror_frr.git/blob - lib/thread.c
Initial revision
[mirror_frr.git] / lib / thread.c
1 /* Thread management routine
2 * Copyright (C) 1998, 2000 Kunihiro Ishiguro <kunihiro@zebra.org>
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with GNU Zebra; see the file COPYING. If not, write to the Free
18 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 */
21
22 /* #define DEBUG */
23
24 #include <zebra.h>
25
26 #include "thread.h"
27 #include "memory.h"
28 #include "log.h"
29 \f
30 /* Struct timeval's tv_usec one second value. */
31 #define TIMER_SECOND_MICRO 1000000L
32
33 struct timeval
34 timeval_adjust (struct timeval a)
35 {
36 while (a.tv_usec >= TIMER_SECOND_MICRO)
37 {
38 a.tv_usec -= TIMER_SECOND_MICRO;
39 a.tv_sec++;
40 }
41
42 while (a.tv_usec < 0)
43 {
44 a.tv_usec += TIMER_SECOND_MICRO;
45 a.tv_sec--;
46 }
47
48 if (a.tv_sec < 0)
49 {
50 a.tv_sec = 0;
51 a.tv_usec = 10;
52 }
53
54 if (a.tv_sec > TIMER_SECOND_MICRO)
55 a.tv_sec = TIMER_SECOND_MICRO;
56
57 return a;
58 }
59
60 static struct timeval
61 timeval_subtract (struct timeval a, struct timeval b)
62 {
63 struct timeval ret;
64
65 ret.tv_usec = a.tv_usec - b.tv_usec;
66 ret.tv_sec = a.tv_sec - b.tv_sec;
67
68 return timeval_adjust (ret);
69 }
70
71 static int
72 timeval_cmp (struct timeval a, struct timeval b)
73 {
74 return (a.tv_sec == b.tv_sec
75 ? a.tv_usec - b.tv_usec : a.tv_sec - b.tv_sec);
76 }
77
78 static unsigned long
79 timeval_elapsed (struct timeval a, struct timeval b)
80 {
81 return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO)
82 + (a.tv_usec - b.tv_usec));
83 }
84 \f
85 /* List allocation and head/tail print out. */
86 static void
87 thread_list_debug (struct thread_list *list)
88 {
89 printf ("count [%d] head [%p] tail [%p]\n",
90 list->count, list->head, list->tail);
91 }
92
93 /* Debug print for thread_master. */
94 void
95 thread_master_debug (struct thread_master *m)
96 {
97 printf ("-----------\n");
98 printf ("readlist : ");
99 thread_list_debug (&m->read);
100 printf ("writelist : ");
101 thread_list_debug (&m->write);
102 printf ("timerlist : ");
103 thread_list_debug (&m->timer);
104 printf ("eventlist : ");
105 thread_list_debug (&m->event);
106 printf ("unuselist : ");
107 thread_list_debug (&m->unuse);
108 printf ("total alloc: [%ld]\n", m->alloc);
109 printf ("-----------\n");
110 }
111 \f
112 /* Allocate new thread master. */
113 struct thread_master *
114 thread_master_create ()
115 {
116 return (struct thread_master *) XCALLOC (MTYPE_THREAD_MASTER,
117 sizeof (struct thread_master));
118 }
119
120 /* Add a new thread to the list. */
121 static void
122 thread_list_add (struct thread_list *list, struct thread *thread)
123 {
124 thread->next = NULL;
125 thread->prev = list->tail;
126 if (list->tail)
127 list->tail->next = thread;
128 else
129 list->head = thread;
130 list->tail = thread;
131 list->count++;
132 }
133
134 /* Add a new thread just before the point. */
135 static void
136 thread_list_add_before (struct thread_list *list,
137 struct thread *point,
138 struct thread *thread)
139 {
140 thread->next = point;
141 thread->prev = point->prev;
142 if (point->prev)
143 point->prev->next = thread;
144 else
