]> git.proxmox.com Git - mirror_frr.git/blob - lib/thread.c
ospfd-spf-stats.patch
[mirror_frr.git] / lib / thread.c
1 /* Thread management routine
2 * Copyright (C) 1998, 2000 Kunihiro Ishiguro <kunihiro@zebra.org>
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with GNU Zebra; see the file COPYING. If not, write to the Free
18 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 */
21
22 /* #define DEBUG */
23
24 #include <zebra.h>
25
26 #include "thread.h"
27 #include "memory.h"
28 #include "log.h"
29 #include "hash.h"
30 #include "pqueue.h"
31 #include "command.h"
32 #include "sigevent.h"
33
34 #if defined HAVE_SNMP && defined SNMP_AGENTX
35 #include <net-snmp/net-snmp-config.h>
36 #include <net-snmp/net-snmp-includes.h>
37 #include <net-snmp/agent/net-snmp-agent-includes.h>
38 #include <net-snmp/agent/snmp_vars.h>
39
40 extern int agentx_enabled;
41 #endif
42
43 #if defined(__APPLE__)
44 #include <mach/mach.h>
45 #include <mach/mach_time.h>
46 #endif
47
48
49 /* Recent absolute time of day */
50 struct timeval recent_time;
51 static struct timeval last_recent_time;
52 /* Relative time, since startup */
53 static struct timeval relative_time;
54 static struct timeval relative_time_base;
55 /* init flag */
56 static unsigned short timers_inited;
57
58 static struct hash *cpu_record = NULL;
59
60 /* Struct timeval's tv_usec one second value. */
61 #define TIMER_SECOND_MICRO 1000000L
62
63 /* Adjust so that tv_usec is in the range [0,TIMER_SECOND_MICRO).
64 And change negative values to 0. */
65 static struct timeval
66 timeval_adjust (struct timeval a)
67 {
68 while (a.tv_usec >= TIMER_SECOND_MICRO)
69 {
70 a.tv_usec -= TIMER_SECOND_MICRO;
71 a.tv_sec++;
72 }
73
74 while (a.tv_usec < 0)
75 {
76 a.tv_usec += TIMER_SECOND_MICRO;
77 a.tv_sec--;
78 }
79
80 if (a.tv_sec < 0)
81 /* Change negative timeouts to 0. */
82 a.tv_sec = a.tv_usec = 0;
83
84 return a;
85 }
86
87 static struct timeval
88 timeval_subtract (struct timeval a, struct timeval b)
89 {
90 struct timeval ret;
91
92 ret.tv_usec = a.tv_usec - b.tv_usec;
93 ret.tv_sec = a.tv_sec - b.tv_sec;
94
95 return timeval_adjust (ret);
96 }
97
98 static long
99 timeval_cmp (struct timeval a, struct timeval b)
100 {
101 return (a.tv_sec == b.tv_sec
102 ? a.tv_usec - b.tv_usec : a.tv_sec - b.tv_sec);
103 }
104
105 unsigned long
106 timeval_elapsed (struct timeval a, struct timeval b)
107 {
108 return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO)
109 + (a.tv_usec - b.tv_usec));
110 }
111
112 #if !defined(HAVE_CLOCK_MONOTONIC) && !defined(__APPLE__)
113 static void
114 quagga_gettimeofday_relative_adjust (void)
115 {
116 struct timeval diff;
117 if (timeval_cmp (recent_time, last_recent_time) < 0)
118 {
119 relative_time.tv_sec++;
120 relative_time.tv_usec = 0;
121 }
122 else
123 {
124 diff = timeval_subtract (recent_time, last_recent_time);
125 relative_time.tv_sec += diff.tv_sec;
126 relative_time.tv_usec += diff.tv_usec;
127 relative_time = timeval_adjust (relative_time);
128 }
129 last_recent_time = recent_time;
130 }
131 #endif /* !HAVE_CLOCK_MONOTONIC && !__APPLE__ */
132
133 /* gettimeofday wrapper, to keep recent_time updated */
134 static int
135 quagga_gettimeofday (struct timeval *tv)
136 {
137 int ret;
138
139 assert (tv);
140
141 if (!(ret = gettimeofday (&recent_time, NULL)))
142 {
143 /* init... */
144 if (!timers_inited)
145 {
146 relative_time_base = last_recent_time = recent_time;
147 timers_inited = 1;
148 }
149 /* avoid copy if user passed recent_time pointer.. */
150 if (tv != &recent_time)
151 *tv = recent_time;
152 return 0;
153 }
154 return ret;
155 }
156
157 static int
158 quagga_get_relative (struct timeval *tv)
159 {
160 int ret;
161
162 #ifdef HAVE_CLOCK_MONOTONIC
163 {
164 struct timespec tp;
165 if (!(ret = clock_gettime (CLOCK_MONOTONIC, &tp)))
166 {
167 relative_time.tv_sec = tp.tv_sec;
168 relative_time.tv_usec = tp.tv_nsec / 1000;
169 }
170 }
171 #elif defined(__APPLE__)
172 {
173 uint64_t ticks;
174 uint64_t useconds;
175 static mach_timebase_info_data_t timebase_info;
176
177 ticks = mach_absolute_time();
178 if (timebase_info.denom == 0)
179 mach_timebase_info(&timebase_info);
180
181 useconds = ticks * timebase_info.numer / timebase_info.denom / 1000;
182 relative_time.tv_sec = useconds / 1000000;
183 relative_time.tv_usec = useconds % 1000000;
184
185 return 0;
186 }
187 #else /* !HAVE_CLOCK_MONOTONIC && !__APPLE__ */
188 if (!(ret = quagga_gettimeofday (&recent_time)))
189 quagga_gettimeofday_relative_adjust();
190 #endif /* HAVE_CLOCK_MONOTONIC */
191
192 if (tv)
193 *tv = relative_time;
194
195 return ret;
196 }
197
198 /* Get absolute time stamp, but in terms of the internal timer
199 * Could be wrong, but at least won't go back.