145 list->head = thread;
146 point->prev = thread;
147 list->count++;
148 }
149
150 /* Delete a thread from the list. */
151 static struct thread *
152 thread_list_delete (struct thread_list *list, struct thread *thread)
153 {
154 if (thread->next)
155 thread->next->prev = thread->prev;
156 else
157 list->tail = thread->prev;
158 if (thread->prev)
159 thread->prev->next = thread->next;
160 else
161 list->head = thread->next;
162 thread->next = thread->prev = NULL;
163 list->count--;
164 return thread;
165 }
166
167 /* Move thread to unuse list. */
168 static void
169 thread_add_unuse (struct thread_master *m, struct thread *thread)
170 {
171 assert (m != NULL);
172 assert (thread->next == NULL);
173 assert (thread->prev == NULL);
174 assert (thread->type == THREAD_UNUSED);
175 thread_list_add (&m->unuse, thread);
176 }
177
178 /* Free all unused thread. */
179 static void
180 thread_list_free (struct thread_master *m, struct thread_list *list)
181 {
182 struct thread *t;
183 struct thread *next;
184
185 for (t = list->head; t; t = next)
186 {
187 next = t->next;
188 XFREE (MTYPE_THREAD, t);
189 list->count--;
190 m->alloc--;
191 }
192 }
193
194 /* Stop thread scheduler. */
195 void
196 thread_master_free (struct thread_master *m)
197 {
198 thread_list_free (m, &m->read);
199 thread_list_free (m, &m->write);
200 thread_list_free (m, &m->timer);
201 thread_list_free (m, &m->event);
202 thread_list_free (m, &m->ready);
203 thread_list_free (m, &m->unuse);
204
205 XFREE (MTYPE_THREAD_MASTER, m);
206 }
207
208 /* Delete top of the list and return it. */
209 static struct thread *
210 thread_trim_head (struct thread_list *list)
211 {
212 if (list->head)
213 return thread_list_delete (list, list->head);
214 return NULL;
215 }
216
217 /* Thread list is empty or not. */
218 int
219 thread_empty (struct thread_list *list)
220 {
221 return list->head ? 0 : 1;
222 }
223
224 /* Return remain time in second. */
225 unsigned long
226 thread_timer_remain_second (struct thread *thread)
227 {
228 struct timeval timer_now;
229
230 gettimeofday (&timer_now, NULL);
231
232 if (thread->u.sands.tv_sec - timer_now.tv_sec > 0)
233 return thread->u.sands.tv_sec - timer_now.tv_sec;
234 else
235 return 0;
236 }
237
238 /* Get new thread. */
239 static struct thread *
240 thread_get (struct thread_master *m, u_char type,
241 int (*func) (struct thread *), void *arg)
242 {
243 struct thread *thread;
244
245 if (m->unuse.head)
246 thread = thread_trim_head (&m->unuse);
247 else
248 {
249 thread = XCALLOC (MTYPE_THREAD, sizeof (struct thread));
250 m->alloc++;
251 }
252 thread->type = type;
253 thread->master = m;
254 thread->func = func;
255 thread->arg = arg;
256
257 return thread;
258 }
259
260 /* Add new read thread. */
261 struct thread *
262 thread_add_read (struct thread_master *m,
263 int (*func) (struct thread *), void *arg, int fd)
264 {
265 struct thread *thread;
266
267 assert (m != NULL);
268
269 if (FD_ISSET (fd, &m->readfd))
270 {
271 zlog (NULL, LOG_WARNING, "There is already read fd [%d]", fd);
272 return NULL;
273 }
274
275 thread = thread_get (m, THREAD_READ, func, arg);
276 FD_SET (fd, &m->readfd);
277 thread->u.fd = fd;
278 thread_list_add (&m->read, thread);