200 */
201 static void
202 quagga_real_stabilised (struct timeval *tv)
203 {
204 *tv = relative_time_base;
205 tv->tv_sec += relative_time.tv_sec;
206 tv->tv_usec += relative_time.tv_usec;
207 *tv = timeval_adjust (*tv);
208 }
209
210 /* Exported Quagga timestamp function.
211 * Modelled on POSIX clock_gettime.
212 */
213 int
214 quagga_gettime (enum quagga_clkid clkid, struct timeval *tv)
215 {
216 switch (clkid)
217 {
218 case QUAGGA_CLK_REALTIME:
219 return quagga_gettimeofday (tv);
220 case QUAGGA_CLK_MONOTONIC:
221 return quagga_get_relative (tv);
222 case QUAGGA_CLK_REALTIME_STABILISED:
223 quagga_real_stabilised (tv);
224 return 0;
225 default:
226 errno = EINVAL;
227 return -1;
228 }
229 }
230
231 /* time_t value in terms of stabilised absolute time.
232 * replacement for POSIX time()
233 */
234 time_t
235 quagga_time (time_t *t)
236 {
237 struct timeval tv;
238 quagga_real_stabilised (&tv);
239 if (t)
240 *t = tv.tv_sec;
241 return tv.tv_sec;
242 }
243
244 /* Public export of recent_relative_time by value */
245 struct timeval
246 recent_relative_time (void)
247 {
248 return relative_time;
249 }
250
251 static unsigned int
252 cpu_record_hash_key (struct cpu_thread_history *a)
253 {
254 return (uintptr_t) a->func;
255 }
256
257 static int
258 cpu_record_hash_cmp (const struct cpu_thread_history *a,
259 const struct cpu_thread_history *b)
260 {
261 return a->func == b->func;
262 }
263
264 static void *
265 cpu_record_hash_alloc (struct cpu_thread_history *a)
266 {
267 struct cpu_thread_history *new;
268 new = XCALLOC (MTYPE_THREAD_STATS, sizeof (struct cpu_thread_history));
269 new->func = a->func;
270 strcpy(new->funcname, a->funcname);
271 return new;
272 }
273
274 static void
275 cpu_record_hash_free (void *a)
276 {
277 struct cpu_thread_history *hist = a;
278
279 XFREE (MTYPE_THREAD_STATS, hist);
280 }
281
282 static void
283 vty_out_cpu_thread_history(struct vty* vty,
284 struct cpu_thread_history *a)
285 {
286 #ifdef HAVE_RUSAGE
287 vty_out(vty, "%7ld.%03ld %9d %8ld %9ld %8ld %9ld",
288 a->cpu.total/1000, a->cpu.total%1000, a->total_calls,
289 a->cpu.total/a->total_calls, a->cpu.max,
290 a->real.total/a->total_calls, a->real.max);
291 #else
292 vty_out(vty, "%7ld.%03ld %9d %8ld %9ld",
293 a->real.total/1000, a->real.total%1000, a->total_calls,
294 a->real.total/a->total_calls, a->real.max);
295 #endif
296 vty_out(vty, " %c%c%c%c%c%c %s%s",
297 a->types & (1 << THREAD_READ) ? 'R':' ',
298 a->types & (1 << THREAD_WRITE) ? 'W':' ',
299 a->types & (1 << THREAD_TIMER) ? 'T':' ',
300 a->types & (1 << THREAD_EVENT) ? 'E':' ',
301 a->types & (1 << THREAD_EXECUTE) ? 'X':' ',
302 a->types & (1 << THREAD_BACKGROUND) ? 'B' : ' ',
303 a->funcname, VTY_NEWLINE);
304 }
305
306 static void
307 cpu_record_hash_print(struct hash_backet *bucket,
308 void *args[])
309 {
310 struct cpu_thread_history *totals = args[0];
311 struct vty *vty = args[1];
312 thread_type *filter = args[2];
313 struct cpu_thread_history *a = bucket->data;
314
315 a = bucket->data;
316 if ( !(a->types & *filter) )
317 return;
318 vty_out_cpu_thread_history(vty,a);
319 totals->total_calls += a->total_calls;
320 totals->real.total += a->real.total;
321 if (totals->real.max < a->real.max)
322 totals->real.max = a->real.max;
323 #ifdef HAVE_RUSAGE
324 totals->cpu.total += a->cpu.total;
325 if (totals->cpu.max < a->cpu.max)
326 totals->cpu.max = a->cpu.max;
327 #endif
328 }
329
330 static void
331 cpu_record_print(struct vty *vty, thread_type filter)
332 {
333 struct cpu_thread_history tmp;
334 void *args[3] = {&tmp, vty, &filter};
335
336 memset(&tmp, 0, sizeof tmp);
337 strcpy(tmp.funcname, "TOTAL");
338 tmp.types = filter;
339
340 #ifdef HAVE_RUSAGE
341 vty_out(vty, "%21s %18s %18s%s",
342 "", "CPU (user+system):", "Real (wall-clock):", VTY_NEWLINE);
343 #endif
344 vty_out(vty, "Runtime(ms) Invoked Avg uSec Max uSecs");
345 #ifdef HAVE_RUSAGE
346 vty_out(vty, " Avg uSec Max uSecs");
347 #endif
348 vty_out(vty, " Type Thread%s", VTY_NEWLINE);
349 hash_iterate(cpu_record,
350 (void(*)(struct hash_backet*,void*))cpu_record_hash_print,
351 args);
352
353 if (tmp.total_calls > 0)
354 vty_out_cpu_thread_history(vty, &tmp);
355 }
356
357 DEFUN(show_thread_cpu,
358 show_thread_cpu_cmd,