279
280 return thread;
281 }
282
283 /* Add new write thread. */
284 struct thread *
285 thread_add_write (struct thread_master *m,
286 int (*func) (struct thread *), void *arg, int fd)
287 {
288 struct thread *thread;
289
290 assert (m != NULL);
291
292 if (FD_ISSET (fd, &m->writefd))
293 {
294 zlog (NULL, LOG_WARNING, "There is already write fd [%d]", fd);
295 return NULL;
296 }
297
298 thread = thread_get (m, THREAD_WRITE, func, arg);
299 FD_SET (fd, &m->writefd);
300 thread->u.fd = fd;
301 thread_list_add (&m->write, thread);
302
303 return thread;
304 }
305
306 /* Add timer event thread. */
307 struct thread *
308 thread_add_timer (struct thread_master *m,
309 int (*func) (struct thread *), void *arg, long timer)
310 {
311 struct timeval timer_now;
312 struct thread *thread;
313 #ifndef TIMER_NO_SORT
314 struct thread *tt;
315 #endif /* TIMER_NO_SORT */
316
317 assert (m != NULL);
318
319 thread = thread_get (m, THREAD_TIMER, func, arg);
320
321 /* Do we need jitter here? */
322 gettimeofday (&timer_now, NULL);
323 timer_now.tv_sec += timer;
324 thread->u.sands = timer_now;
325
326 /* Sort by timeval. */
327 #ifdef TIMER_NO_SORT
328 thread_list_add (&m->timer, thread);
329 #else
330 for (tt = m->timer.head; tt; tt = tt->next)
331 if (timeval_cmp (thread->u.sands, tt->u.sands) <= 0)
332 break;
333
334 if (tt)
335 thread_list_add_before (&m->timer, tt, thread);
336 else
337 thread_list_add (&m->timer, thread);
338 #endif /* TIMER_NO_SORT */
339
340 return thread;
341 }
342
343 /* Add simple event thread. */
344 struct thread *
345 thread_add_event (struct thread_master *m,
346 int (*func) (struct thread *), void *arg, int val)
347 {
348 struct thread *thread;
349
350 assert (m != NULL);
351
352 thread = thread_get (m, THREAD_EVENT, func, arg);
353 thread->u.val = val;
354 thread_list_add (&m->event, thread);
355
356 return thread;
357 }
358
359 /* Cancel thread from scheduler. */
360 void
361 thread_cancel (struct thread *thread)
362 {
363 switch (thread->type)
364 {
365 case THREAD_READ:
366 assert (FD_ISSET (thread->u.fd, &thread->master->readfd));
367 FD_CLR (thread->u.fd, &thread->master->readfd);
368 thread_list_delete (&thread->master->read, thread);
369 break;
370 case THREAD_WRITE:
371 assert (FD_ISSET (thread->u.fd, &thread->master->writefd));
372 FD_CLR (thread->u.fd, &thread->master->writefd);
373 thread_list_delete (&thread->master->write, thread);
374 break;
375 case THREAD_TIMER:
376 thread_list_delete (&thread->master->timer, thread);
377 break;
378 case THREAD_EVENT:
379 thread_list_delete (&thread->master->event, thread);
380 break;
381 case THREAD_READY:
382 thread_list_delete (&thread->master->ready, thread);
383 break;
384 default:
385 break;
386 }
387 thread->type = THREAD_UNUSED;
388 thread_add_unuse (thread->master, thread);
389 }
390
391 /* Delete all events which has argument value arg. */
392 void
393 thread_cancel_event (struct thread_master *m, void *arg)
394 {
395 struct thread *thread;
396
397 thread = m->event.head;
398 while (thread)
399 {
400 struct thread *t;
401
402 t = thread;
403 thread = t->next;
404
405 if (t->arg == arg)
406 {
407 thread_list_delete (&m->event, t);