359 "show thread cpu [FILTER]",
360 SHOW_STR
361 "Thread information\n"
362 "Thread CPU usage\n"
363 "Display filter (rwtexb)\n")
364 {
365 int i = 0;
366 thread_type filter = (thread_type) -1U;
367
368 if (argc > 0)
369 {
370 filter = 0;
371 while (argv[0][i] != '\0')
372 {
373 switch ( argv[0][i] )
374 {
375 case 'r':
376 case 'R':
377 filter |= (1 << THREAD_READ);
378 break;
379 case 'w':
380 case 'W':
381 filter |= (1 << THREAD_WRITE);
382 break;
383 case 't':
384 case 'T':
385 filter |= (1 << THREAD_TIMER);
386 break;
387 case 'e':
388 case 'E':
389 filter |= (1 << THREAD_EVENT);
390 break;
391 case 'x':
392 case 'X':
393 filter |= (1 << THREAD_EXECUTE);
394 break;
395 case 'b':
396 case 'B':
397 filter |= (1 << THREAD_BACKGROUND);
398 break;
399 default:
400 break;
401 }
402 ++i;
403 }
404 if (filter == 0)
405 {
406 vty_out(vty, "Invalid filter \"%s\" specified,"
407 " must contain at least one of 'RWTEXB'%s",
408 argv[0], VTY_NEWLINE);
409 return CMD_WARNING;
410 }
411 }
412
413 cpu_record_print(vty, filter);
414 return CMD_SUCCESS;
415 }
416
417 static void
418 cpu_record_hash_clear (struct hash_backet *bucket,
419 void *args)
420 {
421 thread_type *filter = args;
422 struct cpu_thread_history *a = bucket->data;
423
424 a = bucket->data;
425 if ( !(a->types & *filter) )
426 return;
427
428 hash_release (cpu_record, bucket->data);
429 }
430
431 static void
432 cpu_record_clear (thread_type filter)
433 {
434 thread_type *tmp = &filter;
435 hash_iterate (cpu_record,
436 (void (*) (struct hash_backet*,void*)) cpu_record_hash_clear,
437 tmp);
438 }
439
440 DEFUN(clear_thread_cpu,
441 clear_thread_cpu_cmd,
442 "clear thread cpu [FILTER]",
443 "Clear stored data\n"
444 "Thread information\n"
445 "Thread CPU usage\n"
446 "Display filter (rwtexb)\n")
447 {
448 int i = 0;
449 thread_type filter = (thread_type) -1U;
450
451 if (argc > 0)
452 {
453 filter = 0;
454 while (argv[0][i] != '\0')
455 {
456 switch ( argv[0][i] )
457 {
458 case 'r':
459 case 'R':
460 filter |= (1 << THREAD_READ);
461 break;
462 case 'w':
463 case 'W':
464 filter |= (1 << THREAD_WRITE);
465 break;
466 case 't':
467 case 'T':
468 filter |= (1 << THREAD_TIMER);
469 break;
470 case 'e':
471 case 'E':
472 filter |= (1 << THREAD_EVENT);
473 break;
474 case 'x':
475 case 'X':
476 filter |= (1 << THREAD_EXECUTE);
477 break;
478 case 'b':
479 case 'B':
480 filter |= (1 << THREAD_BACKGROUND);
481 break;
482 default:
483 break;
484 }
485 ++i;
486 }
487 if (filter == 0)
488 {
489 vty_out(vty, "Invalid filter \"%s\" specified,"
490 " must contain at least one of 'RWTEXB'%s",
491 argv[0], VTY_NEWLINE);
492 return CMD_WARNING;
493 }
494 }
495
496 cpu_record_clear (filter);
497 return CMD_SUCCESS;
498 }
499
500 static int
501 thread_timer_cmp(void *a, void *b)
502 {
503 struct thread *thread_a = a;
504 struct thread *thread_b = b;
505
506 long cmp = timeval_cmp(thread_a->u.sands, thread_b->u.sands);
507
508 if (cmp < 0)
509 return -1;
510 if (cmp > 0)
511 return 1;
512 return 0;
513 }
514
515 static void
516 thread_timer_update(void *node, int actual_position)
517 {
518 struct thread *thread = node;
519
520 thread->index = actual_position;
521 }
522
523 /* Allocate new thread master. */
524 struct thread_master *
525 thread_master_create ()
526 {
527 struct thread_master *rv;
528
529 if (cpu_record == NULL)
530 cpu_record
531 = hash_create ((unsigned int (*) (void *))cpu_record_hash_key,
532 (int (*) (const void *, const void *))cpu_record_hash_cmp);
533
534 rv = XCALLOC (MTYPE_THREAD_MASTER, sizeof (struct thread_master));
535
536 /* Initialize the timer queues */
537 rv->timer = pqueue_create();
538 rv->background = pqueue_create();
539 rv->timer->cmp = rv->background->cmp = thread_timer_cmp;
540 rv->timer->update = rv->background->update = thread_timer_update;
541
542 return rv;
543 }
544
545 /* Add a new thread to the list. */
546 static void
547 thread_list_add (struct thread_list *list, struct thread *thread)
548 {
549 thread->next = NULL;
550 thread->prev = list->tail;
551 if (list->tail)
552 list->tail->next = thread;
553 else
554 list->head = thread;
555 list->tail = thread;
556 list->count++;
557 }
558
559 /* Delete a thread from the list. */
560 static struct thread *
561 thread_list_delete (struct thread_list *list, struct thread *thread)
562 {
563 if (thread->next)
564 thread->next->prev = thread->prev;
565 else
566 list->tail = thread->prev;
567 if (thread->prev)
568 thread->prev->next = thread->next;
569 else
570 list->head = thread->next;
571 thread->next = thread->prev = NULL;
572 list->count--;
573 return thread;
574 }
575
576 /* Move thread to unuse list. */
577 static void
578 thread_add_unuse (struct thread_master *m, struct thread *thread)
579 {
580 assert (m != NULL && thread != NULL);
581 assert (thread->next == NULL);
582 assert (thread->prev == NULL);
583 assert (thread->type == THREAD_UNUSED);
584 thread_list_add (&m->unuse, thread);
585 /* XXX: Should we deallocate funcname here? */
586 }
587
588 /* Free all unused thread. */
589 static void
590 thread_list_free (struct thread_master *m, struct thread_list *list)
591 {
592 struct thread *t;
593 struct thread *next;
594
595 for (t = list->head; t; t = next)
596 {
597 next = t->next;
598 XFREE (MTYPE_THREAD, t);
599 list->count--;
600 m->alloc--;
601 }
602 }
603
604 static void
605 thread_queue_free (struct thread_master *m, struct pqueue *queue)
606 {
607 int i;
608
609 for (i = 0; i < queue->size; i++)
610 XFREE(MTYPE_THREAD, queue->array[i]);
611
612 m->alloc -= queue->size;
613 pqueue_delete(queue);
614 }
615
616 /* Stop thread scheduler. */
617 void
618 thread_master_free (struct thread_master *m)
619 {
620 thread_list_free (m, &m->read);
621 thread_list_free (m, &m->write);
622 thread_queue_free (m, m->timer);
623 thread_list_free (m, &m->event);
624 thread_list_free (m, &m->ready);
625 thread_list_free (m, &m->unuse);
626 thread_queue_free (m, m->background);
627
628 XFREE (MTYPE_THREAD_MASTER, m);
629
630 if (cpu_record)
631 {
632 hash_clean (cpu_record, cpu_record_hash_free);
633 hash_free (cpu_record);
634 cpu_record = NULL;
635 }
636 }
637
638 /* Thread list is empty or not. */
639 static int
640 thread_empty (struct thread_list *list)
641 {
642 return list->head ? 0 : 1;
643 }
644
645 /* Delete top of the list and return it. */
646 static struct thread *
647 thread_trim_head (struct thread_list *list)
648 {
649 if (!thread_empty (list))
650 return thread_list_delete (list, list->head);
651 return NULL;
652 }
653
654 /* Return remain time in second. */
655 unsigned long
656 thread_timer_remain_second (struct thread *thread)
657 {
658 quagga_get_relative (NULL);
659
660 if (thread->u.sands.tv_sec - relative_time.tv_sec > 0)
661 return thread->u.sands.tv_sec - relative_time.tv_sec;
662 else
663 return 0;
664 }
665
666 /* Trim blankspace and "()"s */
667 void
668 strip_funcname (char *dest, const char *funcname)
669 {
670 char buff[FUNCNAME_LEN];
671 char tmp, *e, *b = buff;
672
673 strncpy(buff, funcname, sizeof(buff));
674 buff[ sizeof(buff) -1] = '\0';
675 e = buff +strlen(buff) -1;
676
677 /* Wont work for funcname == "Word (explanation)" */
678
679 while (*b == ' ' || *b == '(')
680 ++b;
681 while (*e == ' ' || *e == ')')
682 --e;
683 e++;
684
685 tmp = *e;
686 *e = '\0';
687 strcpy (dest, b);
688 *e = tmp;
689 }
690
691 /* Get new thread. */
692 static struct thread *
693 thread_get (struct thread_master *m, u_char type,
694 int (*func) (struct thread *), void *arg, const char* funcname)
695 {
696 struct thread *thread = thread_trim_head (&m->unuse);
697
698 if (! thread)
699 {
700 thread = XCALLOC (MTYPE_THREAD, sizeof (struct thread));
701 m->alloc++;
702 }
703 thread->type = type;
704 thread->add_type = type;
705 thread->master = m;
706 thread->func = func;
707 thread->arg = arg;
708 thread->index = -1;
709
710 strip_funcname (thread->funcname, funcname);
711
712 return thread;
713 }
714
715 /* Add new read thread. */
716 struct thread *
717 funcname_thread_add_read (struct thread_master *m,
718 int (*func) (struct thread *), void *arg, int fd, const char* funcname)
719 {
720 struct thread *thread;
721
722 assert (m != NULL);
723
724 if (FD_ISSET (fd, &m->readfd))
725 {
726 zlog (NULL, LOG_WARNING, "There is already read fd [%d]", fd);
727 return NULL;
728 }
729
730 thread = thread_get (m, THREAD_READ, func, arg, funcname);
731 FD_SET (fd, &m->readfd);
732 thread->u.fd = fd;
733 thread_list_add (&m->read, thread);
734
735 return thread;