408 t->type = THREAD_UNUSED;
409 thread_add_unuse (m, t);
410 }
411 }
412 }
413
414 #ifdef TIMER_NO_SORT
415 struct timeval *
416 thread_timer_wait (struct thread_master *m, struct timeval *timer_val)
417 {
418 struct timeval timer_now;
419 struct timeval timer_min;
420 struct timeval *timer_wait;
421
422 gettimeofday (&timer_now, NULL);
423
424 timer_wait = NULL;
425 for (thread = m->timer.head; thread; thread = thread->next)
426 {
427 if (! timer_wait)
428 timer_wait = &thread->u.sands;
429 else if (timeval_cmp (thread->u.sands, *timer_wait) < 0)
430 timer_wait = &thread->u.sands;
431 }
432
433 if (m->timer.head)
434 {
435 timer_min = *timer_wait;
436 timer_min = timeval_subtract (timer_min, timer_now);
437 if (timer_min.tv_sec < 0)
438 {
439 timer_min.tv_sec = 0;
440 timer_min.tv_usec = 10;
441 }
442 timer_wait = &timer_min;
443 }
444 else
445 timer_wait = NULL;
446
447 if (timer_wait)
448 {
449 *timer_val = timer_wait;
450 return timer_val;
451 }
452 return NULL;
453 }
454 #else /* ! TIMER_NO_SORT */
455 struct timeval *
456 thread_timer_wait (struct thread_master *m, struct timeval *timer_val)
457 {
458 struct timeval timer_now;
459 struct timeval timer_min;
460
461 if (m->timer.head)
462 {
463 gettimeofday (&timer_now, NULL);
464 timer_min = m->timer.head->u.sands;
465 timer_min = timeval_subtract (timer_min, timer_now);
466 if (timer_min.tv_sec < 0)
467 {
468 timer_min.tv_sec = 0;
469 timer_min.tv_usec = 10;
470 }
471 *timer_val = timer_min;
472 return timer_val;
473 }
474 return NULL;
475 }
476 #endif /* TIMER_NO_SORT */
477
478 struct thread *
479 thread_run (struct thread_master *m, struct thread *thread,
480 struct thread *fetch)
481 {
482 *fetch = *thread;
483 thread->type = THREAD_UNUSED;
484 thread_add_unuse (m, thread);
485 return fetch;
486 }
487
488 int
489 thread_process_fd (struct thread_master *m, struct thread_list *list,
490 fd_set *fdset, fd_set *mfdset)
491 {
492 struct thread *thread;
493 struct thread *next;
494 int ready = 0;
495
496 for (thread = list->head; thread; thread = next)
497 {
498 next = thread->next;
499
500 if (FD_ISSET (THREAD_FD (thread), fdset))
501 {
502 assert (FD_ISSET (THREAD_FD (thread), mfdset));
503 FD_CLR(THREAD_FD (thread), mfdset);
504 thread_list_delete (list, thread);
505 thread_list_add (&m->ready, thread);
506 thread->type = THREAD_READY;
507 ready++;
508 }
509 }
510 return ready;
511 }
512
513 /* Fetch next ready thread. */
514 struct thread *
515 thread_fetch (struct thread_master *m, struct thread *fetch)
516 {
517 int num;
518 int ready;
519 struct thread *thread;
520 fd_set readfd;
521 fd_set writefd;
522 fd_set exceptfd;
523 struct timeval timer_now;
524 struct timeval timer_val;
525 struct timeval *timer_wait;
526 struct timeval timer_nowait;
527
528 timer_nowait.tv_sec = 0;
529 timer_nowait.tv_usec = 0;
530
531 while (1)
532 {
533 /* Normal event is the highest priority. */
534 if ((thread = thread_trim_head (&m->event)) != NULL)
535 return thread_run (m, thread, fetch);
536
537 /* Execute timer. */
538 gettimeofday (&timer_now, NULL);
539
540 for (thread = m->timer.head; thread; thread = thread->next)
541 if (timeval_cmp (timer_now, thread->u.sands) >= 0)
542 {