736 }
737
738 /* Add new write thread. */
739 struct thread *
740 funcname_thread_add_write (struct thread_master *m,
741 int (*func) (struct thread *), void *arg, int fd, const char* funcname)
742 {
743 struct thread *thread;
744
745 assert (m != NULL);
746
747 if (FD_ISSET (fd, &m->writefd))
748 {
749 zlog (NULL, LOG_WARNING, "There is already write fd [%d]", fd);
750 return NULL;
751 }
752
753 thread = thread_get (m, THREAD_WRITE, func, arg, funcname);
754 FD_SET (fd, &m->writefd);
755 thread->u.fd = fd;
756 thread_list_add (&m->write, thread);
757
758 return thread;
759 }
760
761 static struct thread *
762 funcname_thread_add_timer_timeval (struct thread_master *m,
763 int (*func) (struct thread *),
764 int type,
765 void *arg,
766 struct timeval *time_relative,
767 const char* funcname)
768 {
769 struct thread *thread;
770 struct pqueue *queue;
771 struct timeval alarm_time;
772
773 assert (m != NULL);
774
775 assert (type == THREAD_TIMER || type == THREAD_BACKGROUND);
776 assert (time_relative);
777
778 queue = ((type == THREAD_TIMER) ? m->timer : m->background);
779 thread = thread_get (m, type, func, arg, funcname);
780
781 /* Do we need jitter here? */
782 quagga_get_relative (NULL);
783 alarm_time.tv_sec = relative_time.tv_sec + time_relative->tv_sec;
784 alarm_time.tv_usec = relative_time.tv_usec + time_relative->tv_usec;
785 thread->u.sands = timeval_adjust(alarm_time);
786
787 pqueue_enqueue(thread, queue);
788 return thread;
789 }
790
791
792 /* Add timer event thread. */
793 struct thread *
794 funcname_thread_add_timer (struct thread_master *m,
795 int (*func) (struct thread *),
796 void *arg, long timer, const char* funcname)
797 {
798 struct timeval trel;
799
800 assert (m != NULL);
801
802 trel.tv_sec = timer;
803 trel.tv_usec = 0;
804
805 return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER, arg,
806 &trel, funcname);
807 }
808
809 /* Add timer event thread with "millisecond" resolution */
810 struct thread *
811 funcname_thread_add_timer_msec (struct thread_master *m,
812 int (*func) (struct thread *),
813 void *arg, long timer, const char* funcname)
814 {
815 struct timeval trel;
816
817 assert (m != NULL);
818
819 trel.tv_sec = timer / 1000;
820 trel.tv_usec = 1000*(timer % 1000);
821
822 return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER,
823 arg, &trel, funcname);
824 }
825
826 /* Add a background thread, with an optional millisec delay */
827 struct thread *
828 funcname_thread_add_background (struct thread_master *m,
829 int (*func) (struct thread *),
830 void *arg, long delay,
831 const char *funcname)
832 {
833 struct timeval trel;
834
835 assert (m != NULL);
836
837 if (delay)
838 {
839 trel.tv_sec = delay / 1000;
840 trel.tv_usec = 1000*(delay % 1000);
841 }
842 else
843 {
844 trel.tv_sec = 0;
845 trel.tv_usec = 0;
846 }
847
848 return funcname_thread_add_timer_timeval (m, func, THREAD_BACKGROUND,
849 arg, &trel, funcname);
850 }
851
852 /* Add simple event thread. */
853 struct thread *
854 funcname_thread_add_event (struct thread_master *m,
855 int (*func) (struct thread *), void *arg, int val, const char* funcname)
856 {
857 struct thread *thread;
858
859 assert (m != NULL);
860
861 thread = thread_get (m, THREAD_EVENT, func, arg, funcname);
862 thread->u.val = val;
863 thread_list_add (&m->event, thread);
864
865 return thread;
866 }
867
868 /* Cancel thread from scheduler. */
869 void
870 thread_cancel (struct thread *thread)
871 {
872 struct thread_list *list = NULL;
873 struct pqueue *queue = NULL;
874
875 switch (thread->type)
876 {
877 case THREAD_READ:
878 assert (FD_ISSET (thread->u.fd, &thread->master->readfd));
879 FD_CLR (thread->u.fd, &thread->master->readfd);
880 list = &thread->master->read;
881 break;
882 case THREAD_WRITE:
883 assert (FD_ISSET (thread->u.fd, &thread->master->writefd));
884 FD_CLR (thread->u.fd, &thread->master->writefd);
885 list = &thread->master->write;
886 break;
887 case THREAD_TIMER:
888 queue = thread->master->timer;
889 break;
890 case THREAD_EVENT:
891 list = &thread->master->event;
892 break;
893 case THREAD_READY:
894 list = &thread->master->ready;
895 break;
896 case THREAD_BACKGROUND:
897 queue = thread->master->background;
898 break;
899 default:
900 return;
901 break;
902 }
903
904 if (queue)
905 {
906 assert(thread->index >= 0);
907 assert(thread == queue->array[thread->index]);
908 pqueue_remove_at(thread->index, queue);
909 }
910 else if (list)
911 {
912 thread_list_delete (list, thread);
913 }
914 else
915 {
916 assert(!"Thread should be either in queue or list!");
917 }
918
919 thread->type = THREAD_UNUSED;
920 thread_add_unuse (thread->master, thread);
921 }
922
923 /* Delete all events which has argument value arg. */
924 unsigned int
925 thread_cancel_event (struct thread_master *m, void *arg)
926 {
927 unsigned int ret = 0;
928 struct thread *thread;
929
930 thread = m->event.head;
931 while (thread)
932 {
933 struct thread *t;
934
935 t = thread;
936 thread = t->next;
937
938 if (t->arg == arg)
939 {
940 ret++;
941 thread_list_delete (&m->event, t);
942 t->type = THREAD_UNUSED;
943 thread_add_unuse (m, t);
944 }
945 }
946
947 /* thread can be on the ready list too */
948 thread = m->ready.head;
949 while (thread)
950 {
951 struct thread *t;
952
953 t = thread;
954 thread = t->next;
955
956 if (t->arg == arg)
957 {
958 ret++;
959 thread_list_delete (&m->ready, t);
960 t->type = THREAD_UNUSED;
961 thread_add_unuse (m, t);
962 }
963 }
964 return ret;
965 }
966
967 static struct timeval *
968 thread_timer_wait (struct pqueue *queue, struct timeval *timer_val)
969 {
970 if (queue->size)
971 {
972 struct thread *next_timer = queue->array[0];
973 *timer_val = timeval_subtract (next_timer->u.sands, relative_time);
974 return timer_val;
975 }
976 return NULL;
977 }
978
979 static struct thread *
980 thread_run (struct thread_master *m, struct thread *thread,
981 struct thread *fetch)
982 {
983 *fetch = *thread;
984 thread->type = THREAD_UNUSED;
985 thread_add_unuse (m, thread);
986 return fetch;
987 }
988
989 static int
990 thread_process_fd (struct thread_list *list, fd_set *fdset, fd_set *mfdset)
991 {
992 struct thread *thread;
993 struct thread *next;
994 int ready = 0;
995
996 assert (list);
997
998 for (thread = list->head; thread; thread = next)
999 {
1000 next = thread->next;
1001
1002 if (FD_ISSET (THREAD_FD (thread), fdset))
1003 {
1004 assert (FD_ISSET (THREAD_FD (thread), mfdset));
1005 FD_CLR(THREAD_FD (thread), mfdset);
1006 thread_list_delete (list, thread);
1007 thread_list_add (&thread->master->ready, thread);
1008 thread->type = THREAD_READY;
1009 ready++;
1010 }
1011 }
1012 return ready;
1013 }
1014
1015 /* Add all timers that have popped to the ready list. */
1016 static unsigned int
1017 thread_timer_process (struct pqueue *queue, struct timeval *timenow)
1018 {
1019 struct thread *thread;
1020 unsigned int ready = 0;
1021
1022 while (queue->size)
1023 {
1024 thread = queue->array[0];
1025 if (timeval_cmp (*timenow, thread->u.sands) < 0)
1026 return ready;
1027 pqueue_dequeue(queue);
1028 thread->type = THREAD_READY;
1029 thread_list_add (&thread->master->ready, thread);
1030 ready++;
1031 }
1032 return ready;
1033 }
1034
1035 /* process a list en masse, e.g. for event thread lists */
1036 static unsigned int
1037 thread_process (struct thread_list *list)
1038 {
1039 struct thread *thread;
1040 struct thread *next;
1041 unsigned int ready = 0;
1042
1043 for (thread = list->head; thread; thread = next)
1044 {
1045 next = thread->next;
1046 thread_list_delete (list, thread);
1047 thread->type = THREAD_READY;
1048 thread_list_add (&thread->master->ready, thread);
1049 ready++;
1050 }
1051 return ready;
1052 }
1053
1054
1055 /* Fetch next ready thread. */
1056 struct thread *
1057 thread_fetch (struct thread_master *m, struct thread *fetch)
1058 {
1059 struct thread *thread;
1060 fd_set readfd;
1061 fd_set writefd;
1062 fd_set exceptfd;
1063 struct timeval timer_val = { .tv_sec = 0, .tv_usec = 0 };
1064 struct timeval timer_val_bg;
1065 struct timeval *timer_wait = &timer_val;
1066 struct timeval *timer_wait_bg;
1067
1068 while (1)
1069 {
1070 int num = 0;
1071 #if defined HAVE_SNMP && defined SNMP_AGENTX
1072 struct timeval snmp_timer_wait;
1073 int snmpblock = 0;
1074 int fdsetsize;
1075 #endif
1076
1077 /* Signals pre-empt everything */
1078 quagga_sigevent_process ();
1079
1080 /* Drain the ready queue of already scheduled jobs, before scheduling
1081 * more.
1082 */
1083 if ((thread = thread_trim_head (&m->ready)) != NULL)
1084 return thread_run (m, thread, fetch);
1085
1086 /* To be fair to all kinds of threads, and avoid starvation, we
1087 * need to be careful to consider all thread types for scheduling
1088 * in each quanta. I.e. we should not return early from here on.
1089 */
1090
1091 /* Normal event are the next highest priority. */
1092 thread_process (&m->event);
1093
1094 /* Structure copy. */
1095 readfd = m->readfd;
1096 writefd = m->writefd;
1097 exceptfd = m->exceptfd;
1098
1099 /* Calculate select wait timer if nothing else to do */
1100 if (m->ready.count == 0)
1101 {
1102 quagga_get_relative (NULL);
1103 timer_wait = thread_timer_wait (m->timer, &timer_val);
1104 timer_wait_bg = thread_timer_wait (m->background, &timer_val_bg);
1105
1106 if (timer_wait_bg &&
1107 (!timer_wait || (timeval_cmp (*timer_wait, *timer_wait_bg) > 0)))
1108 timer_wait = timer_wait_bg;
1109 }
1110
1111 #if defined HAVE_SNMP && defined SNMP_AGENTX
1112 /* When SNMP is enabled, we may have to select() on additional
1113 FD. snmp_select_info() will add them to `readfd'. The trick
1114 with this function is its last argument. We need to set it to
1115 0 if timer_wait is not NULL and we need to use the provided
1116 new timer only if it is still set to 0. */
1117 if (agentx_enabled)
1118 {
1119 fdsetsize = FD_SETSIZE;
1120 snmpblock = 1;
1121 if (timer_wait)
1122 {
1123 snmpblock = 0;
1124 memcpy(&snmp_timer_wait, timer_wait, sizeof(struct timeval));
1125 }
1126 snmp_select_info(&fdsetsize, &readfd, &snmp_timer_wait, &snmpblock);
1127 if (snmpblock == 0)
1128 timer_wait = &snmp_timer_wait;
1129 }
1130 #endif
1131 num = select (FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait);
1132
1133 /* Signals should get quick treatment */
1134 if (num < 0)
1135 {
1136 if (errno == EINTR)
1137 continue; /* signal received - process it */
1138 zlog_warn ("select() error: %s", safe_strerror (errno));
1139 return NULL;
1140 }
1141
1142 #if defined HAVE_SNMP && defined SNMP_AGENTX
1143 if (agentx_enabled)
1144 {
1145 if (num > 0)
1146 snmp_read(&readfd);
1147 else if (num == 0)
1148 {
1149 snmp_timeout();
1150 run_alarms();
1151 }
1152 netsnmp_check_outstanding_agent_requests();
1153 }
1154 #endif
1155
1156 /* Check foreground timers. Historically, they have had higher
1157 priority than I/O threads, so let's push them onto the ready
1158 list in front of the I/O threads. */
1159 quagga_get_relative (NULL);
1160 thread_timer_process (m->timer, &relative_time);
1161
1162 /* Got IO, process it */
1163 if (num > 0)
1164 {
1165 /* Normal priority read thead. */
1166 thread_process_fd (&m->read, &readfd, &m->readfd);
1167 /* Write thead. */
1168 thread_process_fd (&m->write, &writefd, &m->writefd);
1169 }
1170
1171 #if 0
1172 /* If any threads were made ready above (I/O or foreground timer),
1173 perhaps we should avoid adding background timers to the ready
1174 list at this time. If this is code is uncommented, then background
1175 timer threads will not run unless there is nothing else to do. */
1176 if ((thread = thread_trim_head (&m->ready)) != NULL)
1177 return thread_run (m, thread, fetch);
1178 #endif
1179
1180 /* Background timer/events, lowest priority */
1181 thread_timer_process (m->background, &relative_time);
1182
1183 if ((thread = thread_trim_head (&m->ready)) != NULL)
1184 return thread_run (m, thread, fetch);
1185 }
1186 }
1187
1188 unsigned long
1189 thread_consumed_time (RUSAGE_T *now, RUSAGE_T *start, unsigned long *cputime)
1190 {
1191 #ifdef HAVE_RUSAGE
1192 /* This is 'user + sys' time. */
1193 *cputime = timeval_elapsed (now->cpu.ru_utime, start->cpu.ru_utime) +
1194 timeval_elapsed (now->cpu.ru_stime, start->cpu.ru_stime);
1195 #else
1196 *cputime = 0;
1197 #endif /* HAVE_RUSAGE */
1198 return timeval_elapsed (now->real, start->real);
1199 }
1200
1201 /* We should aim to yield after THREAD_YIELD_TIME_SLOT milliseconds.