543 thread_list_delete (&m->timer, thread);
544 return thread_run (m, thread, fetch);
545 }
546
547 /* If there are any ready threads, process top of them. */
548 if ((thread = thread_trim_head (&m->ready)) != NULL)
549 return thread_run (m, thread, fetch);
550
551 /* Structure copy. */
552 readfd = m->readfd;
553 writefd = m->writefd;
554 exceptfd = m->exceptfd;
555
556 /* Calculate select wait timer. */
557 timer_wait = thread_timer_wait (m, &timer_val);
558
559 num = select (FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait);
560
561 if (num == 0)
562 continue;
563
564 if (num < 0)
565 {
566 if (errno == EINTR)
567 continue;
568
569 zlog_warn ("select() error: %s", strerror (errno));
570 return NULL;
571 }
572
573 /* Normal priority read thead. */
574 ready = thread_process_fd (m, &m->read, &readfd, &m->readfd);
575
576 /* Write thead. */
577 ready = thread_process_fd (m, &m->write, &writefd, &m->writefd);
578
579 if ((thread = thread_trim_head (&m->ready)) != NULL)
580 return thread_run (m, thread, fetch);
581 }
582 }
583
584 static unsigned long
585 thread_consumed_time (RUSAGE_T *now, RUSAGE_T *start)
586 {
587 unsigned long thread_time;
588
589 #ifdef HAVE_RUSAGE
590 /* This is 'user + sys' time. */
591 thread_time = timeval_elapsed (now->ru_utime, start->ru_utime);
592 thread_time += timeval_elapsed (now->ru_stime, start->ru_stime);
593 #else
594 /* When rusage is not available, simple elapsed time is used. */
595 thread_time = timeval_elapsed (*now, *start);
596 #endif /* HAVE_RUSAGE */
597
598 return thread_time;
599 }
600
601 /* We should aim to yield after THREAD_YIELD_TIME_SLOT
602 milliseconds. */
603 int
604 thread_should_yield (struct thread *thread)
605 {
606 RUSAGE_T ru;
607
608 GETRUSAGE (&ru);
609
610 if (thread_consumed_time (&ru, &thread->ru) > THREAD_YIELD_TIME_SLOT)
611 return 1;
612 else
613 return 0;
614 }
615
616 /* We check thread consumed time. If the system has getrusage, we'll
617 use that to get indepth stats on the performance of the thread. If
618 not - we'll use gettimeofday for some guestimation. */
619 void
620 thread_call (struct thread *thread)
621 {
622 unsigned long thread_time;
623 RUSAGE_T ru;
624
625 GETRUSAGE (&thread->ru);
626
627 (*thread->func) (thread);
628
629 GETRUSAGE (&ru);
630
631 thread_time = thread_consumed_time (&ru, &thread->ru);
632
633 #ifdef THREAD_CONSUMED_TIME_CHECK
634 if (thread_time > 200000L)
635 {
636 /*
637 * We have a CPU Hog on our hands.
638 * Whinge about it now, so we're aware this is yet another task
639 * to fix.
640 */
641 zlog_err ("CPU HOG task %lx ran for %ldms",
642 /* FIXME: report the name of the function somehow */
643 (unsigned long) thread->func,
644 thread_time / 1000L);
645 }
646 #endif /* THREAD_CONSUMED_TIME_CHECK */
647 }
648
649 /* Execute thread */
650 struct thread *
651 thread_execute (struct thread_master *m,
652 int (*func)(struct thread *),
653 void *arg,
654 int val)
655 {
656 struct thread dummy;
657
658 memset (&dummy, 0, sizeof (struct thread));
659
660 dummy.type = THREAD_EVENT;
661 dummy.master = NULL;
662 dummy.func = func;
663 dummy.arg = arg;
664 dummy.u.val = val;
665 thread_call (&dummy);
666
667 return NULL;
668 }