1202 Note: we are using real (wall clock) time for this calculation.
1203 It could be argued that CPU time may make more sense in certain
1204 contexts. The things to consider are whether the thread may have
1205 blocked (in which case wall time increases, but CPU time does not),
1206 or whether the system is heavily loaded with other processes competing
1207 for CPU time. On balance, wall clock time seems to make sense.
1208 Plus it has the added benefit that gettimeofday should be faster
1209 than calling getrusage. */
1210 int
1211 thread_should_yield (struct thread *thread)
1212 {
1213 quagga_get_relative (NULL);
1214 return (timeval_elapsed(relative_time, thread->real) >
1215 THREAD_YIELD_TIME_SLOT);
1216 }
1217
1218 void
1219 thread_getrusage (RUSAGE_T *r)
1220 {
1221 quagga_get_relative (NULL);
1222 #ifdef HAVE_RUSAGE
1223 getrusage(RUSAGE_SELF, &(r->cpu));
1224 #endif
1225 r->real = relative_time;
1226
1227 #ifdef HAVE_CLOCK_MONOTONIC
1228 /* quagga_get_relative() only updates recent_time if gettimeofday
1229 * based, not when using CLOCK_MONOTONIC. As we export recent_time
1230 * and guarantee to update it before threads are run...
1231 */
1232 quagga_gettimeofday(&recent_time);
1233 #endif /* HAVE_CLOCK_MONOTONIC */
1234 }
1235
1236 /* We check thread consumed time. If the system has getrusage, we'll
1237 use that to get in-depth stats on the performance of the thread in addition
1238 to wall clock time stats from gettimeofday. */
1239 void
1240 thread_call (struct thread *thread)
1241 {
1242 unsigned long realtime, cputime;
1243 RUSAGE_T before, after;
1244
1245 /* Cache a pointer to the relevant cpu history thread, if the thread
1246 * does not have it yet.
1247 *
1248 * Callers submitting 'dummy threads' hence must take care that
1249 * thread->cpu is NULL
1250 */
1251 if (!thread->hist)
1252 {
1253 struct cpu_thread_history tmp;
1254
1255 tmp.func = thread->func;
1256 strcpy(tmp.funcname, thread->funcname);
1257
1258 thread->hist = hash_get (cpu_record, &tmp,
1259 (void * (*) (void *))cpu_record_hash_alloc);
1260 }
1261
1262 GETRUSAGE (&before);
1263 thread->real = before.real;
1264
1265 (*thread->func) (thread);
1266
1267 GETRUSAGE (&after);
1268
1269 realtime = thread_consumed_time (&after, &before, &cputime);
1270 thread->hist->real.total += realtime;
1271 if (thread->hist->real.max < realtime)
1272 thread->hist->real.max = realtime;
1273 #ifdef HAVE_RUSAGE
1274 thread->hist->cpu.total += cputime;
1275 if (thread->hist->cpu.max < cputime)
1276 thread->hist->cpu.max = cputime;
1277 #endif
1278
1279 ++(thread->hist->total_calls);
1280 thread->hist->types |= (1 << thread->add_type);
1281
1282 #ifdef CONSUMED_TIME_CHECK
1283 if (realtime > CONSUMED_TIME_CHECK)
1284 {
1285 /*
1286 * We have a CPU Hog on our hands.
1287 * Whinge about it now, so we're aware this is yet another task
1288 * to fix.
1289 */
1290 zlog_warn ("SLOW THREAD: task %s (%lx) ran for %lums (cpu time %lums)",
1291 thread->funcname,
1292 (unsigned long) thread->func,
1293 realtime/1000, cputime/1000);
1294 }
1295 #endif /* CONSUMED_TIME_CHECK */
1296 }
1297
1298 /* Execute thread */
1299 struct thread *
1300 funcname_thread_execute (struct thread_master *m,
1301 int (*func)(struct thread *),
1302 void *arg,
1303 int val,
1304 const char* funcname)
1305 {
1306 struct thread dummy;
1307
1308 memset (&dummy, 0, sizeof (struct thread));
1309
1310 dummy.type = THREAD_EVENT;
1311 dummy.add_type = THREAD_EXECUTE;
1312 dummy.master = NULL;
1313 dummy.func = func;
1314 dummy.arg = arg;
1315 dummy.u.val = val;
1316 strip_funcname (dummy.funcname, funcname);
1317 thread_call (&dummy);
1318
1319 return NULL;
1320 }